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ABSTRACT

The process of initial orbit determination, or catalogue maintenance, using a set of unlabelled observations
requires a method of choosing which observation was due to which object. Realities of imperfect sensors
mean that the association must be made in the presence of missed detections, false alarms and previously
undetected objects. Data association is not only essential to processing observations, it can also be one of the
most significant computational bottlenecks.

The constrained admissible region multiple hypothesis filter (CAR-MHF) is an algorithm for initial orbit
determination using short-arc, optical (angles only), observations of space objects. CAR-MHF uses joint
probabilistic data association (JPDA), a well-established approach to multi-target data association. A recent
development in the target tracking literature is the use of graphical models to formulate data association
problems. Using an approximate inference algorithm, belief propagation (BP), on the graphical model results
in an algorithm that is both computationally efficient and accurate.

This paper compares association performance on a set of deep-space objects with CAR-MHF using JPDA
and BP. The results of the analysis show that by using the BP algorithm there are significant gains in
computational load, with negligible loss in accuracy in the calculation of association probabilities.

1. INTRODUCTION

Data association is an essential, but challenging, component of all multiple object tracking algorithms. Where
an object may not be seen (due to the characteristics of the object, the sensor or the environment), where
false measurements are produced (due to a noisy sensor or other environmental effects) or where there are
multiple objects or multiple measurements, there will be ambiguity over which measurements belong to which
objects. This association ambiguity needs to be resolved in order to incorporate the measurement information
into estimates of the object states.

The constrained admissible region multiple hypothesis filter (CAR-MHF) [1, 2, 3] is an algorithm for
initial orbit determination and catalogue maintenance which uses the joint probabilistic data association
(JPDA) algorithm [4]. JPDA is a multi-target data association algorithm that generates an association
probability for each measurement with each object. This is achieved through exhaustively evaluating the
probability of all valid object-to-measurement combinations. The version of JPDA presented in this paper
additionally accounts for the mixture of Gaussians describing the probability density of the state of each
object within CAR-MHF.

In cases where there are many objects and many measurements the JPDA algorithm can be computationally
expensive [5]. There are practical methods, such as gating, which can help to reduce the size of the problems
[4]. However for many tracking systems, including CAR-MHF, JPDA remains a computational bottleneck.
Approximation methods are required for large problems, where the time needed to explicitly calculate JPDA
is impractical. A promising technique for approximating the measurement-to-object association probabilities
is the use of belief propagation (BP) within a graphical model of the association problem [6, 7, 8]. In difficult
air-defence problems BP has been shown to be much faster than JPDA, while maintaining sufficient accuracy.



This paper aims to extend the analysis of the BP approximation algorithm to orbit determination problems
within CAR-MHF.

The structure of this paper is as follows: Section 2 discusses the constrained admissible region (CAR)
and filtering with multiple range and range-rate hypotheses (MHF). Section 3 outlines the joint probabilistic
data association (JPDA) algorithm within the multiple hypothesis framework. The belief propagation (BP)
approximation to JPDA is presented in Section 4. Indicative results from a small simulation are shown in
Section 5 with conclusions given in Section 6.

2. CAR-MHF

2.1 The Constrained Admissible Region

The constrained admissible region (CAR) is an area in measured range and range-rate found by constraining
both the energy (essentially the duration) and the eccentricity (the shape) of possible orbits [1, 2]. The CAR,
as discussed in this paper, relies on the measurement of angles and their rates. Augmenting the angles and
angle-rates with feasible ranges and range-rates completes the six-dimensional state required for initial orbit
determination giving a set of possible positions and velocities of the orbiting object.

The energy, E , of an orbit can be written in terms of the inertial position, r, and velocity, ṙ, of the object
through

E =
||ṙ||2

2
− µ

||r||
, (1)

where µ is the standard gravitational parameter of Earth. This equation can be rearranged to form a
relationship between the measured range and range-rate. The resulting equation [2] produces contours of
constant orbital energy as a function of range and range-rate. Similarly, eccentricity, e, is related to angular
momentum, h, and specific energy through

e =

√
1 +

2E||h||2
µ2

. (2)

Again the equation can be rearranged to form a relationship between the measured range and range-rate
resulting in contours of constant eccentricity as a function of range and range-rate.

An example of the two types of constraints is shown in Figure 1. The plot on the left of Figure 1 is the
CAR of a simulation from a fictitious sensor located at DSTO Edinburgh observing Optus C1 on 11th July
2014 at 15:45UTC. The plot on the right in Figure 1 shows a more representative CAR for the purposes of
initial orbit determination, where the eccentricity and semi-major axis have been constrained to orbits in
near-GEO (GEosynchronous Orbit).

2.2 Multiple-Hypothesis Filter

The CAR provides a constrained region of the object state space which is supported by a single measurement.
As further measurements are received the object state can be refined with that information. A principled
way of approaching this is through recursive state-space estimation. For this application a non-linear filter is
required due to the non-linear nature of orbital propagation and the non-linearity of the relationship between
the measurements and the orbital state.

The unscented Kalman filter (UKF) [9] is used in this application to propagate the probability distribution
of the object over time and refine it with measurement information. While the UKF is typically a computa-
tionally efficient and accurate filter it assumes that the probability of the state is Gaussian distributed. In
general a CAR, such as that shown on the right in Figure 1, cannot be accurately represented by a Gaussian.
To ameliorate this shortcoming a mixture of multiple Gaussians is used to represent a uniform distribution
over the CAR to any desired accuracy [2]. This mixture results in a filter which is a bank of many UKFs, one
for each hypothesis (component of the mixture). Clever hypothesis management (which is not reviewed in
this paper) results in the number of elements in the mixture reducing over time as more measurements refine
the location of the object.

Following the derivation of the well-known Gaussian sum filters [10, 11], a multiple-hypothesis filter can
be derived which accommodates the Gaussian mixture representation of the CAR. In this paper xk is used
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Figure 1: The constrained admissible region (CAR). The figure on the left shows the CAR for several values
(Earth radii) of the semi-major axis, a, in blue and eccentricity, e in red. The figure on the right shows the
CAR with semi-major axis between 42.15 × 106m and 42.2 × 106m (blue lines) and eccentricity between
zero and 10−3 (red ellipse). The grey-shaded area is the resulting admissible region and the true range and
range-rate of the object is shown by the cross.

to represent the state of the object at time k, zk is the measurement at time k and Zk is the history of all
measurements Zk = {z1, . . . , zk}. The filter follows these steps

Initialisation The probability distribution of the object at time k − 1 is given by the weighted Gaussian
mixture

p(xk−1|Zk−1) =
∑
i

αi
k−1N (xk−1; x̂ik−1|k−1, P

i
k−1|k−1), (3)

where N (x;m,Σ) represents a Gaussian distribution in variable x with mean m and covariance Σ. The
factors αi

k−1 represent the weight on each component of the mixture defined such that
∑

i α
i
k−1 = 1.

Prediction The predicted mixture can be written as

p(xk|Zk−1) =
∑
i

αi
k−1N (xk; x̂ik|k−1, P

i
k|k−1) (4)

where x̂ik|k−1 and P i
k|k−1 can be calculated using the standard unscented filter formulation, the details

of which can be found in [9]. Note that the mixture weights are unchanged in the prediction step.

Update The mixture, updated with a measurement at time k, zk, can be written as

p(xk|Zk) =
∑
i

αi
kN (xk; x̂ik|k, P

i
k|k) (5)

where, x̂ik|k and P i
k|k can be calculated from the ith predicted component and the measurement at time

k using the unscented filtering equations. The updated component weight is given by

ᾱi
k = αi

k−1N (zk; ẑik, S
i
k) (6)

αi
k =

ᾱi
k∑

j ᾱ
j
k

, (7)

where ẑik and Si
k are the predicted measurement and innovations covariance.



3. JOINT PROBABILISTIC DATA ASSOCIATION IN CAR-MHF

The MHF presented in the previous section assumes that there is a single object and a perfect sensor,
that is no false alarms and no missed detections. In a realistic scenario an algorithm must be able to deal
with multiple objects, false alarms and missed detections. A data association algorithm, which associates
measurements with objects, is used to deal with these practicalities. In this case we use the joint probabilistic
data association algorithm (JPDA) [4].

The imperfections of the sensor and it’s detection performance are expressed through the probability of
detection, Pd and the spatial density of false alarms, λ. The probability of detection is modelled through
the characterisation of the sensor and may take into account properties of the object (although that detail
is not included in this derivation of the algorithm). The false alarm rate is typically chosen to reflect the
performance of the sensor, but is also related to the processing chain that produces detections. In this case
the number of false alarms is assumed to be Poisson-distributed.

3.1 Multiple object MHF with association ambiguity

In the remainder of the paper Nk is the number of objects at time k and xtk is the state of object t at time
k. There are mk measurements at time k and so now the history of all measurements is Zk = {Z1, . . . , Zk}
where Zk = {z1k, . . . , z

mk

k }. The probability distribution of the state of object t is represented by

p(xtk|Zk) =

nt
k∑

i=1

αi,t
k N (xtk; x̂i,tk|k, P

i,t
k|k) (8)

where ntk is the number of mixture components representing the probability distribution of object t.

Define βj,t
k as the probability that measurement j ∈ {0, 1, . . . ,mk} is from object t, where j = 0 corresponds

to the object not being detected. Given βj,t
k , we can modify the update step of the MHF in the previous

section to reflect the ambiguous measurement origin. The mixture updated with a set of measurements at
time k can be written as (8) where

αj,i,t
k = αi,t

k−1 ×

{
Pdλ

−1N (zjk; ẑi,tk , Si,t
k ) for j > 0 (object detected)

(1− Pd) for j = 0 (object not detected)
(9)

wj,t
k =

nt
k∑

i=1

αj,i,t
k (10)

αi,t
k =

mk∑
j=0

βj,t
k

wj,t
k

αj,i,t
k (11)

In analogy with the previous section ẑi,tk and Si,t
k are the predicted measurement and innovations covariance

for mixture component i of object t. Here αj,i,t
k is the ith component weight for the jth measurement from

the tth object. wj,t
k is the likelihood of measurement j, given that it came from object t. The updated weights

are a sum over contributions from each measurement according to the association probabilities βj,t
k .

In a similar way, x̂i,tk|k and P i,t
k|k can be calculated as a weighted sum of contributions from each measurement.

An unscented filter gives the mean, x̂j,i,tk|k and covariance, P j,i,t
k|k , of the updated distribution for each

measurement from each component of the mixture from each object

p(xi,tk |z
j
k, Z

k−1) = N (xi,tk ; x̂j,i,tk|k , P
j,i,t
k|k ). (12)

In the special j = 0 (not detected) case the mean and covariance come from the predicted distribution,
x̂0,i,tk|k = x̂i,tk|k−1 and P 0,i,t

k|k = P i,t
k|k−1. Then the component distribution can be found by summing over

contributions from each measurement

p(xi,tk |Z
k) =

mk∑
j=0

wj,i,t
k N (xi,tk ; x̂j,i,tk|k , P

j,i,t
k|k ), (13)



where

wj,i,t
k =

βj,t
k

wj,t
k

αj,i,t
k

αi,t
k

(14)

By moment-matching, we can calculate the updated mean and covariance of each component in an object’s
mixture [4]

x̂i,tk|k =

mk∑
j=0

wj,i,t
k x̂j,i,tk|k (15)

P i,t
k|k =

mk∑
j=0

wj,i,t
k

[
P j,i,t
k|k +

(
x̂j,i,tk|k − x̂

i,t
k|k

)(
x̂j,i,tk|k − x̂

i,t
k|k

)T]
. (16)

Note that with the association probabilities βj,t
k supplied, the updated distributions above are calculated

independently for each object. All dependencies that arise due to the association ambiguity between objects
and measurements are captured in the association probabilities. As such the computational complexity of the
algorithm outlined in this section is limited to O(ntkmk) for each object.

3.2 Calculation of the association probabilities

There are several methods that could be chosen to calculate the association probabilities βj,t
k [8]. CAR-MHF

currently uses the joint probabilistic data association (JPDA) algorithm [4], which is outlined here.
For each object t ∈ {1, . . . , Nk} we define an association variable atk ∈ {0, 1, . . . ,mk}, the value of which

is an index to the measurement with which the object is hypothesised to be associated (zero if the object is
hypothesised to have not been detected). Then we can define the joint association variable over all Nk objects

Ak = {a1k, . . . , a
Nk

k }. (17)

JPDA proceeds by calculating the probabilities

P{Ak|Zk} (18)

for all feasible associations Ak. The definition of ak ensures that for a given Ak each object can be associated
with a single measurement (or zero). A feasible association must also be constrained such that a measurement
can have only one source, that is

Nk∑
t=1

δ(atk, j) ≤ 1 ∀j > 0, (19)

where δ(a, b) = 1 if a = b and 0 otherwise.
Following [4] (with some rearrangement), the posterior probability of a joint association event can be

written as

P{Ak|Zk} ∝
Nk∏
t=1

ψ
at
k,t

k , (20)

where ψj,t
k is given by

ψj,t
k =

{
Pdλ

−1ft [zj(k)] for j > 0

1− Pd for j = 0,
(21)

and ft [zj(k)] is the likelihood of measurement j given that it came from object t. Note the stark similarity

between ψj,t
k in (21) and the weights αj,i,t

k in (9). In fact for the case of a Gaussian mixture ψ should be
replaced by w from (10), giving the probability of the joint association event [12]

P{Ak|Zk} ∝
Nk∏
t=1

w
at
k,t

k . (22)



Having calculated the probability of all of the joint events, P{Ak|Zk}, the association probabilities can be
found as the marginals of the joint distribution. The marginal probability of an association event is given by

P{atk|Zk} =
∑

at′
k ,t′ 6=t

P{a1k, . . . , a
Nk

k |Z
k}, (23)

and then
βj,t
k = P{atk = j|Zk}. (24)

4. BELIEF PROPAGATION

It is apparent from the previous section that the computationally complex component of JPDA is the
calculation of the marginal association probabilities through the explicit evaluation of the joint association
events. JPDA is closely related to the #P-complete problem of calculating the matrix permanent [5]. Gating
[4], which involves removing unlikely association hypotheses before computing association probabilities, is
one effective measure to reduce the number of joint events, but cannot completely remove the issue. For
large problems explicit calculation will be impossible within practical time and memory constraints, so
approximations are required. This section presents an approximation to JPDA based on belief propagation
(BP) within a directed graph. The BP algorithm was developed in [6], where it was shown that this
approximation is both fast and accurate.

The previous section defined the association variables atk, which are an index to the measurement

hypothesised for object t. The associations can be equivalently described through bjk ∈ {0, 1, . . . , Nk}, for
each measurement j, the value of which is an index to the object with which the measurement is hypothesised
to be associated (zero if the measurement is hypothesised to be either a false alarm or a new object). The
sets of association variables are redundant, that is they exhaustively encode the association hypotheses in
complementary ways. Rather than specify the constraints on the association variables atk, given in (19), the
BP algorithm considers both sets of association variables and forces consistency between them.

The JPDA algorithm calculates the marginal probabilities, P{atk|Zk}, explicitly as outlined in the
previous section. The belief propagation algorithm approximates these probabilities as marginals of the joint
distribution

P{a1k, . . . , a
Nk

k , b1k, . . . , b
mk

k |Z
k} =

∏
t

ψat
k,t

k

∏
j

φt,j(a
t
k, b

j
k)

 (25)

The factors

φt,j(a
t
k, b

j
k) =

{
0, atk = j, bjk 6= t or bjk = t, atk 6= j

1, otherwise
(26)

ensure the consistency between the atk and the bjk sets of association variables. The ψ
at
k,t

k are as defined in
the previous section and, as before, should be replaced with the relevant sum over terms in the Gaussian
mixture. The desired marginals are given by

P{atk|Zk} =
∑

at′
k ,t′ 6=t;bjk∀j

P{a1k, . . . , a
Nk

k , b1k, . . . , b
mk

k |Z
k}. (27)

The graphical model used to encode the association variables is shown in Figure 2. The belief propagation
algorithm generates messages which are passed between nodes along the edges in the graph. In the case
of a tree-structured graph BP is exact, however for a graph which admits cycles, such as Figure 2, BP is
necessarily an approximation. The message passing alternates between two sets of messages; those passed
from the left to the right (referring to Figure 2), which are written as (µat

k→bjk
) then those passed from the

right to the left, (µbjk→at
k
).
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Figure 2: The graphical model used to encode the association variables.

As shown in [7] the message update equations simplify to

µt→j =
ψj,t
k

1− Pd +
∑

j′ 6=j,j′>0 ψ
j′,t
k µj′→t

(28)

µj→t =
1

1 +
∑

j′ 6=j,j′>0 µt′→j
, (29)

where the notation (µt→j) has been used for (µat
k→bjk

). Convergence of the algorithm is guaranteed, with a

proof presented in [7], and a numerical test for convergence of the algorithm is discussed in [8]. Once the
algorithm has converged the approximate marginal probabilities are given by

β̂j,t
k =

ψj,t
k µj→t∑

j′ ψ
j′,t
k µj′→t

. (30)

5. SIMULATION

This section considers a cluster of 26 objects in GEO orbit. The CAR-MHF framework, using the JPDA
algorithm of Section 3, is run on a sequence of observations of these objects over several days. In the
observation instants where there are two or more objects competing for measurements, the performance of
JPDA and BP is compared. A total of 192 association examples result from this simulation. The comparison
of the two algorithms is made through both computational cost and accuracy of the association probabilities,
βj,t
k . In the following results the computational cost has been normalised by the lowest execution time of the

JPDA algorithm.
In this simulation CAR-MHF uses a false alarm intensity, λ = 100, and the probability of detection,

Pd = 0.95. The number of false measurements is of the order of 1 or 2 per scan, with the relatively high false
alarm intensity resulting from the precision of the measurements. It should be noted that low false alarm
rate and high probability of detection conditions are where the BP algorithm performance is weakest [7]. As
Pd increases and λ decreases the BP algorithm decreases in accuracy and increases in compute time.

Figure 3 shows the histograms of the (normalised) computation cost for both JPDA and BP algorithms
on the same 192 association examples. It is immediately apparent that the BP algorithm is not only quicker
than the JPDA algorithm, but its run-time is more consistent. The total run-time of the JPDA is 2870, while
the total run-time of the BP algorithm is 130, indicating that BP is roughly twenty times faster, on average.
While Figure 3 shows the distributions over compute times, it does not indicate the relative speed of the
algorithms on specific examples. Figure 4 shows the ratio of the JPDA compute time, TJ , to the BP compute
time, TB, for each example, r = TJ/TB, so values r > 1 imply that BP is faster, while r < 1 imply BP is
slower. It is apparent that for the vast majority of the examples BP is significantly faster than JPDA, but
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there is a single example where the compute time for BP is slower (≈ 5 times) than explicit JPDA calculation.
This slow example also corresponds to the least accurate BP approximation.

Here we use a similar metric to [7] to assess the accuracy of the association probabilities. For each example
we find the maximum difference between the BP calculated marginal probabilities and those calculated by
JPDA. In the majority of cases the differences are very small, less than 0.01, which we assume to be negligible.
There are, however, six cases (about 3% of the total) which have larger errors. Each of these errors is shown
in Figure 5. The largest error is a difference in probability of 0.41. This corresponds to the difference between
an object being assigned roughly evenly to two measurements (JPDA) and the object being assigned to a
single measurement (BP). It is the subject of ongoing analysis to determine the effect of these differences on
overall track accuracy.

In all but one of the cases with high error the problem is small (3 or 4 objects assigned to 2 or 3
measurements) and the computational expense in calculating these examples exactly is similar to BP. However
in the largest case (13 objects being assigned to 7 measurements) the error is just 0.13 while BP is roughly
100 times faster than JPDA. Although there are too few instances in this simulation to make a conclusive
judgement, these results suggest that a pragmatic approach would be to apply JPDA to small association
problems, where there is little compuational advantage in BP, and apply a BP approximation to large
association problems where there can be significant computational gains.

Recent research [13] has shown that the fractional free energy proposed in [14] can provide approximate
marginal probabilities with improved accuracy in comparison to BP for problems with high probability of
detection and low false alarm rate. Preliminary work has shown that the worst-case error can be reduced
from 0.41 to 0.002 using this method (below our threshold for negligible difference), although the method in
[13] is somewhat slower than BP for the problem of interest. Rapid solution of problems with this formulation
is a topic of ongoing research.

6. CONCLUSIONS AND FURTHER WORK

This paper has given a brief introduction to the constrained admissible region multiple hypothesis filter
(CAR-MHF) for initialising and maintaining orbital estimates from angle and angle-rate measurements. Joint
probabilistic data association (JPDA) has been described as an approach to deal with measurement-to-object
association ambiguity within CAR-MHF. As JPDA can be a computational bottleneck in CAR-MHF, a
method of approximating the JPDA calculations has been evaluated, based on belief propagation (BP) in a
graphical model (see Figure 2). Comparisons of JPDA and BP methods on a simulated data set have shown
that in the majority of cases BP offers a significant advantage in computation time (roughly 20 times faster
on average) with negligible difference in the resulting association probabilities. The results suggest that the
small number of cases where BP produced a higher error could be largely avoided by using explicit JPDA for
small problems and limiting the use of BP to large problems, where it displays the most benefit.

We have two ongoing areas of research related to data association within CAR-MHF. The first of these is to
analyse the effect of the BP approximations on the track quality of larger simulated data sets. While admitting
that BP is an approximation, track quality is the ultimate measure of system performance, regardless of the
data association scheme. The second area is in the investigation of alternative schemes for approximating
association probabilities. If our track quality analysis concludes that the BP approximations are insufficient
then there are other options that can be explored, such as the previously mentioned fractional free energy
approach [13].
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