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It has been shown previously that the accumulated velocity change of a
spacecraft under continuous thrust is nearly constant over a wide range
of thrust magnitudes for multi-revolution, time-optimal orbit transfers,
approximately equal to the di¤erence in initial and �nal circular veloci-
ties. This same behavior exists for multi-revolution transfers between non-
circular orbits, but the value of the accumulated velocity change must be
determined numerically. For continuous-thrust transfers of less than one
revolution, the approximate initial Lagrange costates and �nal �ight times
for minimum-time orbit transfers have been shown to reduce to simple al-
gebraic expressions which may be used to initialize continuation methods.
If the smaller of either the initial or �nal orbits is noncircular, chaotic be-
havior may be observed using continuation methods. This paper examines
chaotic discontinuities and local minima in the continuation method and
o¤ers techniques to help automate parameter searches for minimum-time,
continuous-thrust orbit transfers.

INTRODUCTION

Minimum-time, continuous-thrust orbit transfers have been studied in great detail and have been
shown[1] to have certain predictable characteristics when the initial and �nal orbits are exactly cir-
cular and coplanar. In particular, the accumulated velocity change (V acc) due to the action of
the propulsion system is nearly constant for a wide range of constant thrust level, multi-revolution
transfers which is useful for calculating the approximate total �ight time for a given initial accel-
eration value. In the multi-revolution case, V acc is approximately equal to the di¤erence between
the initial and �nal circular velocities. Since the time of �ight is approximately equal to V acc
divided by the magnitude of the acceleration produced by the propulsion system, this provides a
simple relationship to estimate the minimum time of �ight between two circular, coplanar orbits
under continuous thrust.

To obtain the minimum-time control law for the instantaneous thrust angle relative to the local
horizon, � = tan�1(�u=�v), a variational Hamiltonian is formed using Lagrange costates, �, as
shown in a classical Earth-to-Mars transfer example in the literature[3]. However, the physical
boundary conditions do not provide enough information to determine the optimal initial values of
the Lagrange costates or the �nal �ight time, so they must be found numerically. For continuous-
thrust orbit transfers with less than one revolution, the approximate initial Lagrange costates and
�nal �ight times for minimum-time trajectories have been shown[2] to reduce to simple algebraic
expressions. These expressions can be used to �nd starting cases for continuation methods over
a range of parameter values. For many-revolution transfers, if the smaller of either the initial or
�nal orbits is noncircular, chaotic behavior and local minima may be observed using continuation
methods to solve for minimum-time orbit transfers by varying parameters or end conditions. This
paper examines chaotic discontinuities in the continuation method and o¤ers techniques to help
automate parameter searches for minimum-time, continuous-thrust orbit transfers.



EQUATIONS OF MOTION & OPTIMAL CONTROL THEORY

The two-dimensional equations of motion of a spacecraft under continuous thrust may be ex-
pressed in polar coordinates which include r as the scalar distance from the attracting center, u as
the time rate of change of r, and v as the velocity component perpendicular to u directed along the
spacecraft horizon. The polar thrust angle, �, is measured clockwise ("up") from the spacecraft
local horizontal. The two-dimensional numerical examples presented in this paper are adequate to
explore chaotic behavior and local versus global minima. In general, the minimum-time solution
of a two-dimensional problem can be used as a starting point for three-dimensional problems as
necessary. The magnitude of the thrust acceleration is A = T=(m0 + _mt) where T is the constant

thrust magnitude of the propulsion system, and t is the time. If _m = 0, then A is equal to a
constant. The only external force we will consider is that of gravity from a single point source.
This results in the following di¤erential equations:
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First, de�ne a scalar function H, the Hamiltonian:
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Using the polar equations of motion in two dimensions, the Hamiltonian is as follows:
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For the Hamiltonian to be stationary with respect to the control variable and the states, we have:
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Equation 6 is the optimality condition, which states that the variation of the cost with respect to
the control should be zero on the optimal path. Equation 7 provides a set of �rst order di¤erential
equations that govern the behavior of the Lagrange multipliers. These are the costate equations,
which may be integrated along with the state equations through the time interval.
The optimality condition yields the following:
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Solving for the polar thrust angle � leads to:
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Using the control law given above, we obtain the following:
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To �nd the costates, use Equation 7:
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which completes the set of optimal control equations in the polar case. This result may be used
to determine the optimal control law for a spacecraft under continuous thrust. However, there
is a signi�cant di¢ culty inherent in this formulation. Although the costate equations may be
derived as shown, they must be initialized to begin a numerical integration procedure such as the
shooting method to achieve convergence. We may determine the desired initial and �nal conditions
for the physical states, but there is no guaranteed way to determine the correct, optimal boundary
conditions for the costates. If they are too far away from the correct values, the shooting method
will fail, but presumably there will be a non-zero radius of convergence for the search technique.

NUMERICAL EXAMPLES

The �rst example examined in this paper is a minimum-time, continuous thrust magnitude
maneuver from a LEO-to-GEO elliptical transfer orbit to circular GEO in the same plane. In
order to �nd the solution to this example, a continuation method was used to start from a case
with less than one revolution that converged quickly using the algebraic expressions for the initial
values[2]. Then, the magnitude of constant thrust was slowly reduced for additional cases while
using the previous values of initial costates and �ight time, until the desired level was reached.
Canonical units for this example were based on a geosynchronous orbit, where the distance unit
was the orbit radius and the period of the circular orbit was 2� time units. The mass unit was based
on the initial mass of the spacecraft. In these units, the initial acceleration value was 0.0006081
DU=TU2, and the speci�c mass �ow rate was -0.00005 MU=TU .

In Fig.1, the initial, elliptical starting orbit is shown starting near the origin and the �nal orbit
is shown with a solid dark circle of unit radius. It is interesting to observe that the optimal control
law drives the spacecraft well past the �nal value of the circular orbit radius for many orbital
revolutions on the way to reaching the �nal circular orbit.

In Fig.2, it may be seen that the semi-major axis grows at �rst, then at about the halfway
point, the eccentricity begins to be reduced to zero to meet the circular �nal conditions. At no
point does the semi-major axis of the intermediate trajectory exceed unity.

The costate history appears as shown in Fig.3. Notice the complicated behavior near the
beginning of the trajectory. This phenomenon will be examined further in later examples.

The number of revolutions changes in discrete steps as the thrust magnitude decreases through
the continuation parameter search as seen in Fig.4. This is because an integer number of revolutions
puts the spacecraft beyond the �nal radius value for most of the transfer. In order to match the
�nal desired value of orbit radius, this needs to be accomplished somewhere away from the vicinity
of an integer number of revolutions. This chaotic, discontinuous behavior apparently arises due to
the non-circular starting conditions.

The locus of optimal intial costate values shown in Fig.5 forms a series of segments, rather than
a decreasing spiral as in the circle-to-circle case[2]. Once this pattern was observed, it was possible
to create additional logic in the continuation method to restart any given search from a region that
was more likely to result in convergence by de�ning three "zones" at the crossing and end points
of the segments of the locus.



Figure 1: Elliptical starting orbit to tangent circle

Figure 2: Growth of semi-major axis and circularization



Figure 3: Costate history for ellipse to tangent circle example

Figure 4: Orbit revolutions vs. time for example case

Figure 5: Locus of intial costates for example case



The approximate relationship between �ight time and thrust magnitude has the same form as

for a circle-to-circle case with tf = V acc=T , where V acc =
R tf
0
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dt: However, the value of

V acc had to be found numerically from a high thrust case. The numerical value for V acc = 0:70651
was found by taking the product of the �ight time and the thrust magnitude in canonical units for
an initial case with a relatively high value of 0.01. Once found, the agreement was quite good based
on �tting through a single point, as seen in Fig.6. The two curves are nearly indistinguishable on the

Figure 6: Flight time vs. thrust magnitude for example case

graph, which would indicate that the intemediate solutions during a parameter search remain close
to the optimal, minimum time solutions. This relationship can be used to guide the search through
continuation methods, by using the V acc model for �ight time as an alternative initial input for
new cases as the thrust magnitude parameter is gradually reduced towards the �nal design value.

Figure 7: Circle-to-circle reference transfer, R=10

In a second numerical example, a direct comparison is drawn between a transfer from a unit
circle to a �nal circular radius of ten canonical units and a similar case starting with an elliptical



starting orbit. The thrust level is the same in both cases, and the �nal circular orbit is the same size.
Fig.7 shows the circle-to-circle reference case with nearly �fty revolutions for the minimum-time
transfer.

Figure 8: Costate history for reference transfer, R=10

The costate history for the two Lagrange multipliers that are used for the control law, �u and
�v, are plotted in Fig.8 to show their history during the minimum-time transfer. A line drawn
from the origin in Fig.8 to a point on the curve shows the thrust angle at any instant as measured
counterclockwise from the horizontal axis.

By comparison, Fig.9 shows a similar case where the initial orbit is elliptical with a periapse of
unity and an apoapse of three canonical units, for an eccentricity of 0.5. The number of revolutions
needed to complete the transfer is much less than the circle-to-circle case, at about 13. However,
the physical appearance of the minimum-time trajectory is not much di¤erent from the reference
case.

On the other hand, from an elliptical starting orbit to �nal circle, the costate history is very
di¤erent than spiral behavior of the reference case. The complicated behavior of the costates as
a function of time may be seen clearly in Fig.10. Based on this time history, the behavior of the
costates during the thrust phase would seem to be quite sensitive to the initial physical conditions.
However, after thrust termination during the coast phase, the costate trace is the same elliptical
shape as before, except for scaling. The Lagrange multiplier costates may be scaled arbitrarily
with no loss in generality because of their form in the variational Hamiltonian. In the case of a
transfer from an ellipse to a circular orbit, it was observed that there were discontinuities during
the parameter search over thrust magnitude. Further, local minima appeared which could be
explored by approaching solutions from di¤erent directions in the search space for the total �ight
time or over the initial values of the Lagrange multipliers. An attempt was made to address the
discontinuity and local minima issues by searching backwards in time from a larger starting circle
to a smaller elliptical �nal orbit, but the same behaviors were observed. This should be expected
for a reversible process.

As a third numerical example, it was desired to see if the same discontinuities search and local
minima would appear over the thrust parameter if the transfer started out on a smaller circular orbit
and ended on a non-circular condition. In this case, the transfer starts on a unit circle and ends at
a radius of four in canonical units, but with a parabolic escape velocity of Vesc =

p
2=2. As seen

in Fig.11, the transfer spiral starts in a very similar way to the circle-to-circle case. After about



Figure 9: Ellipse to circle trajectory, R=10

Figure 10: Costate history for ellipse to circle, R=10



Figure 11: Circle to parabolic trajectory, R=4

80 revolutions, however, the radius begins to decrease to achieve a �yby at the desired �nal radius.
Based on the braking maneuver seen in Fig.11 prior to the �yby point, this behavior is reminiscent
of impulsive bi-elliptic transfers which take advantage of smaller delta-v requirements at larger
distances for greater overall e¢ ciency. Based on numerical investigation, no discontinuities were
found in the thrust parameter search, and no local minima were found outside of the converged
solution for this example. It would appear that if the example resembles a low-thrust outward
spiral from an initial circular orbit, there is no obvious dependence on the total transfer angle, and
apparently the discontinuities and local minima can be avoided.

Figure 12: Costate history for circle to parabola example, R=4

For the circle-to-parabola example, the costate history shown in Fig.12 starts o¤ looking very
similar to the circle-to-circle case with no complicated path crossings as in the ellipse-to-circle case.



At the end, the costate magnitude increases inde�nitely in the same way as the physical radius of
the orbit itself. Based on this series of numerical examples, it would appear that the minimum-time
solution is a global minimum over the search space as long as the costate history path does not
cross itself for a multiple-revolution orbit transfer, even if the physical path does cross itself.

CONCLUSIONS

Since the relationship between accumulated velocity change and the magnitude of the constant
thrust is only dependent on the time of �ight, one may use a single sample point to establish the
relationship with very good agreement for a large range of thrust values with the same boundary
conditions, even for examples with discontinuities in the thrust parameter search method and the
presence of local minima. This provides a means to check the optimality of converged results
of any particular case during the implementation of the continuation method. Regarding global
versus local minima, it would appear that the minimum-time solution is a global minimum over the
search space as long as the costate history path does not cross itself for a multiple-revolution orbit
transfer, even if the physical path does cross itself.
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