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ABSTRACT

KRATOS provides an innovative approach to computing the probability of collision (PC) between resident space
objects that reduces misdetection and false alarms rates and supports the mission’s goal of performing conjunction
assessment screening further out into the future. Although applicable to all regimes of space, KRATOS was
designed to treat objects in the challenging non-linear and non-Gaussian regimes. KRATOS rivals the accuracy
of Monte-Carlo methods but with little added computational cost relative to the traditional linearization (Foster)
method. This paper provides an overview of the KRATOS algorithm and demonstrates its efficacy using real
and simulated data. Scenarios are presented in which use of the Foster method would produce false alarms or
misdetections, and hence would misinform the analyst. Use of KRATOS in these scenarios provides a reliable
PC, as verified using Monte-Carlo simulation, and hence would better inform the analyst.

1. INTRODUCTION

Traditional methodologies for assessing collision risk between resident space objects (RSOs) can produce misde-
tections and false alarms. The resulting probabilities of collision (PCs) can be too high, implying a high false
alarm rate and the need to perform costly and unnecessary evasive maneuvers, or too low, meaning that some
potential collisions go undetected, which could have dire consequences. The desire to perform conjunction as-
sessment (CA) screening further out into the future, up to one week for Low Earth Objects (LEOs), for example,
adds to the challenge of providing reliable space situational awareness (SSA). Thus, what is needed are new
methodologies that reduce these false alarm and misdetection rates, and hence better inform courses of action.

As the PC calculation is far too expensive to perform on all possible pairs of objects, one first employs
techniques called conjunction filtering that aim to quickly rule out infeasible conjunctions at a computational
cost less than that of a full PC calculation. After a filter or set of filters returns all feasible conjunction pairs,
one then proceeds to quantify the collision risk by computing the PC on each remaining pair. Linearization
techniques based on the Foster method [1] make several simplifying assumptions in the PC calculation including
that of a realistic Gaussian covariance in position-velocity space of the two approaching objects at the time-of-
closest approach (TCA). With the desire to do CA further out into the future and uncorrelated tracks (UCTs)
generated from the new Space Fence that will inevitably possess large covariances, non-linear effects will become
more pronounced, resulting in a breakdown of covariance realism and rendering the Gaussian assumption in
Foster’s method invalid. Methods that relax the Gaussian assumption will be needed in the future; some
preliminary research on computing the PC using Gaussian mixtures models has been considered by DeMars,
Cheng, and Jah [2] as part of the Adaptive Entropy Gaussian Information Synthesis (AEGIS) algorithm [3].
Alternatively, Monte-Carlo simulation can be used, but it is too computationally demanding to apply on all high
risk events.

The Kollision Risk Assessment Tool in Orbital Element Spaces (KRATOS) provides a new approach to
computing the PC between RSOs that supports the mission’s goal of performing CA screening further out into
the future. Although applicable to all regimes of space, KRATOS was designed to treat objects in the challenging
non-linear and non-Gaussian regimes by relaxing the Gaussian assumptions present in the traditional Foster
method. In such challenging regimes, KRATOS is able to efficiently compute the PC over much longer screening
intervals than what is currently possible, by leveraging the Numerica’s prior work in Gaussian mixture filters

Copyright © 2016 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) – www.amostech.com



and orbital element coordinate systems, including the newly-developed J2 equinoctial orbital elements [4]. These
innovative features of KRATOS permit a robust computation of the PC integral without having to represent a
space object’s uncertainty as a potentially inaccurate Gaussian distribution in Cartesian space, as is needed in
Foster’s method.

In this paper, we provide an overview of the KRATOS algorithm. Using both real and simulated Vector
Covariance Message (VCM) data, we demonstrate scenarios in which the Foster method produces false alarms
and misdetections, and hence would misinform the analyst. Use of KRATOS in these scenarios provides a reliable
PC with accuracy that rivals more computationally expensive Monte-Carlo simulation, and hence would better
inform the analyst. KRATOS is computationally viable, with runtimes that can be many orders of magnitude less
than Monte-Carlo approaches. These runtime differences are especially pronounced in cases involving operational
spacecraft when the PC is around the threshold value at which the decision to maneuver would be made, and
when a large number of Monte-Carlo trials would be needed to achieve sufficient accuracy. The computational
efficiency of KRATOS is due, in part, to only having to propagate a single Gaussian in J2 element space to the
nominal TCA rather than an entire Gaussian mixture in Cartesian space. Evidence of this high performance is
presented in this paper, and comparisons to other Gaussian-mixture-based approaches are made.

2. METHODOLOGY

A widely-used methodology for assessing the risk of collision between two RSOs based on the PC uses a formu-
lation due to Foster [1] from the early 1990s. Here, the PC is expressed as a two-dimensional integral on the
plane orthogonal to the relative velocity vector at the TCA, called the encounter plane, over which the swept-out
volume of the hard ball and the relative position Gaussian probability density function (PDF) are projected.
Specifically,
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where R is the combined radius of the two objects, the integration variables y and z are aligned with the minor
and major axes of the (projected) relative position covariance ellipsoid, ym and zm are the respective components
of the projected miss distance, and σy and σz are the respective standard deviations. Figure 1, adapted from
Alfano [5], visualizes the conjunction scenario and the covariance sliced by the encounter plane.
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Figure 1. Visualization of the Conjunction Encounter Implied in the Foster Method (left) and the Covariance Sliced by
the Encounter Plane (right). Figure Adapted from Alfano [5].

Foster’s method builds in several assumptions on the physics and statistics of the conjuncting objects. Chief
amongst these is the assumption that the encounter be short-term meaning that the relative motion can be
approximated as rectilinear at the conjunction. Additionally, at the conjunction, the PDFs of the two objects
are assumed Gaussian with respect to Cartesian position-velocity coordinates, the combined position covariance
is constant, and the relative velocity uncertainty is zero. The formulation also assumes that the input states and
covariances of the two objects defined at some epoch time (prior to the conjunction) are realistic. Ultimately,
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it is the responsibility of the user to provide realistic data to serve as input to the Foster method (or any PC
algorithm for that matter); further remarks on this requirement are made in Section 4.

While the rectilinear motion assumption at conjunction is valid for most pairs of objects in LEO, the Gaussian
assumption can be violated over long screening times, or if one or both objects have large errors (i.e., large epoch
covariances). The former assumption is significant since some of the current practices may hinder the goal of
performing CA screening out to seven days in LEO. Regarding the latter assumption, as evidenced in prior work
by Numerica and others on non-linear uncertainty propagation [6,7], covariance realism can degrade in scenarios
when insufficient data has been collected on a RSO, especially on newly-formed UCTs. For some LEO UCTs,
this breakdown can come as early as a quarter of an orbital period. Thus, this previous research and mission
objectives motivate the need to relax the traditional assumption of Gaussianity.

To address these challenges, KRATOS provides a more robust PC algorithm that relaxes some of the assump-
tions implicit in the current Foster method in order to achieve a more reliable collision risk assessment metric.
Some of the key innovations in KRATOS include (i) treatment of non-Gaussian PDFs in order to improve ro-
bustness in non-linear regimes, better handle UCTs with large errors, and facilitate longer screening periods; (ii)
use of Gauss-Hermite quadrature (GHQ), also known as the unscented transform [8], to more faithfully propa-
gate states and covariances to TCA, without loss of realism; (iii) performing said propagations directly in orbital
element space, including the new J2 equinoctial orbital elements [4], to prolong covariance realism even longer;
and (iv) leveraging Numerica’s prior work on Gaussian mixtures [6, 9, 10] to achieve improved accuracy in the
PC computation with realistic runtimes.

In describing the KRATOS algorithm, we begin by establishing some notation and definitions. We consider
two RSOs, labeled the ‘primary’ (index a) and ‘secondary’ (index b), with respective position-velocity state
vectors xa = (ra,va) and xb = (rb, rb), where ri, i = a, b, denotes the position component and vi denotes the
velocity. The dependence of the vectors on time is omitted unless stated otherwise. The relative motion state
vector is denoted as x = (r,v) and is centered at the primary such that

x = xb − xa, r = rb − ra, v = vb − va.

Given an epoch time t0, a screening time of interest T , and a radius threshold R > 0, the two objects are
said to collide if there exists a time t ∈ [t0, t0 + T ] such that ‖r(t)‖ ≤ R. The radius threshold is usually
chosen as the sum of the hard-body radii of the two objects. It is assumed that the joint (12-dimensional) PDF
pa,b(xa,xb, t) is known at any given time t within the screening period along with the marginal (6-dimensional)
PDFs pa(xa, t) and pb(xb, t). Typically, these PDFs are provided at epoch (and are usually Gaussian) and,
subject to a dynamical model, can be computed at a future time t using traditional techniques such as linearized
propagation (for the Gaussian case), or other techniques such as the GHQ or Gaussian mixtures. We refer the
reader to the Astrodynamics Innovations Committee (AIC) Covariance Realism Working Group report [11] for
a detailed exposition on the many uncertainty propagation techniques that are presently in use or have been
proposed for use in the space surveillance environment. Based on these definitions, the PC is

Pc =

∫
V

pa,b(X0, t0) dX0, (2)

where X0 = (xa(t0),xb(t0)) and V ⊆ R12 is the set of initial conditions for which a collision occurs on [t0, t0 +T ].
The integral (2) facilitates the PC computation using a Monte-Carlo simulation.

To balance the high computational demand of the Monte-Carlo evaluation of the general PC integral (2) with
the need to provide a more accurate PC that relaxes some of the assumptions in the classic Foster method, the
formulation of the PC in KRATOS makes the following basic assumptions:

A1. Only one crossing. Each collision trajectory satisfies the condition ‖r(t)‖ = R with v(t) ·r(t) ≤ 0 just once
on the interval (t0, t0 + T ].

A2. Trajectories must cross. No collision trajectories satisfy ‖r(t)‖ = R for a finite time interval.
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A3. Independence. The PDF for each object is independent. In other words, pa,b(xa,xb, t) = pa(xa, t) pb(xb, t)
for all t ∈ [t0, t0 + T ].

By applying a hierarchy of assumptions, beginning with (A1)–(A3), Coppola [12] shows how the integral (2)
simplifies and eventually reduces to the Foster method integral (1). Indeed, imposing Assumptions (A1)–(A2)
on (2) leads to

Pc = −
t0+T∫
t0

2π∫
0

π/2∫
−π/2

∫
v·r≤0

p∆(x, t)v · r̂R2 cos θ dv dθ dφdt. (3)

In this equation, r̂ is the unit vector r/‖r‖, and

p∆(x, t) =

∫ ∞
−∞

pa,b(xa,xa + x, t) dxa =

∫ ∞
−∞

pa(xa, t) pb(xa + x, t) dxa, (4)

where the independence assumption (A3) has been invoked. We acknowledge that the PC integral (3) does
not account for the instantaneous PC at t0. Although it can be incorporated into the PC computation (see
Coppola [12]), we omit its inclusion in this discussion since it is negligible for the scenarios presented in this
paper.

KRATOS assumes that the relative motion PDF (4) can be approximated as a Gaussian mixture. Such a
PDF has the form

p∆(x, t) =
N∑
k=1

w(k)N
(
x;µ(k)(t),P(k)(t)

)
, (5)

where N denotes the Gaussian distribution defined by
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Further, the given weights w(k), k = 1, . . . , N , are non-negative scalars which sum to unity, and µ(k) and P(k)

are the mean and covariance of the k-th Gaussian component (all defined at time t). Substituting the Gaussian
mixture representation (5) into the PC integral (3) leads to

Pc =
N∑
k=1

w(k)P (k)
c ,

where

P (k)
c = −
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−π/2

∫
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N
(
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)
v · r̂R2 cos θ dv dθ dφdt. (6)

In this formulation, the PC is a weighted sum of PC integrals, where each component (6) implicitly imposes
Assumptions (A1)–(A3) in addition to the Gaussian assumption. To proceed, we define additional assumptions,
following the presentation in Coppola [12].

A4. Gaussian distribution. The PDF N
(
x;µ(k)(t),P(k)(t)

)
remains Gaussian for all t ∈ [t0, t0 + T ].

A5. No velocity uncertainty. The PDF N
(
x;µ(k)(t),P(k)(t)

)
depends only on position and time.

A6. Short encounter time. The duration of the conjunction is sufficiently short so that the relative motion can
be approximated as rectilinear and the relative position covariance is constant.

A7. Time integrates out. The integration interval [t0, t0 + T ] can be replaced by the interval (−∞,∞), so long
as Assumption (A6) is not violated.
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While Assumptions (A4)–(A7) are not directly imposed to the PC integral (3), KRATOS imposes these assump-
tions on each of the component PC integrals (6), thereby reducing each of them to the Foster method integral (1).
Such assumptions are well-justified, especially for short-term encounters in LEO, and if the Gaussian mixture
(5) is an accurate representation of the actual relative motion PDF. Additional commentary on the relaxation
of these assumptions is provided in Section 4.

The main inputs to the Gaussian mixture-based method for computing the PC in KRATOS are the following.

• Epoch time t0 and a screening time T . These two inputs define the screening interval [t0, t0 + T ].

• Gaussian PDFs of the primary and secondary at epoch, represented by mean-covariance pairs in equinoctial
orbital elements (EqOE). The VCM format provides such input. If the epoch Gaussians are provided in
another coordinate system (e.g., Cartesian position-velocity coordinates), then they can be converted to
the required input using, for example, the GHQ algorithm (unscented transform) [10].

• Screening radius R. If the primary and secondary object sizes are known, then R is the sum of their
hard-body radii, otherwise R is a user-defined parameter (e.g., 25 meters).

• Orbital propagator function that maps an orbital state x0 at time t0 with respect to Cartesian inertial
position-velocity coordinates to the state x(t) at some (past or future) time t, subject to a dynamical
model. If using VCMs as input, the different force model parameters used in the propagation (e.g., gravity
model, drag, solar radiation pressure) are encoded in this format.

At a high level, the main steps in the algorithm are as follows.

1. Estimate the nominal (mean) TCA and its standard deviation.

2. Propagate the states and covariances of the primary and secondary from epoch to the nominal TCA using
GHQ with an orbital element coordinate system.

3. Transform the primary and secondary Gaussians in orbital element coordinates to corresponding Gaussian
mixtures in Cartesian coordinates.

4. Represent the relative motion PDF as a Gaussian mixture.

5. Apply the Foster method on each Gaussian component.

A schematic illustrating this processing chain is depicted in Figure 2. It is beyond the scope of this paper to give
full mathematical details on each of these steps. Instead, we conclude this section with a few closing remarks.

• In Step 1, the TCA is a random variable since it is a function of the input primary and secondary Gaussian
states at epoch. We define the nominal TCA to be the mean of the TCA random variable. Along with the
variance (or standard deviation) in the TCA, it can be computed using the GHQ or unscented transform.

• In Step 2, propagation “with an orbital element coordinate system” is not restricted to analytical or semi-
analytical techniques such as SGP4. Individual GHQ nodes or “sigma points” can be propagated using
any general- or special-perturbations-based method. For the latter, the nodes or sigma points are typically
propagated in Cartesian space (since the force models are naturally provided in these coordinates), yet the
final Gaussian (at the nominal TCA) is reconstructed and represented in element space.

• The output of Step 2 is the mean-covariance pairs of the primary and secondary with respect to EqOE
coordinates defined at the nominal TCA. This step can use the J2 equinoctial orbital elements (J2EqOE)
[4] in place of the traditional EqOE coordinates. The use of any non-singular system of six orbital elements,
such as the equinoctial set, is well-suited to the problem of uncertainty propagation under the perturbed
two-body problem, since they absorb the most dominant non-linear term in the equations of motion (i.e.,
the 1/r2 term). Hence, propagation is less non-linear in orbital elements, thereby more closely preserving
Gaussian and linear approximations. One can ask if improvements are possible. Indeed, the J2EqOE
coordinates effectively absorb the J2 perturbation and are non-singular for all non-inclined or circular
orbits. Thus, use of the J2EqOEs can significantly prolong covariance realism over the classical EqOEs.
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Figure 2. Schematic of the KRATOS Algorithm for Computing the PC

• DeMars, Cheng, and Jah [2] also propose using a Gaussian mixture representation of the primary and
secondary in Cartesian coordinates at the nominal TCA, to facilitate the application of the Foster method.
However, they obtain this representation by first refining the Gaussian PDF at the epoch time t0 into a
Gaussian mixture and then propagating each of the mixture components to the nominal TCA. The AEGIS
algorithm [3] is used for this propagation. In contrast, KRATOS only requires the propagation of a single
Gaussian PDF in element space (rather than a mixture of Gaussians), as described in Step 2. Although in
Step 3 we still need to convert each mixture component to Cartesian space, this operation is significantly
cheaper than having to propagate a mixture component under the non-linear dynamics [10]. The relative
merits of these two approaches are studied in Section 3.

3. RESULTS AND DISCUSSION

Erroneously imposing one or more of the assumptions (A1)–(A7) defined in Section 2 can lead to a false alarm
(a high PC when the true PC is much lower) or a misdetection (a low PC when the true PC is much higher).
Figure 3 depicts the false alarm (left) and misdetection (right) cases when the Gaussian assumption at TCA is
violated. For the latter, there is no “intersection” between the covariances of the two objects (shown in red and
blue) leading to a low PC. However, if the true PDF (of the red object) is non-Gaussian and “bananoid-shaped”
as depicted in the figure, then there is a non-trivial intersection between it and the blue covariance ellipsoid
leading to a higher PC. Therefore, Gaussian approximations would lead to a misdetection. Figure 3(a) depicts
the opposite use case in which Gaussian approximations would lead to a false alarm.

true PDF 

approximate 
PDF 

true PDF 

approximate 
PDF 

(a) False alarm (b) Misdetection
Figure 3. Impact of Making an Incorrect Gaussian Assumption in PC Analysis

In order to illustrate the value of KRATOS, we developed a simulator that could generate scenarios that
demonstrate the false alarm or misdetection cases, using a combination of real and simulated VCMs. In this
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section, we present results from processing some of this data showing one false alarm scenario and one misde-
tection scenario. Table 1 describes some of the details of these scenarios. While for the misdetection case the
VCM of the secondary is simulated, the VCM of the primary, namely the ISS, is real. Indeed, one objective
of these simulation studies is to show that there exist hypothetical (analyst satellite or UCT) objects that can
potentially produce false alarms or misdetections on real satellites such as the ISS. Due to their sensitivity, the
precise VCM data cannot be shown in this paper.

Table 1. Description of the False Alarm and Misdetection Scenarios

False Alarm Misdetection

Primary Object 80001 (Hypothetical Analyst Sat) 25544 (ISS)
Secondary Object 91002 (Hypothetical UCT) 92002 (Hypothetical UCT)
Conjunction Time 1 day (from epoch) 2.18 days (from epoch)
Screening Interval 2 days 3 days
Combined Radius 75 m 75 m

To cross-validate KRATOS, we implemented a (non-adaptive) version of the AEGIS algorithm [3] that works
with the PC algorithm described in DeMars, Cheng, and Jah [2] (see the comment at the end of Section 2). In
order to validate the accuracy of the computed PC in KRATOS and AEGIS, we implemented a computationally
expensive but highly accurate Monte-Carlo-based method. All methods (KRATOS, AEGIS, and Monte-Carlo)
were implemented in Fortran, thus permitting runtime comparisons. We remark that the accuracy of the prob-
abilities computed using a Monte-Carlo method can be quantified using the Chernoff-Hoeffding bound [13, 14].
Indeed, the number of Monte-Carlo trials N required to achieve a relative accuracy ε with a significance level α
is given by

N >
1

2(εPT )2
ln

(
2

α

)
, (7)

where PT is the “true” probability. For example, to meet a 1% accuracy (ε = 0.01) for a PT of 0.3 with a 95%
confidence level (α = 0.05), at least 204,938 independent trials are needed.

Figure 4 shows results from the false alarm scenario. The left panel plots the computed PC versus the number
of Gaussian components (used in the secondary object) using the AEGIS and KRATOS methodologies. The
95% confidence region deduced from the Chernoff-Hoeffding bound (7) is displayed in the grey shaded area. The
right panel shows the corresponding runtime (on a single thread of a single core) for each configuration. Figure 5
is the analogous figure for the misdetection scenario. Table 2 summarizes the PC and runtime results for these
scenarios. In this table, we remark that the PCs quoted for the Gaussian mixture-based approaches (i.e., AEGIS
and KRATOS) used 2049 Gaussian components while the Monte-Carlo PCs were computed using 109 trials. A
number of observations can be made.

Table 2. Summary of Results from the False Alarm and Misdetection Scenarios

Method PC Runtime (minutes)

Foster 2.607E-3 ∼0
AEGIS 1.664E-5 22.0
KRATOS (EqOE) 2.367E-6 1.40
KRATOS (J2EqOE) 2.368E-6 1.30
Monte-Carlo 1.932E-5 10,900

(a) False alarm scenario

Method PC Runtime (minutes)

Foster 2.065E-14 ∼0
AEGIS 1.228E-04 44.0
KRATOS (EqOE) 8.225E-05 1.40
KRATOS (J2EqOE) 1.226E-04 1.40
Monte-Carlo 1.542E-04 10,800

(b) Misdetection scenario

• In both scenarios, the PCs produced by AEGIS and KRATOS converge as the number of Gaussian mixture
components increases. This confirms that the algorithms are performing as expected.

– In the false alarm scenario, the EqOE and J2EqOE modes of KRATOS converge to the same value
(to within 3 significant figures). AEGIS converges to a different value, however all are within the 95%
Chernoff-Hoeffding confidence interval, as deduced from the Monte-Carlo result.
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Figure 4. False Alarm Scenario Results
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Figure 5. Misdetection Scenario Results

– In the misdetection scenario, KRATOS (J2EqOE) and AEGIS converge to a common value that agree
with the Monte-Carlo result (i.e., they are within the shaded confidence interval). KRATOS (EqOE)
converges to a number outside the confidence interval. Although not shown here, the reason for this
disagreement is because the uncertainty of the secondary object (i.e., the hypothetical UCT) cannot
be represented by a single Gaussian in EqOE coordinates at the nominal TCA. Thus, this example
illustrates the value of using the J2EqOE coordinates over EqOE. The former choice of coordinates
to represent uncertainty prolong covariance realism and do not require a significant increase in com-
putational runtime as evidenced in the right panels of Figures 4 and 5.

• In the misdetection scenario, the true PC is nearly 10 orders of magnitude larger than that predicted by
the Foster method; the PC is greater than the common 10−4 threshold value for which a maneuver would
presumably be performed if the spacecraft was operational. As visualized in Figure 6 below, this tail
probability is significant. Thus, by using the Foster method, the ISS would likely not maneuver and be at
high risk of colliding with the UCT. KRATOS and AEGIS, on the other hand, correctly detect a high-risk
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collision event.

• In the false alarm scenario, the true PC is lower than the 10−4 threshold. Foster’s method, on the other
hand, yields a PC over an order of magnitude larger than this threshold and would potentially result in an
unnecessary maneuver operation.

• KRATOS is significantly faster than (our implementation of) AEGIS since it only requires propagating a
single Gaussian in element space to the nominal TCA.

• KRATOS and AEGIS are orders of magnitude faster than Monte-Carlo simulation and give comparable
accuracies.

• KRATOS, AEGIS, and Monte-Carlo techniques are all “embarrassingly parallelizable”; their relative run-
times could be reduced by porting their respective implementations to a high performance computing
architecture.

Figure 6 visualizes the misdetection scenario around the TCA. In this picture, the ISS 3-sigma covariance
ellipsoid is depicted in blue while the Monte-Carlo particles characterizing the true uncertainty are depicted
in purple. The UCT covariance ellipsoid is depicted in red (and has a long thin “sausage shape”) while the
true particle cloud uncertainty (which resembles a “banana shape”) is depicted in orange. We see that the ISS
covariance ellipsoid comes nowhere near the UCT covariance ellipsoid resulting in the infinitesimally small PC
produced by the Foster method and hence the misdetection. On the other hand, we see that many of the UCT
particles (in orange) penetrate the ISS covariance ellipsoid (in blue) that lead to a non-negligible PC that would
warrant evasive action. KRATOS is able to accurately model the true uncertainties of the objects (i.e., the
particle clouds) by way of Gaussian mixtures leading to the correct PC being computed.

Figure 6. Visualization of the Misdetection Scenario

4. PATH FORWARD

Table 3 puts things into perspective by reviewing the main assumptions imposed in KRATOS, other PC method-
ologies, and the new KRATOS v2 presently under development. Two main enhancements are underway for
KRATOS v2:
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Table 3. Assumptions Imposed in KRATOS and Other PC Methodologies

PC Methodology
Assumption Foster AEGIS KRATOS KRATOS v2 Monte-Carlo

Short encounter time � � � � �
No velocity uncertainty � � � � �
Constant positional covariance � � � � �
Gaussian distribution � � � � �

1. Use of a more robust PC algorithm that treats medium and long-term encounters (in addition to the short
duration encounters already being addressed) and more challenging regimes containing velocity uncertainty
by automatically choosing the correct formulation of the PC integral based on what assumptions in Table 3
are met.

2. Improved automation by adaptively selecting the number of Gaussians needed to faithfully represent the
PDFs of the primary and secondary RSOs around the nominal TCA (presently, these numbers are input
parameters).

While the results presented in Section 3 demonstrate the existence of misdetection and false alarms produced
by the Foster method using a combination of real and simulated data, simulation studies will need to be performed
to quantify misdetection and false alarm rates for the different PC tools using larger datasets of real historical
VCMs of catalogued RSOs and analyst satellites. This will allow us to assess the utility of KRATOS.

Finally, we remark that all of the merits of KRATOS are for naught if the input is invalid. For example,
if sensors misreport their measurement errors, then any tracks, orbits, or VCMs produced by processing sensor
observations in an orbit determination procedure (e.g., batch differential correction) will have dubious state and
covariance information. What is more, sensor measurements are usually provided in “B3-format,” which have
limited precision and, for the case of radars, are filtered or correlated. The latter is particularly unsettling given
that traditional orbit determination and Kalman filtering methods implicitly assume that all input measurements
are uncorrelated (independent). As demonstrated by Alfriend et al. [15], such covariances are often overly
optimistic (too small); small changes in the covariance can create much larger changes in the PC. To address
these sensor-level issues, Numerica is presently developing a tool to provide higher quality sensor tracks with more
realistic states and covariances, as well as addressing the limitations of B3 data, in order to improve reliability
of downstream SSA functions such as UCT resolution and CA.

5. CONCLUSIONS

KRATOS provides a novel approach to computing the PC between RSOs that supports the mission’s goal of
performing CA screening further out into the future. Some of the key innovations in KRATOS include (i)
thinking beyond “Gaussianity” by treating bananoid-shaped uncertainties and other non-Gaussian distributions
in an effort to reduce misdetections and false alarms; (ii) using Gaussian mixture representations to achieve a high
level of computational efficiency; and (iii) representing RSO uncertainty in the J2 equinoctial orbital elements to
significantly prolong covariance realism. It was demonstrated that a traditional technique (i.e., Foster’s method)
can produce misdetections and false alarms. KRATOS informs the correct courses of action at a substantially
reduced computational cost compared to that of Monte-Carlo simulation, especially in low PC scenarios around
the threshold at which the decision to maneuver would be made, and when a large number of Monte-Carlo
trials would be needed. Ongoing work will further mature KRATOS and demonstrate its utility on large (real)
datasets.
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