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Abstract - Ground telescopes enable low-cost tracking and 

characterization of meter-class space objects. Since a 

telescope may be tasked to observe multiple fields of the sky, 

the time between observations for each object may vary from 

several seconds to tens of minutes. Long propagation times 

with nonlinear dynamics are challenging for traditional 

filtering methods such as the Extended Kalman Filter (EKF). 

Sampling-based filters based on the Particle Filter (PF) are 

promising for this type of problem but typically require 

maintaining a large number of samples. In this work, we 

evaluate the Homotopy Particle Filter (HPF) which promises 

effective performance with orders of magnitude fewer 

particles. The performance of the HPF is evaluated against 

GEO satellite observations collected by a ground telescope at 

Lockheed Martin’s Space Object Tracking (SPOT) facility.  
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1 Introduction 

Space Situational Awareness (SSA) involves detecting, 

tracking, and characterizing resident space objects (RSO). 

Keeping track of RSOs in and near Geostationary Earth Orbit 

(GEO) is important due to the high value of GEO assets and 

the limited availability of GEO slots. Accurate state 

estimation and characterization of GEO objects is a 

challenging task due to the ranges involved. 

Current location accuracy for objects in GEO is on the 

order of kilometers (~1-5 km), updated every three days [1]. 

Note that some orbital parameters for an object in GEO 

cannot be accurately estimated with one night of observation 

from a single stationary site. For example, offset from the 

nominal geosynchronous semi-major axis can only be 

observed with slowly-drifting azimuth measurements [2].  

Another difficulty associated with tracking and 

characterization of RSOs in GEO occurs when multiple 

satellites share a single GEO slot. Typical size of a GEO slot 

is approximately 0.1 degrees in longitude and latitude [3]. 

Satellites are often separated by less than 0.05 degrees of 

longitude, increasing the difficulty of automated detection 

and characterization. Close proximity between satellites in 

GEO may also impact the accuracy of the general 

perturbation orbital elements used to identify the satellites 

and predict their orbits [3]. Scott and Wallace [3] studied the 

effectiveness of a nearest-neighbor correlation approach on 

co-located geostationary satellites from a ground-based 

optical sensor. They showed that correlation of detections to 

objects is practical given relatively current orbital element 

sets. 

 Ground-based telescopes such as Lockheed Martin’s 

Space Object Tracking (SPOT) telescopes offer a low-cost 

capability for tracking space objects. The SPOT facility 

provides three 1-meter afocal telescopes on independently 

controlled gimbals, allowing automated tasking and tracking 

of multiple objects [4]. The telescopes support 

characterization of spectral and temporal signatures for 

objects in GEO. In many cases, the “spectral fingerprint” can 

be used to determine the type and manufacturer of the 

spacecraft bus [4].  

This paper presents results for several nonlinear state 

estimation methods using SPOT telescope observations. 

Since a telescope may be tasked to collect observations from 

multiple fields of the sky, the time between observations for 

each object may vary from several seconds to tens of 

minutes. Long propagation times with nonlinear dynamics 

are challenging for traditional filtering methods such as the 

Extended Kalman Filter (EKF) and Unscented Kalman Filter 

(UKF) [5]. Sampling-based filters such as the Sampling 

Importance Resampling Particle Filter (SIRPF) are 

promising for this type of problem but typically require 

maintaining a large number of samples. 

The objective of this work was to evaluate the performance 

of the Particle Flow Filter, also known as the Homotopy 

Particle Filter (HPF) [6]. Similar to the SIRPF, the HPF 

approximates densities with sets of particles and directly 

implements the Bayesian recursion. However, the Bayes 

update is computed using a particle flow rather than 

multiplication with a likelihood function [7]. In [8], the HPF 

was compared against the SIRPF in a simulated angles-only 

tracking scenario. In this study, the HPF is evaluated against 

real observations of satellites in GEO.  

2 SPOT Facility 

Lockheed Martin has built a Space Object Tracking 

(SPOT) facility in Santa Cruz, California. The facility 

consists of three 1-meter optical telescopes controlled by a 

site management system. The telescopes may be individually 
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or cooperatively tasked to observe space objects. The 

telescopes are mounted on Az-El fork mounts capable of 

rapid repointing and arc-second class open loop tracking. 

Each telescope is installed in a clamshell dome with aft-

mounted benches to support additional instrument suites. The 

telescope domes are mounted on movable rail carts which 

can be arbitrarily positioned along tracks to provide variable 

baselines for sparse aperture imaging (see Figure 1). The 

telescopes achieved first light in June 2012.  

 

 
Typical observations consist of direct photometric imaging 

at visible and near-infrared wavelengths. SPOT telescopes 

are designed to perform the following missions [4]:  

 Space object identification. Identifying unresolved 

objects using techniques such as spectroscopy, light 

curves, polarimetric and astrometric measurements.  

 Debris tracking. Acquiring and tracking debris to 

develop accurate ephemerides. 

 Object characterization. Exploiting photometric and 

spectroscopic measurements in multiple wavebands to 

identify constituent components and establish unique 

signatures for objects and classes of objects. 

 Interferometric imaging. Leveraging interferometry to 

synthesize high-resolution images of objects in GEO. 

2.1 Optical Sensor 

The SPOT optical system consists of a primary afocal 

telescope with a reconfigurable backend collimator telescope 

and a side-mounted wide field tracker. Primary telescope 

properties are summarized in Table 1.  

 

2.2 Data  

The imagery used in this study are from a SPOT collection 

on the night of Oct. 13, 2014. The collection includes tasks 

for observing satellites in multiple fields of the sky. 

Therefore, there are long observation gaps for each field as 

the telescope observes other fields. Figure 2 shows a sample 

image from the data set. Each image is generated using a 3-

second exposure. The streaks are caused by apparent motion 

of stars due to the rotation of the Earth. Streak lengths are 

approximately 0.0125 degrees.  

A number of interesting phenomena were observed in the 

data. For example, there are periods of time where satellites 

enter the Earth’s shadow, resulting in observation blackouts. 

In some instances with large GEO satellites, the visual 

magnitude of the objects can exceed the well depth of the 

optical sensor, causing saturation. In addition, glint from one 

satellite may mask a co-located GEO satellite.  

During normal operations for space surveillance, the 

ground telescope is tasked to track a satellite which remains 

relatively stationary in the focal plane. Any co-located 

satellites appear to move relative to the tracked satellite. The 

apparent angular separation for co-located satellites is small 

when observed by a ground-based observer; occasionally the 

satellites may appear to conjunct despite separation in the tens 

of kilometers [3]. This behavior, along with observation gaps, 

stresses measurement correlation.  

 

Figure 2. SPOT image with 3-second exposure time. 

3 Dynamics and Measurement Models 

State estimation of the satellites is performed using an 

Earth-Centered Inertial (ECI) coordinate frame. The x-axis is 

aligned with the Prime Meridian at UTC midnight for the 

night of observation. The z-axis is along the Earth rotation 

axis. The y-axis completes the right-handed coordinate frame. 

3.1 Dynamics 

The system state is position and velocity in the ECI 

coordinate frame. It is assumed the space objects obey 

Keplerian dynamics:  

 

 

Figure 1. Photo of the SPOT telescope and mobile dome. 

Parameter Value 

F/# ~5 

Aperture Diameter 1 meter 

Observation Band Visible 

Field of view (FOV) 0.25 degrees 

 
Table 1. SPOT primary telescope optical parameters. 
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𝑋𝑘+1 = 𝐾𝑒𝑝𝑙𝑒𝑟(𝑋𝑘 , 𝑑𝑡) +  𝑤𝑘:𝑘+1  
 

where process noise 𝑤𝑘:𝑘+1~𝑁(0, 𝑄(𝑑𝑡)) is an i.i.d. white 

noise capturing uncertainties in the dynamics. 𝑄(𝑑𝑡) is the 

covariance of the process noise. 

 Under non-linear dynamics, an initial Gaussian density will 

become non-Gaussian after sufficient propagation time [5]. 

This impacts traditional filters such as the EKF and UKF 

which rely on a single Gaussian to represent uncertainty. In 

practice, this can make it difficult to reacquire or correlate 

tracks after long observation gaps. 

Many techniques have been explored to handle non-

Gaussian densities for SSA applications, including Gaussian 

sum filters [5]. Our work focuses on sampling-based filters. 

3.2 Detections & Measurement Model  

The ground telescope supports angles-only measurements 

of space objects. Let 𝑋𝑆
𝐸𝐶𝐼 and 𝑋𝑇

𝐸𝐶𝐼 be the sensor and target 

positions in the ECI coordinate frame. The position of the 

space object (target) in the camera coordinate frame (CAM) 

is given by 𝑋𝑇
𝐶𝐴𝑀 = 𝑅𝐸𝐶𝐼

𝐶𝐴𝑀(𝑋𝑇
𝐸𝐶𝐼 − 𝑋𝑆

𝐸𝐶𝐼), where 𝑅𝐸𝐶𝐼
𝐶𝐴𝑀  is the 

rotation matrix between ECI and CAM coordinate frames.  

In this work, perspective projection was used to model 

sensor observations: 

 

 𝑍𝑘 =  𝑃𝑒𝑟𝑠𝑝(𝑋𝑇
𝐶𝐴𝑀(𝑘)) + 𝑛𝑘, (1) 

   

where 𝑛𝑘~𝑁(0, 𝑅𝑘) is Gaussian noise representing 

uncertainty in the detection, and 𝑃𝑒𝑟𝑠𝑝(𝑋) is the observation 

model (perspective projection of target position 𝑋 =  [𝑥 𝑦 𝑧] 
onto the focal plane according to the camera matrix 𝐾 ∈
ℝ2𝑥3): 

 

𝑃𝑒𝑟𝑠𝑝(𝑋) = 𝐾[𝑥
𝑧⁄ 𝑦

𝑧⁄ 1]′. 
 

Because signal-to-noise ratio is relatively high for our targets, 

simple thresholding with blob characterization was adequate 

for generating detections from imagery. 

4 Particle Filters 

Particle filters approximate the optimal Bayesian filter by 

representing densities as sets of discrete particles with 

associated weights {𝑥𝑖 , 𝑤𝑖}𝑖=1
𝑁 . Formally, the posterior is 

represented by a discrete approximation 

 

                 𝑝(𝑥𝑡|𝑍1:𝑡) ≈ ∑ 𝑤𝑡
𝑖𝛿(𝑥𝑡 − 𝑥𝑡

𝑖)𝑁
𝑖=1 , 

 

Where 𝛿(∙) is the Dirac delta function. As with Bayesian 

filtering the posterior is computed in a recursion. In the 

propagation step, particles are sampled from a transition 

density 𝑝(𝑥𝑡|𝑥𝑡−1) to approximate the prediction density. 

Given measurement 𝑧𝑡, the weight of each particle is updated 

by multiplication with a likelihood function 𝑝(𝑧𝑡|𝑥𝑡
𝑖) 

evaluated at the particle. The weights are then normalized to 

sum to one. 

An important concern with particle filters is sample 

degeneracy. This phenomenon is characterized by very few 

particles having significant weight, resulting in an inefficient 

or inadequate sampling of the state space [7]. The Sampling 

Importance Resampling (SIR) particle filter attempts to 

mitigate this effect by resampling particles according to their 

weight. 

However, resampling may lead to sample impoverishment 

where particles become too concentrated in the state space. 

Both degeneracy and impoverishment can be addressed by 

increasing the number of particles, but this approach scales 

poorly with state space dimensionality. 

4.1 Homotopy Particle Filter 

Similar to the particle filter, the HPF approximates 

densities as sets of discrete particles. However, instead of 

updating weights by multiplication with a likelihood 

function, the HPF implements the update as a flow of 

particles. The update dynamics for particles is determined by 

a partial differential equation (PDE). As we will see in 

Section 4.2, the PDE is highly under-determined, and many 

solutions can be found. In this work we use Nonzero Diffusion 

Flow. 

To address issues with particle filters (e.g. sample 

degeneracy, sample impoverishment, etc.), Daum and Huang 

[9] proposed the Particle Flow or Homotopy Particle Filter. 

In the particle flow approach, particles are migrated to 

regions in the state space where the posterior has higher 

density. The particles flow progresses as a homotopy variable 

λ advances from 0 to 1.   

The flow for the un-normalized posterior is generated using 

a homotopy  

                      𝑝(𝑥, 𝜆) = 𝑔(𝑥)𝑙(𝑥)𝜆 

 

as a function of 𝜆 ∈ [0  1]. The flow of the posterior 

corresponds to the Bayes update. At the start of flow (𝜆 = 0), 

we have 𝑝(𝑥, 𝜆) = 𝑔(𝑥), i.e. 𝑝(𝑥, 𝜆) is equal to the prior 

density. At the end of flow (𝜆 = 1) and 𝑝(𝑥, 𝜆) is equal to the 

posterior density 𝑝(𝑥, 𝜆) = 𝑔(𝑥)𝑙(𝑥).  
The flow of the logarithm of the posterior with respect to λ 

is given by: 

 

          log 𝑝(𝑥, 𝜆) = log 𝑔(𝑥) + 𝜆 log 𝑙(𝑥) .    (2) 

This represents a line homotopy of the logarithm of the 

densities. The task is to find an appropriate flow of the 

probability density defined by the log-homotopy (2). Suppose 

the flow for the Bayes update obeys the following stochastic 

differential equation: 

 

                𝑑𝑥 = 𝑓(𝑥, 𝜆)𝑑𝜆 + 𝑑𝑤 (3) 

where 𝑑𝑤 is the diffusion noise with covariance matrix 𝑄(𝑥). 

The objective is to compute the vector field (or flow) 𝑓𝜆 =
𝑓(𝑥, 𝜆). Using the Fokker-Plank equation governing the 

dynamics of the posterior density, Daum and Huang [6] 
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derived the following first-order PDE in the unknown 

function 𝑓𝜆: 

 

 𝜕 log 𝑝

𝜕𝑥
𝑓𝜆 = −log 𝑙 − div(𝑓𝜆) +

1

2𝑝
div [𝑄(𝑥)

𝜕𝑝

𝜕𝑥
].  (4) 

This PDE is highly under-determined because there is only 

one scalar-valued equation, but the unknown 

function 𝑓(𝑥, 𝜆), or flow, is a D-dimensional vector field. Our 

objective is to solve equation (4), given 𝑝(𝑥, 𝜆) and 𝑙(𝑥, 𝜆). 

There are many solutions to this equation. In Section 4.2, a 

solution is derived by imposing mild assumptions on the 

diffusion parameter 𝑄.  

In our implementation, particles are migrated in small steps 

using Euler’s method: 

          𝑥𝑖(λ𝑘) = 𝑥𝑖(λ𝑘−1) + 𝛥𝑘 ∙ 𝑓(𝑥𝑘−1
𝑖 , 𝜆𝑘) ,  

where the step size is 𝛥𝑘 =  𝜆𝑘 − 𝜆𝑘−1. No resampling is 

needed with the HPF.  

4.2 HPF with Nonzero Diffusion Flow 

In this section we follow the work in [9] to derive the HPF 

with nonzero diffusion flow. Consider the PDE (4) with 

unknown 𝑓𝜆. Suppose the diffusion parameter 𝑄 is nonzero, 

and the prior density 𝑔(𝑥) and likelihood function 𝑙(𝑥) are 

twice differentiable. Now compute the gradient of (4) with 

respect to 𝑥 

 

𝜕 log 𝑙

𝜕𝑥
= −𝑓𝜆

𝑇
𝜕2 log 𝑝

𝜕𝑥2
−

𝜕div(𝑓𝜆)

𝜕𝑥
−

𝜕 log 𝑝

𝜕𝑥

𝜕𝑓𝜆

𝜕𝑥
+

𝜕div [𝑄(𝑥)
𝜕𝑝
𝜕𝑥

/2𝑝]

𝜕𝑥
  . 

 

The above equation is a system of D equations with D 

unknown functions 𝑓𝜆. If a nonzero diffusion 𝑄 and flow 𝑓𝜆 

exist such that the last three terms are summed up to zero, we 

arrive at the simpler equation: 

 

 
(

𝜕 log 𝑙

𝜕𝑥
) = −𝑓𝜆

𝑇 (
𝜕2 log 𝑝

𝜕𝑥2
) . (5) 

   

Then, under the stated assumptions, the unique solution for 𝑓𝜆 

is given by: 

 

 
𝑓𝜆 = − (

𝜕2 log 𝑝

𝜕𝑥2
)

−1

(
𝜕 log 𝑙

𝜕𝑥
)

𝑇

 . (6) 

If the likelihood function 𝑙 is known analytically, the 

derivative of log 𝑙 can be computed analytically as well. To 

compute the Hessian of  log 𝑝, the definition of log-homotopy 

(2) is used: 

 

  𝜕2log 𝑝

𝜕𝑥2
=

𝜕2log 𝑔

𝜕𝑥2
+ 𝜆 

𝜕2log 𝑙

𝜕𝑥2
   . (7) 

The Hessian of log 𝑙 is computed in closed-form, but 

computing the Hessian of log 𝑔 is more difficult. An approach 

using the k-nearest neighbor algorithm was proposed in [10]. 

The Hessian of log 𝑝 is also known as the Observed Fisher 

Information Matrix.  

If a Gaussian approximation to 𝑔 is used, the Hessian of 

log 𝑔 can be approximated by the sample covariance matrix 

𝑃𝑠 of the prior computed from the particles at  𝜆 = 0. For 

applications where the nonlinear measurement has additive 

Gaussian noise, the information matrix (Hessian of log 𝑝, 

evaluated at 𝑥𝑖) becomes 

𝐼(𝑥𝑖 , 𝜆) =
𝜕2log 𝑝

𝜕𝑥2
]

𝑥𝑖

= −𝑃𝑠
−1 − 𝜆𝐻(𝑥𝑖)𝑇𝑅−1𝐻(𝑥𝑖) . 

Using (6), the nonzero diffusion flow of each particle 

becomes  

 

 𝑓𝜆(𝑥𝑖) = −𝐼(𝑥𝑖 , 𝜆)−1𝐻(𝑥𝑖)𝑇𝑅−1(𝑧 − ℎ(𝑥𝑖)), (8) 

where 𝐻(𝑥𝑖) is the linearized measurement matrix evaluated 

at 𝑥𝑖 and 𝑅 is the measurement noise covariance. Note that 

this is similar to the Extended Information Filter [11] but for 

each particle rather than the conditional mean.   

5 Implementation and Results 

The following filters were implemented in MATLAB: 

 HPF with nonzero diffusion flow 

 SIRPF 

 EKF 

The filters were updated with detections from SPOT imagery 

collected on the night of Oct. 13, 2014.  

The HPF and SIRPF were initialized with samples drawn 

uniformly from a cubic volume 200 x 200 x 200 km 

centered on the intersection of the sensor line-of-sight and the 

GEO belt. Sample velocities were drawn uniformly from the 

interval [-100, +100] m/sec centered on nominal GEO 

speed (~3.07 km/sec). The EKF was initialized with a 

Gaussian matching the first and second moments of the HPF 

and SIRPF prior. 

5.1 Effects of Number of Particles 

 Our interest was evaluating the claim of HPF requiring 

orders of magnitude fewer particles than SIRPF. We evaluate 

state estimation accuracy for HPF and SIRPF parameterized 

by number of particles. Our metric for state estimation 

accuracy was error between the prediction density mean and 

the measurement centroid. This metric provides an indication 

for how each filter might support reacquisition and 

association of a target after long observation gaps. 

 Figure 3 illustrates temporal behavior of prediction error 

for an observed field. The saw-tooth pattern highlights the 

growth of state estimation error during observation gaps. 

Note the lack of a pronounced saw-tooth for the SIRPF with 

10000 particles. This is caused by poor sampling of the state 
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space reducing information gain from measurements. SIRPF 

requires 2 million particles before approaching the 

performance of HPF with 100 particles. 

 Figure 4 shows prediction error following the first 

observation gap. HPF error converges quickly with number 

of particles, but SIRPF requires more than 100000 particles 

before error begins to drop significantly. For reference, a 

thresholded detection is approximately 10 pixels in diameter. 

 Figure 5 shows mean processing time for each filter, 

normalized by the processing time of EKF. For the same 

number of particles, the HPF implementation requires 

approximately two orders of magnitude more processing 

time than SIRPF.  But for the same or better prediction error, 

HPF requires about four orders of magnitude fewer particles. 

 

 

Figure 3. Prediction error over time for EKF, HPF, and SIRPF. Time 

between measurements is 5 seconds. Observation gap is 11.5 minutes.  

 

 

Figure 4. Prediction error versus number of particles for EKF, HPF, 

and SIRPF after the first observation gap. 

 

 

Figure 5. Processing time versus number of particles for EKF, HPF, 

and SIRPF, normalized to EKF processing time. 

 

6 Conclusions 

 HPF and SIRPF (with an adequate number of particles) 

both outperform EKF since they are better able to 

represent uncertainty through longer observation gaps. 

 HPF requires orders of magnitude fewer particles than 

SIRPF for similar or better prediction error. 
 HPF with nonzero diffusion flow requires linearization 

of the measurement model for each particle which 

increases computational cost per particle. 

 HPF with nonzero diffusion flow requires fine 

integration steps for particle flow which increases 

computational cost per particle.  
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