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Synopsis: 

On-Orbit Small Debris Tracking and Characterization is a technical gap in the current National Space Situational 

Awareness necessary to safeguard orbital assets and crew. This poses a major risk of MOD damage to ISS and 

Exploration vehicles. In 2015 this technology was added to NASA’s Office of Chief Technologist roadmap.  For 

missions flying in or assembled in or staging from LEO, the physical threat to vehicle and crew is needed in order to 

properly design the proper level of MOD impact shielding and proper mission design restrictions.  Need to verify 

debris flux and size population versus ground RADAR tracking.  Use of ISS for In-Situ Orbital Debris Tracking 

development provides attitude, power, data and orbital access without a dedicated spacecraft or restricted operations 

on-board a host vehicle as a secondary payload.  Sensor Applicable to in-situ measuring orbital debris in flux and 

population in other orbits or on other vehicles. Could enhance safety on and around ISS. Some technologies 

extensible to monitoring of extraterrestrial debris as well  

To help accomplish this, new technologies must be developed quickly. The Small Orbital Stereo Tracking Camera is 

one such up and coming technology. It consists of flying a pair of intensified megapixel telephoto cameras to 

evaluate Orbital Debris (OD) monitoring in proximity of International Space Station. It will demonstrate on-orbit 

optical tracking (in situ) of various sized objects versus ground RADAR tracking and small OD models. The 

cameras are based on Flight Proven Advanced Video Guidance Sensor pixel to spot algorithms (Orbital Express) 

and military targeting cameras. And by using twin cameras we can provide Stereo images for ranging & mission 

redundancy. When pointed into the orbital velocity vector (RAM), objects approaching or near the stereo camera set 

can be differentiated from the stars moving upward in background.  

 

Background: 

Currently, there are 10 to 100 times as many small particles of orbital debris as there is medium to large 

debris in low earth orbits (more than 200K objects under 1100 Km attitude), thus creating less catastrophic, but 

much more probable hazards to satellites and vehicles being assembled in, or travelling through LEO. Despite the 

numerous threats of small orbit debris, it is very difficult to detect and track reliably with even modern or advanced 

ground radar. Current radar tracking of small objects in low earth orbits is hindered by the rapid orbit decay & 

corruption of distinct orbital paths for individual object correlation much like keeping tracking of a single minnow 

in a school moving in a stream at long distance. But detailed in-situ observation of debris moving toward ISS will 

allow calibration and correlation of ground radar and orbital debris models and MMOD requirements.  ISS mounted 

debris tracking cameras that can then be deployed as a payload or sensor to other orbits where ground radar is even 

less sensitive.  
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Figure 1:  (Curtesy of Orbital 
Debris Program Office: J. C. Lui) 
  
Current estimated Density of debris 
at various orbital attitudes with 
notation of recent collisions and 
resulting spikes.  
Any exploration vehicle assembled 
in LEO must pass through this 
debris cloud and survive.  
Large cross section, low thrust 
vehicles will spend more time 
spiraling out through the cloud and 
will suffer more impacts. 
Better knowledge of small debris 
will improve survival odds. 



 Orbital Debris Tracking and Characterization has now been added to NASA Office of Chief Technologist’s 

Technology Development Roadmap in Technology Area 5 (TA5) [Communications & Tracking] and is a technical 

gap in the current National Space Situational Awareness necessary to safeguard orbital assets and crews due to the 

risk of Orbital Debris damage to ISS & Exploration vehicles. 

In response to the orbital debris risk, recent NASA Human Exploration mission designs currently utilize a highly 

elliptical orbit of 400 km x 80,000 km that allows support by a variety of existing launchers while minimizing 

exposure of Exploration vehicle to orbital debris with fast transits through high density orbits. 

 

Problem Solution: 

 Sensor: Traditional orbital trackers looking for small, dim orbital derelicts and debris typically will stare 

at the stars and let any reflected light off the debris integrate in the imager for seconds, thus creating a streak across 

the image. The proposed Small Tracker will take a different angle on this problem by looking into the orbital 

velocity vector and letting the stars move “up” through the image while the co-orbiting debris moves toward the 

small tracker like a car in the opposing lane on a long highway at 15 kilometers per SECOND with the roadside 

scenery constantly moving by. But to be able to see the glint of sunlight from the small speeding bullets, we need to 

amplify their light with an intensified video imager such as the imager that is now incorporated into the Apache 

helicopter that transforms moonless nights into daytime scenery with only starlight (10-6 lux) and allows the pilot to 

recognize the faces of friend or foe. For our purposes, we will focus our image to a narrow field of view with a 

telephoto camera lens that has been ruggedized for launch and outer-space use.  

 

 

Processing:  Now we have a 2 M pixel image every 16 msec. that may have a pixel size orbital debris spot 

in a field of hundreds of stars from bright 2nd magnitude stars down to faint 11th magnitude stars, so we need to sort 

out a lot of spots in a hurry like panning for a nugget of gold. Since MSFC has had success with the design, 

manufacturing, programming, testing, and integration of a few generations of video guidance sensor technology that 

provided the first automated docking in US history and was used at ISS by the European Automated Transfer 

Vehicle for cargo and that is used by Lens-Crafters for automated eyeglasses measurements and MSFC is also a 

world recognized optics manufacturing facility for low weight ruggedizing optics for flight on ISS and for airborne 

Shuttle tracking, this orbital tracking imager will be an ideal match for MSFC experience, skills and facilities. One 

of the challenges of video guidance sensors is the real-time pixel processing into spots that can be sorted into 

targeted spots at 120 M pixels per second, that is solved by processing each incoming pixel as part of spot or not and 

then groups these lit spot segments into spots using the massively parallel processing capacity of advanced FPGAs.  

The small tracker will see hundreds of stars and one or more orbital objects in every image, so by looking 

at the relative motion of the spots from image to image, it is simple to discriminate the moving spots (stars) from the 

stationary spots (debris) and pick-out some good (5th magnitude) reference stars. This spot data is also used to 

control the imager for and the reference star data is sent with the orbital object spot data along with a star tracker 

output that may be bore-sighted parallel to the small tracker. From 120 M pixels per sec, the FPGA and embedded 

processors will reduce the images down into several dozen spots that are <99% stars moving pass the Small Tracker 

Imager versus the two to five orbital objects per day zooming pass ISS and also control & synchronize the image for 

good spots & stars. For stereo, each small tracker will send common reference stars to align the stereo spot data. 
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*Flux contribution at 800km, i=83°:

•  Front:  ~599 out of 600 objects
•  Back:       ~1 out of 600 objects
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 Ground Testing: Once calibrated, the Small Tracker Imager can limit its output to the objects zooming 

past and some reference stars to use for precise tracking data and alignment to parallel spot data from the other 

stereo Tracker imager. One other variable that will have to be analyzed and verified is the optimal rotation of the 

image to the orbital pointing that will minimize pixel & spot processing versus debris discrimination. Tests will use 

a Dynamic Star Field Simulator that generates a high resolution image of the background stars and one to three 

small orbital objects (used to check Cube-sat star trackers) and perhaps some real-time star camera testing mounted 

to MSFC’s Lunar Impact Telescope Observatory will verify the control and performance of the amplified imager, 

pixel-to-spot FPGA processing, and the orbital object discrimination algorithms. With successful testing, the Small 

Tracker using Amplified Real-time Imaging (STARIng) design would be ready to transition from breadboard to an 

ISS external payload. 

 

 Prototype & Proto-Flight Testing: After learning everything possible from an affordable laboratory 

breadboard, a flight style prototype must be designed, analyzed, and fabricated in order to perform flight packaging 

and environmental testing, including better heritage components. Another concern that must be address at this point 

is proton and neutron radiation performance for the planned mission orbit and inclination. Before redesigning (parts, 

optics, layout, operations) after performing these radiation expensive and time consuming tests, good analysis and 

vendor & user research may save time and money. After the final form, fit, and function (including the physical, 

electrical, data, and optional reference start tracker interfaces) configuration is agreed to, the environmental testing 

can be planned and done as well a final performance ground testing to have a one or two proto-flight sensors ready. 

 

Figure 3: STARING images 
Conceptual images from the Small Tracker using Amplified Real-time Imaging (STARING) when fixed on ISS looking toward the 
orbital velocity vector. 
The Small Tracker will see Stars and other celestial objects “rise” through its Field of View (FOV) at the rotational rate of its orbit, but 
the glint off of orbital objects will move through the FOV at different rates and directions. Debris on a head-on collision course (or 
close) will stay in the FOV at ~14 Km per sec. 
The Small Tracker can track at 60 frames /sec allowing up to 30 fixes before a near-miss pass.  
A Stereo pair of Small Trackers can provide range data within 5-7 Km for better orbit measurements 



 Flight Integration: The small tracker(s) will be built to attach to an LEO host vehicle that provides an 

unobstructed mounting place looking into the velocity vector with power and two way data transfer \ 

communications to the operator on the ground. If ISS is selected as the first host orbital platform, there are a number 

of possible external mounting opportunities and with its small footprint, there are many secondary payload 

possibilities with relaxed angular and thermal requirements. The small tracker would be integrated at KSC or the 

primary payload integration site before loading into cargo vehicle for the trip up to and robotic placement onto the 

ISS exterior. Other possible flight experiment possibilities include mounting the small tracker to a prepared 

mounting site on an external payload after transfer out of the JEM airlock, mounting a suitable host satellite before 

launch (such as Iridium II), or deploy on a small dedicated low cost satellite with de-orbit capability. 

 

 Ground Data Processing: for the small trackers, the primary ground control function besides initialization 

and possible updates, is to schedule observation times to account for sun exclusion and host vehicle operations. And 

with the small tracker only needing to send star tracker data, reference star spots and debris spot data when debris is 

tracked, the host vehicle can store and forward the data at a convenient time or just include the trickle of data from 

the tracker(s) in its telemetry in real-time. Once the tracker data is screened, the star tracker data is used to determine 

when and where in the host platform’s orbit the debris was sighted and if enough debris data points are collected, the 

trajectory and size is estimated. For stereo debris spot data, additional analysis using common reference star spot 

data is used to estimate the disparity between the debris spots in the FOVs of the two characterized trackers for 

range and velocity estimations. The debris data will be incorporated into the NASA Debris Density Models.   

 

Status and Future plans: 
 Parts of the small tracker concept are currently available (older intensified camera and both the dynamic 

star field simulator and the Lunar Impact Observatory). An internal research project proposal is being evaluated for 

down select and there are low cost FPGA development boards and SLR camera lens that the concept can validated 

with COTS components and some custom interface boards and firmware. Future activities are still under review. 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 4: Small Tracker using Amplified Real-time Imaging (STARING) sensor proof of concept  

 

 

Dynamic Star Field Simulator 
(Texas A&M) 

New Xilinx Artix-7 FPGA breadboard              

Telescopic 
Camera Lens  
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Intensified 

(1600x1200 pixels  
@ 60 Frames/sec  

= >115Mpixels/sec) 


