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ABSTRACT 

Increasing data burdens associated with image and signal processing in support of space situational awareness 

implies much-needed growth of computational throughput beyond petascale (10
15

 FLOP/s) to exascale regimes (10
18

 

FLOP/s, 10
18

 bytes of memory, 10
18

 disks and Input/Output (I/O) channels, etc.) In addition to growth in 

applications data burden and diversity, the breadth and diversity of high performance computing architectures and 

their various organizations have confounded the development of a single, unifying, practicable model of parallel 

computation.  Therefore, models for parallel exascale processing have leveraged architectural and structural 

idiosyncrasies, yielding potential misapplications. In response to this challenge, we have developed a concise, 

efficient computational paradigm and software called Program Compliant Exascale Mapping (PCEM) to facilitate 

efficient optimal or near-optimal mapping of annotated application codes to parallel exascale processors. 

Our theory, algorithms, software, and experimental results support annotation-based parallelization of 

application codes for envisioned exascale architectures, based on Image Algebra (IA) [Rit01]. Because of the rigor, 

completeness, conciseness, and layered design of image algebra notation, application-to-architecture mapping is 

feasible and scalable at exascales.  In particular, parallel operations and program partitions are categorized in terms 

of six types of parallel operations, where each type is mapped to heterogeneous exascale processors via simple rules 

in the PCEM annotation language.   

In this paper, we overview opportunities and challenges of exascale computing for image and signal processing 

in support of radar imaging in space situational awareness applications. We discuss software interfaces and several 

demonstration applications, with performance analysis and results in terms of execution time as well as memory 

access latencies and energy consumption for bus-connected and/or networked architectures.  The feasibility of the 

PCEM paradigm is demonstrated by addressing four principal challenges: (1) architectural/structural diversity, 

parallelism, and locality, (2) masking of I/O and memory latencies, (3) scalability, and (4) efficient 

representation/expression of parallel applications. Examples will demonstrate how PCEM helps solve these 

challenges efficiently on real-world computing systems. 

Keywords:  High-performance computing, Exascale processing, Image and signal processing 

 

1. INTRODUCTION 
 

Continuing increases in the number and complexity of high-performance computing applications imply an ongoing 

expansion of high-performance computing (HPC) capacity and throughput while maintaining or improving existing 

levels of numerical quality and system reliability. For several years, continued HPC throughput increases have been 

difficult to achieve by merely increasing processor clock rate.  In particular, the power dissipation of CPU circuit 

technology is limited by frequency (P = O(f 

2
)), capacitance and voltage (P = O(CV

2
)).  Thus, the mere decrease in 

feature size to current dimensions (22nm [Int12]) and beyond will likely not facilitate significant increases in clock 

rate similar to the trends of the past four decades. This trend is illustrated graphically in Figure 1, which shows that 

peak clock rate has maintained at approximately 3.4GHz for several years while throughput has increased.   

Several years ago, a 3.4GHz clock rate seemed to be a hard limit, as the transformation of capacitive losses to 

heat-transferring resistance losses at that frequency became insurmountable with commercial heat sinks. However, 

this engineering challenge did not stop progressive throughput increases, as shown in Figure 1b.  A general 

observation that can be inferred from these engineering trends is that further increases in processing power are more 

likely to occur as a result of spatial parallelism.  A leading example of this emerging trend is the graphics processing 
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unit (GPU), which has many processing elements (PEs) or cores per die.  Another example is the hybrid 

multiprocessor (HMP) such as Intel’s Ivy Bridge or Haswell architectures [Int12]. 

       
(a) (b) 

Figure 1. Trends in CPU clock rate: (a) millions of instructions per second (MIPS) and CPU clock rate, 

and (b) throughput in MIPS per die, per calendar year, 1976-2011; after [Gill11]. 

Thus, from a statistical and mathematical computing perspective, GPU- and HMP-based HPC is the emerging 

norm for parallelizeable programs, functions, or operations.  GPUs have, and HMPs are expected to gain, a huge 

installed base: it is estimated that graphics chip shipments in 2016 would approach 688 million units [Ped12].  

Although centered on photorealistic video rendering for computing and the video gaming industry, such a large 

consumer base is advantageous to HPC.  Primarily, the amortization of GPU development cost has thus far reduced 

unit cost to several hundred dollars for GPU chips with throughput currently ranging from 1 TFLOPs to 10 TFLOPs 

per chip (depending on numerical quality). 

GPUs were adopted by the HPC community due to massive parallelism and (in a few cases) the ability to 

perform double-precision floating point computation.  Scientific and military applications have benefitted from 

GPUs for HPC tasks, but mainly to the extent that the GPU can be employed as a co-processor.  As Amdahl’s Law 

predicts, programs with high sequential content (such as decision trees) tend not to benefit from parallel computation 

on a GPU or cluster of GPUs [Amd67,Cass12].  Indeed, we have found (in prior unpublished research) that some 

sequential applications actually run slower on a GPU than on a single-core CPU.  So the HPC community tends to 

employ GPU-based HPC systems for natively parallel applications, for example, synthetic aperture radar (SAR) 

image reconstruction [Chap11], computational fluid dynamics (CFD), and finite element analysis (FEA).   

As shown in Figure 2, CPUs and GPUs can be clustered – so we have determined that parallelism can be 

partitioned and clustered hierarchically at levels of chip, device, subsystem, cluster, and super-cluster (a cluster of 

clusters). It is thus reasonable to envision the extension of GPU based computing from today’s devices with 

hundreds of cores, to current state-of-the-art petascale assemblies of GPUs comprising tens to hundreds of thousands 

of cores, to exascale systems comprised of super-clusters of CPU-controlled clusters of GPUs as well as petascale 

machines.  Hence, this study emphasizes the use of GPU-based exascale systems to optimize and implement 

inherently parallel applications, on a production basis. 
We achieve nearly-optimal mapping of image and signal processing operations to exascale architectures by 

exploiting parallelism inherent in image algebra [Rit01], a rigorous concise notation that unifies linear and nonlinear 

mathematics in the image domain.  The image algebra research project at University of Florida determined that six 

types of parallel operations comprise parallel image and signal processing [Rit01,Sch10].  Our technology called 

Programmable Computing with Exascale Mappings (PCEM) maps these six operation types to CPUs and GPUs, 

with significant increases in computational throughput and maintenance of computational accuracy. 

This paper summarizes our research via the following organization. Section 2 presents background and theory, 

while Section 3 discusses our implementational approach in detail.  Section 4 has practical examples pertaining to 

image reconstruction, with conclusions and future work presented in Section 5. 
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2. BACKGROUND AND THEORY 

We begin with an overview of parallel architectures for exascale computing (Section 2.1) and previous or related 

work in mapping image and signal processing operations to exascale architectures (Section 2.2).  We then illustrate 

how image algebra is structured, and how the constituent types of parallel operations are organized for PCEM-based 

mapping to exascale architectures (Section 2.3).  

2.1. Overview of Exascale Architecture  

Let us envision an exascale processor as an heterogeneous processing unit (HPU).  In this vision of HPU computing 

evolving within the computer science and engineering community, an exascale system could be comprised at a high 

level of superclusters connected by a wide-area network (WAN).  For example, a supercluster could include one or 

more hundreds-of-petaflops machines (in a larger view) at a national laboratory.  At the supercluster level, each 

supercluster node could be associated with (or be comprised of) a plurality of nodes at the cluster level.   

Continuing with our vision-in-the-large, each cluster node could be associated with or comprised of control 

subsystems such as multicore CPUs, storage subsystems such as electro-mechanical or solid-state disks, datapath 

subsystems such as multicore CPUs and GPUs or clusters of CPU-GPU nodes, and interface subsystems such as 

sensor controllers, I/O processors and so forth.  Cluster nodes could be formed by connecting these subsystems via a 

high-speed local network (LAN) such as Infiniband
TM 

[Lul11].  

At a more detailed level, each subsystem node could contain one or more devices, each comprised of 

components.  For example, within a datapath subsystem, device level CPUs and GPUs would contain storage, 

control, datapath, and communication (bus) elements defined at the component level of the exascale hierarchy.  This 

view is depicted in Figure 2, which notionally illustrates our vision for PCEM-controlled exascale systems. 

Supercluster 1 Supercluster 2 Supercluster N. . .

Cluster 1,1 Cluster 1,2 . . . Cluster 1,M(1)

Exascale System

Control Subsystem(s)  Storage Subsystem(s)                 Datapath Subsystem(s)

System Level

Supercluster Level

Cluster Level

Subsystem Level

Device Level

Component Level

WAN

LAN

CPUs           GPUs EMDs           SSDs CPUs           GPUs

Control          Storage            Datapath Bus

. . .

 

Figure 2.  Notional view of an envisioned PCEM exascale computing hierarchy. 

We present this idealized, hierarchical vision of an exascale system for two reasons.  Firstly, a “holy grail” of 

high-performance computing is optimal mapping of work items in an application to processing elements in an 

architecture.  This algorithm-to-architecture mapping is performed under control of an optimizing scheduler.  In 

large computer systems such as the envisioned exascale hierarchy shown in Figure 2, each level of the system could 

exploit a potentially different scheduling mechanism.  For example, at the supercluster level a large-task, a provably 

correct procedure such as OmniScheduler
TM

 [Li09] would map large jobs (requiring hours of compute time) across 

multiple WAN-connected computing sites.  At the cluster level, a knapsack-based scheduler [Swe98] would assign 

smaller jobs, or smaller portions of large jobs, to many LAN-connected heterogeneous processors.  At the bus-

connected device level, a tightly organized scheduling algorithm could map operations or portions of operations to 

processing partitions that could be as small as thread blocks assigned to streaming multiprocessors. 
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The second reason for our envisioning of a PCEM-enabled exascale computing system as an hierarchical 

organization is managed versatility. A beautiful and powerful feature of exascale computing is that, within any level, 

the system designer can prescribe – or the system’s hierarchically scheduled network can choreograph – fine-

granular mappings of computational work to components having various levels of heterogeneity.  Thus, in addition 

to significantly increased throughput (10
18

 FLOPs) an exascale system would have the ability to reconfigure itself to 

produce clusters of heterogeneous network regions – each of which can tailor itself to specific computing tasks.  For 

realism, we assume that this would be done within an efficient reconfiguration timeframe.  From our previous work 

in reconfigurable computing [Swe98], it is well known that if a task completes within time tE, and the network 

reconfigures for another task within time tR, efficiency and utility can be realized when tR << tE.   

2.2. Overview of Previous Work  

The distribution of computing tasks across a multi-level network (i.e., WAN > LAN > bus-connected) implies 

the scheduling of individual as well as composite tasks, where the latter can be comprised of many grouped or 

coalesced operations.  Given current and expected contexts of green computing [Cass12], it is reasonable to trade off 

runtime, space consumption, computational error, and power/energy consumption behaviors and constraints.  We 

have shown that concentrating computing effort in lower-cost nodes or distributing work across faster nodes 

respectively reduces power or time cost [Ahm12].  Our PCEM methodology can expand this tradeoff to achieve 

prespecified balance among time, space, power, time-dependent energy profile, and numerical quality variables.    

PCEM can support power conservation via increased locality in space and time by (a) using local nodes where 

possible to conserve communication cost, or (b) exploiting lower-power instructions at device and component levels 

of the hierarchy, versus scattering a task across multiple clusters.  Conversely, by assigning tasks or operations to a 

larger collection of datapaths, increased parallelism can be achieved, thereby yielding faster computation via 

exploiting faster local latencies versus slower global latencies. This assumes, of course, that the given task can be 

partitioned into subtasks, and that these decimated work units are appropriate for one or more lower-level devices. 

Because of connective flexibility and heterogeneity in the exascale vision of Figure 2, and due to GPU/HMP 

emergence as workhorse processors for graphics and HPC, many new opportunities present for GPU/HMPs [Gill11, 

Ped12].  Exascale systems appear to be well suited for image reconstruction, finite element analysis, and 

computational fluid dynamics – problems with data points potentially at exascale quantities (e.g., 10
18

 pixels, mesh 

or grid elements) all related by inherently parallel functionality or data structure(s) [Ped12].      

In this paper, radar image reconstruction for space situational awareness employs iterative invocation of a 

tensor-product-like structure, whereby each element of a sensed data array potentially contributes to every pixel of a 

reconstructed image [Chap11]. Applications abound – reconstruction of optical telescope images and synthetic 

aperture radar imagery, tomographic reconstruction for medical or security applications (e.g., CAT and MRI 

scanning, trans-apparel body surveillance or TABS, ground- or structure-penetrating acoustic or electromagnetic 

sensing for cavity or object detection).  Each of these applications requires huge amounts of streaming data from 

airborne or standoff sensors, and features highly parallel iterative kernels that are ideal for GPUs and HMPs. Due to 

data movement latencies arising in part from the relative low speed of PCI Express buses, transferring these huge 

datasets overwhelmed the computational efficiency realized through a GPU’s SIMD architecture. But an HMP, with 

on-chip data transfers via high-speed cache can change the processing dynamic.  

Unfortunately, GPUs and HMPs represent a programming challenge for software vendors and their commercial 

user communities. Unlike sequential computing that enjoyed the von Neumann architecture as its unifying model for 

over 50 years, there is no unifying model for parallel computing.  As a result, each operation, function, procedure, 

and program is currently parallelized manually or is associated with a developed, proven code fragment in one or 

more libraries.  In the former case (manual parallelization) one typically obtains slow, error-prone code that may not 

be provably correct.  In the latter case, one encounters rigidity that can severely limit the fluency with which parallel 

computation can be employed in the service of science and defense applications, and the arts. 

2.3. Image Algebraic Support for PCEM-Enabled Exascale Computing  

In PCEM, we exploit the underlying concept derived from the mathematical model of image algebra [Rit01] that six 

types of operations support parallel image/signal computing: pointwise arithmetic, global reduction, inner product, 

convolution product, matrix product, and tensor product.  Each operation type has one or more efficient mappings to 

a parallel architecture such as a SIMD mesh, MIMD network, or a hybrid processor (e.g., multicore CPU with a 

SIMD unit or a GPU with a MIMD-partitionable set of streaming multiprocessors) [Sch10].  This allows PCEM to 

have versatility, flexibility, and robustness since our set of operation types is small, and each of our operation-to-

architecture mappings have been specifically developed for a given processor in a provably correct manner.   



 

 5 

Importantly, PCEM has the ability to view a program as a sequence of individual tasks, or as a collection of task 

subsequences.  This allows PCEM to group a sequence of programmatic operations into a collection of parallel 

tasks, and to efficiently schedule these tasks on a MIMD network such as the exascale system illustrated in Figure 2. 

Support for SIMD meshes and networks of heterogeneous processors has also been designed and partially 

implemented.  PCEM scheduling is layered, modular, extensible, and maintainable as well as amenable to 

centralized or distributed operation.  PCEM’s evolving scheduler design supports increased heterogeneity at 

multiple levels (see Figure 2), will allow faulting or failing devices to be present in the network but circumnavigated 

at runtime, and will provide fault tolerance and avoidance including redundancy (as needed) and rollback. 

We next discuss key implementational details of how PCEM implements exascale mappings. 

3.  PROGRAM COMPLIANT EXASCALE MAPPING 

The PCEM study addresses key challenges of exascale computing in the following practicable ways, aiming for 

the objective of near-optimal parallel scheduling: 

 Parallel operations employed in DoD and DOE applications are categorized into six classes that comprise a 

parallel virtual machine (PVM), which is amenable to being mapped to a wide variety of heterogeneous target 

architectures.  The PCEM PVM is complete, because the six types or classes of operations employed in PCEM 

were proven to cover operation types in image and signal processing as well as grid- and mesh-based modeling 

and simulation, pattern recognition (including neural networks), and other DoD/DOE applications [Rit01]. 

PVM’s compactness ensures that runtime support for each target processor will be compact and maintainable - 

thus fulfilling objectives of good software engineering, and will be extensible via specialization of each 

operation type, as described below. 

 Each operation type can be viewed as an object-oriented class that can be specialized to yield one or more 

instances specific to a given application domain.  For example, the operation type pointwise arithmetic can be 

specialized to yield pointwise addition, pointwise multiplication, pointwise comparison, and so forth.  These 

specializations are described extensively in [Rit01], and are further elaborated herein for PCEM. 

 Parallel operations are annotated in source code in an easily-readable user-friendly manner that supports 

understanding of the PCEM-annotated code by programmers as well as system developers.  This means that, 

unlike some annotation systems [Dur12], PCEM notation is not cryptic and does not require manual insertion of 

code fragments written in arcane programming languages such as OpenCL, OpenMP, or CUDA.  Thus, PCEM 

annotation can be readily interpreted and modified by algorithm designers or programmers. 

 Annotated operations can be identified individually or coalesced, and are scheduled near-optimally 

(individually or in groups), to support PCEM’s achieving our user-specified goals of joint optimization of time, 

space, energy profile, error (numerical quality), and power, also called STEEP optimization.  In particular, 

individual operations can be identified and assigned to different processor architectures in a heterogeneous 

system, thereby allowing each operation to be computed on the processor that is best suited to optimization 

objectives.  Alternatively, individual operations using common operands (large vector-parallel image structures) 

can be collected, then assigned to a group of processors.  This coalescing of operations and operands is 

important for achieving time- and power-optimal execution by reducing data movement between target (slave) 

processors and their controlling (master) nodes.  To support maintainability in the presence of system upgrades, 

each PCEM runtime module can be coded for our small set of six operation types, with new hardware 

specifications readily included in the PCEM scheduler’s knowledge base of processor attributes and 

performance characteristics. 

 Exascale system status can be monitored and used to drive scheduling to achieve fault tolerance in the case of 

faulting or failing processors.  This ensures continuity of computation, at the expense of delays incurred by 

process rollback and restart.  We are currently developing a “snapshot” capability within the PCEM supervisory 

module, to incrementally record the progress of computations on each slave processor or cluster of such 

processors, as well as on the master processor(s).  This will support periodic monitoring of each processor’s 

status, to support rolling back a computation incrementally when a fault or exception is detected.   

 Scheduling includes performance tradeoffs among runtime, space consumption, energy profile, power 

consumption and numerical quality that can be specified directly within a PCEM annotation block, in terms of a 

prioritized list of performance objectives such as runtime > power > error.  Additional variables for this 

optimizing scheduler will include energy profile as a function of time, numerical quality or stability, degree of 

parallelism, locality, and spatial extent of the target processors – as supported by hardware status availability. 
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 Parallel programs can be exercised via a script-like capability programmable by system developers, to support 

performance verification and optimization for different groupings of heterogeneous processors, e.g., for load 

balancing across multiple levels of an exascale system such as that illustrated in Figure 2. 

 PCEM innovations are encapsulated in a user-friendly compiler wrapper that runs from standard operating 

systems, and uses commercial-off-the-shelf compilers such as the GNU C++ compiler, OpenMP, and Nvidia’s 

CUDA compiler, which are available publicly.  Since the PCEM system is, by design, modular and supportive 

of plug-ins, we are able to readily and economically support new compilers into PCEM without adversely 

affecting functionality of other parts of the PCEM system or of the compiler. 

 Thus, our PCEM technical solution directly and successfully addresses key issues of (1) annotation-driven 

parallelization of legacy code; (2) portability of legacy code; (3) architectural heterogeneity; (4) optimization of 

parallelism and locality in terms of performance metrics such as runtime, space and power consumption, energy 

profile, and numerical quality via user-specified constraints stated in the annotation; (5) optimal partitioning of code 

based on separating or coalescing of individual operations or groups of operations, respectively; (6) low cost and 

ease of use via the use of COTS compilers and operating systems as plug-in modules; (7) increased code reliability 

and reduced error rate as a result of templated, easy-to-read annotation format; and (8) support for algorithm/system 

co-design via scripts that exercise algorithms over a wide range of software and hardware performance parameters 

and constraints. 

We achieve these objectives for each operation type, as follows. 

3.1. Pointwise Operations  

Consider an image domain (coordinate set) X, which is called a point set, customarily a subset of R
n
, where R 

denotes the real numbers.  Let a value set F denote the values of pixels in an image.  Image algebra theory defines an 

image a as a mapping from a point set to a value set, so we write  a : X  F.  Customarily, F denotes a subset of the 

reals, but can be any set.  We also write a  F
X
, to be more concise.  Let us define an image a  F

X
 as a set 

 a = {(x,a(x)) : a(x)  F, x  X} . (1) 

This allows us to view an image a as a collection of pixels where each pixel is denoted by (x,a(x)), with a(x) a 

member of the value set F and x a point in the point set X. 

For pointwise operations, let the value set F = R and let an associative, commutative function  : R x R  R .  

The function  induces a corresponding parallel operation  : R
X
 x R

X
  R

X
 that can be applied to two images a,b  

R
X
 to yield another image c  R

X
, defined as  

 c = a  b = {(x,c(x)) : c(x) = a(x)  b(x), x  X} . (2) 

This pointwise or Hadamard operation can be specialized.  For example, if  = +, then we have pointwise addition; 

if  =  , we have pointwise multiplication.  Pointwise arithmetic and logic operations are defined in image algebra 

for any associative commutative function (e.g., +, -, x, /, , ).  There is also a specialization of pointwise operations 

called pointwise unary operations – for example, sin(a) = {(x,b(x)) : b(x) = sin[a(x)], x  X}. 

   

 (a)       (b) 

Figure 3.  Diagram of (a) mapping and scheduling, and (b) load balancing algorithm for GPU implementation 

of pointwise multiplication. 
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To map a pointwise operation to a GPU or HMP, we merely partition the source domain X into a set of 

nonoverlapping tiles U  X, then map each operand pair (a|
U
, b|

U
) to a streaming multiprocessor.  The PCEM 

notation (at top of Figure 3a) specifies that a and b are 2048x2048-pixel integer-valued images and that tiling is 

regular and nonoverlapping with rectangular tiles of size KxL pixels. The mapping directive denoted by 

 Tile => ThreadBlock : mult => CPU : marshall (3) 

denotes that each tile is mapped to a GPU (slave) thread block which performs a pointwise multiplication operation, 

and the resulting tile is sent to the CPU (master processor) to be marshaled into the result image.  The optimization 

objective is to minimize firstly power consumption, secondly execution time, and thirdly arithmetic error.  In 

practice, the evolution of PCEM’s annotation format has been simplified for easy insertion into the actual code 

where the pointwise multiplication is performed, as shown in the following format: 

   @D Example of Pointwise Arithmetic  

   @L Oper: Type=Pointwise; Subtype=Multiplication  

   @+ Precision=64;  

   @+ Opn1: Datatype=double; Domain=rectangular; Size1=1000; Size2=1000; Ptr=x;  

   @+ Opn2: Datatype=double; Domain=rectangular; Size1=1000; Size2=1000; Ptr=y;  

   @+ Dest: Datatype=double; Domain=rectangular; Size1=1000; Size2=1000; Ptr=z;  

   @M MappingType: Tiling;  

   @+ Goal: Minimize; 

This annotation is processed by the PCEM interpreter and implemented as shown in Figure 3, with very little 

additional overhead, especially when compared with the size of the source and result images.   

In the load balancing algorithm shown in Figure 3b, NTSM tiles of size NBPT bits per tile are assigned to each 

given streaming multiprocessor (SM) having local memory NBLM bits.  Assuming that all SMs operate in parallel, 

then a maximum of  BLMBPTTSM NNN /  iterations of the pointwise operation  =  comprise the performance-

limiting computational path. 

3.2. Global Reduce Operations  

If  is an associative and commutative binary operation on F and X is finite, for example, X = {x1, x2, …, xn}, then  

induces a unary operation  denoted abstractly as 

 FF
X  : , (4) 

which is called the global reduction (or global reduce) operation induced by , and is defined as 

 
  )(  γ  γ)(  γ)()()( 21

1
nk

k

n

xaxaxaxaxaa
Xx





 (5) 

For example, if F = R and  is the operation of addition ( = +), then   and 

   )(  )(  )()()(
21

1

n

n

k

k xaxaxaxaxaa
Xx

 


 . (6) 

The customary value set (R, , , +, ) provides for four basic global reduce operations, respectively, a , a , 

a , and a . 

 
 (a)       (b) 

Figure 4. PCEM (a) annotation and (b) load balancing algorithm for global reduction operation on a GPU. 

@D Example of Global Reduction 

@L Oper: Type=Reduction;  

@+ Subtype=Summation  

@+ Precision=64;  

@+ Opn1: Datatype=double;  

@+  Domain=rectangular; Size1=1000;  

@+ Size2=1000; Ptr=x;  

@+ Dest: Datatype=double;  

@+ Domain=rectangular; Size1=1;  

@+ Size2=1; Ptr=z;  

@M MappingType: Tiling;  

@+ Goal: Minimize; 
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Implementation of the global reduction operation on a GPU is an adaptation of the pointwise operation , from 

which  is derived.  Firstly, we modify the operation type to become GlobalReduction > Summation, then 

specify the disposition of each tile as Tile => ThreadBlock : sum => CPU : sum.  

The PCEM annotation shown in Figure 4a constrains the mapping process by the same type of tiling shown in 

Figure 3a.  The associated load balancing algorithm shown in Figure 4b is similar to the pointwise case shown in 

Figure 3b.  As before, this code is translated to CUDA or OpenCL/MPI code with very little overhead.   

3.3. Inner (Dot) Product Operation  

The dot product of two vectors a = (a1, a2, ..., an) and b = (b1, b2, ..., bn) is defined as:  

 
nn

n

i

ii babababa  


2211

1

ba  (7) 

Given images a,b  R
X
, the inner product is expressed in image algebra as s = a  b = (a * b).  It is readily seen 

that the inner product is a combination of the global reduce operation of summation applied to the pointwise 

operation of multiplication.  Thus, given the object-oriented focus of our PCEM methodology, we can apply 

composition to yield the mapping and load balancing strategies illustrated in Figure 5.  

 
 (a)       (b) 

Figure 5.  Diagram of (a) mapping and (b) load balancing for GPU implementation of inner product. 

The PCEM embedded annotation is of similar form to that for pointwise and global reduce operations: 
   @D Example of Inner Product 

   @L Oper: Type=InnerProduct  

   @+ Precision=64;  

   @+ Opn1: Datatype=double; Domain=rectangular; Size1=1000; Size2=1000; Ptr=x;  

   @+ Opn1: Datatype=double; Domain=rectangular; Size1=1000; Size2=1000; Ptr=y;  

   @+ Dest: Datatype=double; Domain=rectangular; Size1=1; Size2=1; Ptr=z;  

   @M MappingType: Tiling;  

   @+ Goal: Minimize; 

Note that Figure 5 assumes the use of Nvidia’s fused multiply-add (FMA) instruction, which influences our 

scheduling and load balancing algorithm, as FMA has the advantage of performing one multiplication and one 

addition operation concurrently per clock cycle, which is especially useful in the following case of convolution. 

3.4. Convolution Product Operation  

Consider the convolution of an image with a template.  In image algebra, templates are images whose values are 

images [Rit01].  The concept of a template unifies and generalizes the usual concepts of templates, masks, windows, 

and neighborhood functions into one general mathematical entity.  Also, templates generalize the notion of 

structuring elements used in mathematical morphology. 

Definition.  A template is an image whose pixel values are images (functions).  An F-valued template from Y to X 

is a function XFYt : .  Thus, YXFt )(  and t is an F
X
-valued image on Y.  For notational convenience, we define 

Yyytty  )( , and call y the target point of t.  The image ty has the following set-theoretic representation: 

 }:))(,{( Xxxtxt yy  , (8) 
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and the pixel values ty(x) of this image are called the weights of the template t at point y. 

If t is a real- or complex-valued template from Y to X, then the support of t is denoted by S(ty) and is defined as 

   }0)(:{)(  xtXxt yyS . (9) 

More generally, if YXFt )(  and F is an algebraic structure with a zero element 0, then the support of ty will be 

defined as }0)(:{)(  xtXxt yyS . 

For extended real-valued templates we also define the following supports at infinity: 

 })(:{)(  xtXxt yyS    and    })(:{)(  xtXxt yyS . (10) 

If X is a space with an operation + such that (X,+) is a group, then a template XXFt )(  is said to be translation 

invariant (with respect to the operation +) if and only if for each triple Xzyx ,,  we have that )()( zxtxt zyy  
.  

Templates that are not translation invariant are called translation variant or, simply, variant templates. 

The definition of an image-template product provides the rules for combining images with templates, and 

templates with templates.  The definition of this product includes the usual correlation and convolution products 

employed in digital image processing.  Suppose F is a value set with two binary operations O and , where O 

distributes over , and  is associative and commutative.  If YXFt )( , then for each Yy , X
y Ft  .  Thus, if 

XFa , where X is finite, then X
y Fta O  and Fta y  )( O .  It follows that the binary operations O and  

induce a binary operation 

 YYXX FFF  )(:γO  (11) 

where 

 YFtab  Oγ  (12) 

is defined by 
 

))()(()()( xtxatayb y
Xx

y OO



 .  (13) 

Therefore, if X = {x1, x2, …, xn}, then 

 ))()((γγ))()((γ))()(()( 2211 nn xtxaxtxaxtxayb yyy OOO  . (14) 

The expression taOγ  is called the right convolution product of a with t, or more simply, the generalized 

convolution product.  While a is an image on X, the product taOγ  is an image on Y.  Thus, templates support image 

transformation from one type of domain to an entirely different domain type. 

Replacing (F, , O) by (R, +, ) changes b = taOγ  into tab  ,  which is the linear image-template product 

or, more simply, the convolution of a with t, where 
 

))()(()( xtxayb y
Xx





 
, (15)

 

where XRa  and YXRt )( .  

Figure 6 illustrates the mapping and load balancing strategies for the linear convolution operation.  Observe that 

the convolution kernel requires overlap between applications of the template t.  This is accounted for in the load  

  
(a)                                                               (b) 

Figure 6.  Notional diagram of (a) mapping and (b) load balancing for GPU implementation of convolution. 
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balancing strategy by including the number of boundary pixels NBP in the number of pixels per tile NPPT, which is 

used (as in the previous operation types) to calculate the number of bits per tile NBPT and number of tiles NT. 
PCEM also generates code fragments, and links to compact libraries of code, for CUDA and OpenMP, as listed 

in Figure 7a.  Here, the CUDA kernel implements linear convolution in double precision and receives pointers to x, 

y, and z, which correspond to the two inputs (image and template) and one output (image) associated with the 

convolution operation.  A partition vector p contains information about which elements of the matrix this kernel 

processes, and the target point of template t is specified by (tx,ty).  The variables r and s help provide a check on 

boundary position.  The OpenMP code for linear convolution, listed in Figure 7b, uses OpenMP to perform 

pointwise multiplication followed by summation.  The code receives an annotation structure an and a partition 

vector p as its inputs, then extracts pointers to operands and their dimensions from the logical structure contained 

within an.  Inside each block, an OpenMP directive is used to distribute loop iterations among the available CPU 

cores, as illustrated in Figure 6a.  Similar code generation mechanisms exist for CUDA, OpenMP, and MPI for the 

six types of operations listed herein. 

  
(a)                                                               (b) 

Figure 7.  Example of PCEM code generation for convolution: (a) CUDA code and (b) OpenMP code. 

3.5. Matrix Product and Tensor (Outer) Product Operations  

The operations shown thus far become components for implementation of the more involved matrix product and 

tensor product operations.  For example, the matrix product can be implemented in terms of the inner product.  That 

is, if A and B are real-valued matrices of respective size MxK and KxN, i.e., A  RMxK and B  RKxN, the matrix 

product C = AB is defined as  

 



K

k

kjikij BAAB
1

)(  (16) 

Given row vector Ai and column vector B j, we have that (AB)ij = Ai  B j , as portrayed in Figure 8a. 

  
(a)                                                               (b) 

Figure 8.  Example of PCEM implementation of (a) matrix product and (b) tensor product on a GPU. 
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The tensor (outer) product, portrayed in Figure 8b, is similarly implemented, by observing that, given matrices 

A  RMxN and B  RKxL, the outer product of A and B, denoted by C = A  B, is defined in image algebra as: 

 (A  B)ij = aij * B, 1 < i < M, 1 < j < N. (17) 

Scheduling of the outer product depends upon block sizes KA and KB of the input matrices and their relationship to 

the blocksize KA  KB of the output matrix, as well as the size of local memory in the slave processor, the bus or 

network communication protocol and cost, and computational cost incurred by the extensive number of multiplies. 

4.  IMPLEMENTATIONAL EXAMPLE OF PCEM SPECIALIZATION 

Advantageously, the PCEM types of parallel operations form a compact set of operation classes that can be 

specialized into subclasses and instances, as indicated by principles of object-oriented design.  Each of these 

instances carries with it at least one algorithm for mapping its operation to each target architecture, together with 

load balancing heuristics, constraints for mapping to heterogeneous architectures, and so forth.  As such, we have a 

compact hierarchy of operation classes, subclasses, and instances – each of which can be mapped to a target 

architecture.  This differs significantly from previous work [Dur12], in which a user can code an ad hoc procedure 

or kernel, link it to annotation that can be inserted into application code, then have the annotation processed 

according to user-specified constraints to yield parallel code.  But Duran et al.’s kernels do not seem to be organized 

systematically, which could lead to undesirable software engineering practice. 

PCEM’s advantage in this regard is significant:  users do not have to do much coding, and the PCEM system 

takes care of partitioning and scheduling automatically.  PCEM can do this efficiently and successfully because the 

execution, mapping, and scheduling methods (or knowledge) are encapsulated with each operation instance that 

comprises the hierarchy of the PCEM parallel virtual machine.  The key concept is specialization that can inherit 

attributes and methodology from parent (class level) operation annotation and procedures. 

From Section 3.5, we note that the tensor product (or outer product) involves the multiplication of two matrices 

A and B in blockwise fashion.  Equation (17) shows that the (i,j)
th

 block of the tensor product C = A  B  is formed 

by pointwise multiplication of the element aij of matrix A by the matrix B.  In order to optimize performance of this 

operation we must partition A and B blockwise (e.g., by tiling) and optimize the blocksizes with respect to processor 

local memory capacity and data movement latencies.   

 
 

 

 

 

 

 

 

 

 

 

Figure 9.  CSAR image reconstruction: (a) Mapping 

technique derived from the tensor product (Fig. 8b); 

(b) Measured performance results, from AFRL 

network-connected Condor machine (CSx notation) 

and our bus-connected Nvidia quad Fermi machine 

(QFx) notation.  Observe how the I/O protocol time 

contributes a significant amount of the total compu- 

tation time in the quad Fermi machine (enhanced 

PCI bus), as opposed to reduced I/O time in Condor, 

due to faster network connection (Infiniband
TM

). 
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Single stage CSAR image reconstruction poses a similar problem: each pulse-azimuth value in a radar pulse 

data matrix influences the reconstruction of each pixel in a two-dimensional output image.  The compact PCEM 

annotation for this process is presented below.  The logical sub-block (@L) describes the image size constraints 

(M,N) and the pulse matrix size limits (Nb and Np) illustrated in Figure 9a, together with the CSAR backprojection 

operation as linear and additive.  Due to the process of specialization (of the tensor product operation type), the 

annotation is of similar form to that of the tensor product (Figure 8b): 

   @D PCEM: Example of Backprojection 

   @L Oper: Type=Backprojection; 

   @+ Precision=32; 

   @+ Opn1: Datatype=cfloat; Domain=rectangular; Size1=bins; Size2=pc; Ptr=p0; df=df 

   @+ Opn2: Datatype=float; Domain=rectangular; Size1=5; Size2=pc; Ptr=m0; 

   @+ Dest: Datatype=cfloat; Domain=rectangular; Size1=s0; Size2=s1; Ptr=out; 

      x0=-30; x1=30; y0=-30; y1=30 

PCEM’s algorithm exercising capability was applied to the preceding annoration, to produce performance data 

that are summarized in Figure 9b. There, an expected, significant discrepancy exists between the NVIDIA Tesla 

C2050 GPU and Intel dual core CPU execution times.  Further, using PCEM’s exercising scripts, we measured the 

effect on the GPUs of only I/O and protocol delays.  We found that, as the number of processors active on the 

Condor system increases, and image size increases, the (I/O + protocols) cost overwhelms the computation cost. 

For example, for two Condor GPUs active, the total runtime is 1.189 sec for a 4kx4k-pixel output image and 

16.32 sec for a 15kx15k image, whereas for 12 Condor GPUs active, the total runtime is 0.204 sec for a 4kx4k 

output image and 2.73 sec for a 15kx15k image.  In contrast, given the (I/O + protocols) times, for 2 Condor GPUs 

active, the time is 0.35 sec for a 4kx4k output image and 4.23 sec for a 15kx15k image, whereas for 12 Condor 

GPUs active, the time is 0.507sec for a 4kx4k output image and 6.234 sec for a 15kx15k image.  Thus, the ratio of 

runtime to I/O+protocol time increases from 3.37X = 1.189s/0.35s with 2 processors and a 4kx4k image, to 3.86X = 

16.32s/4.23s for 2 processors reconstructing a 15kx15k image.  A more dramatic decrease in runtime divided by 

I/O+protocol time, with respect to the two-GPU Condor case is seen for 12 processors, for 4kx4k image we have 

0.402X = 0.204s/0.507s but for the 15kx15k image, we have 0.44X = 2.73s/6.23s.  We are further investigating 

these effects of network overhead, which we are attempting to remediate through more carefully optimized data 

movement strategies. 

6.  CONCLUSIONS AND FUTURE WORK 

We have presented an annotation and optimizing scheduler driven by annotation (higher-level algorithmic 

expression) that is applicable to envisioned exascale architectures.  Specifically, PCEM specifies and directs 

assignment of computational tasks to multiple target processors based on annotation-directed tradeoffs between 

parallelism and locality.  The optimizing scheduler is designed to be directed by constraints specified in the 

annotation.  We provided a CSAR image reconstruction example to show that PCEM achieves good runtime 

performance by increasing parallelism adaptively through (a) partitioning and coalescing of data (operands) and 

tasks (operations) to reduce I/O cost by intelligent management of locality, (b) automatic tiling of the pulse matrix 

and reconstructed image to exploit available parallelism in the target GPUs, and (c) superior performance with 

respect to high-level language versions of the program run on multicore CPUs. 

The PCEM concept is built on the mathematical models underlying University of Florida’s development of 

image algebra, a rigorous, concise notation that unifies linear and nonlinear mathematics in the image domain.  The 

PCEM optimizing scheduler is built on customary optimization theory.  Additionally, we have developed theoretical 

expressions that describe how computational resources will be allocated to achieve desired tradeoffs between 

parallelism (which we can increase to achieve decreased runtime) and locality (we can more tightly cluster 

computations in fewer and more proximal processors, to achieve decreased power consumption). 

Hybrid multicore processors (HMPs) and graphics processing units (GPUs) are leading a new wave of 

computing that combines massive parallelism with MIMD parallel networks of CPUs. As programmers learn to 

develop inherently parallel algorithms using the PCEM paradigm, and users share the joy of using PCEM (usually 

without knowing why things are faster and better), the deployment of hybrid MIMD/SIMD architectures as stand-

alone or closely coupled with a resident CPU will explode. HMP and GPU demand will grow much faster than the 

PC market or the much-vaunted mobile market, thereby becoming the next big wave in computing.  Thus, PCEM 

positions us to provide intelligent scheduling services as this trend reaches the exascale regime. 
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