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ABSTRACT

This paper presents a multi-target tracker for space objects near geosynchronous orbit using the Gaussian Mixture Car-
dinalized Probability Hypothesis Density (CPHD) filter. Given limited sensor coverage and more than 1,000 objects
near geosynchronous orbit, long times between measurement updates for a single object can yield propagated uncer-
tainties sufficiently large to create ambiguities in observation-to-track association. Recent research considers various
methods for tracking space objects via Bayesian multi-target filters, with the CPHD being one such example. The
implementation of the CPHD filter presented in this paper includes models consistent with the space-object tracking
problem to form a new space-object tracker. This tracker combines parallelization with efficient models and integra-
tors to reduce the run time of Gaussian-component propagation. To allow for instantiating new objects, the proposed
filter uses a variation of the probabilistic admissible region that adheres to assumptions in the derivation of the CPHD
filter. Finally, to reduce computation time while mitigating the so-called “spooky action at a distance” phenomenon
in the CPHD filter, we propose splitting the multi-target state into distinct, non-interacting populations based on the
sensor’s field of view. In a scenario with 700 near-geosynchronous objects observed via three ground stations, the
tracker maintains custody of initially known objects and instantiates tracks for newly detected ones. The mean filter
estimation after a 48 hour observation campaign is comparable to the measurement error statistics.

1. INTRODUCTION

Traditional single-target tracking uses a set of measurements to estimate the state and uncertainty of one object. This
paradigm is complicated if tracking of more than one object is required. In this case, a separate algorithm must be
used to correlate each measurement to a specific object, and object birth and death must be considered. This added
complexity is particularly relevant to Space Situational Awareness (SSA), in which the estimation and prediction of
an ever-growing population of Space Objects (SOs) is necessary to retain custody of vital Earth-orbiting assets [[1].
For example, in the GEosynchronous Orbit (GEO) regime, ambiguous observation-to-track associations are possible
due to the potential for long times between measurement updates for an individual SO and resulting increases in state
uncertainty.

One alternative to a bank of distinct, single-target filters with a hypothesis table is to combine the processes
of data association, cardinality estimation, and state estimation into a single probabilistic framework (e.g., see [2]).
Multi-target filters attempt to simultaneously estimate (i) the number of objects in a given space and (ii) a Probability
Density Function (PDF) of the state of each object. In the context of SSA, improved multi-target tracking can reduce
the number of Un-Correlated Tracks (UCTs) and improve state estimates [3H7]]. This information, in turn, can benefit a
wide array of applications, including conjunction assessment, SO characterization, and sensor tasking. Recent research
in this area applies formulations or approximations of the Bayes multi-target filter to SO tracking [SH].

One such multi-target filter is the Cardinalized Probability Hypothesis Density (CPHD) filter [2]. Based on Flnite
Set STatistics (FISST) and an approximation to the Bayes multi-target filter, the CPHD filter accomplishes the goals
of a multi-target filter by producing (i) a cardinality distribution that approximates the number of objects and (ii) an
intensity function that describes the density of objects in the single-target space [9]]. In addition to handling ambiguities
in data association, the CPHD provides a mathematical framework to include models for object birth, probability of
detection, and clutter measurements.

This paper presents a multi-target tracker for SOs near GEO based on a Gaussian Mixture (GM) CPHD filter
[10]. New objects are instantiated using a partially uniform birth (PUB) model [11]] combined with the probabilistic
admissible region (PAR) [12]. Additionally, this GM-CPHD implementation splits the multi-target state into distinct,
non-interacting populations based on the sensor’s field of view (FOV). This modification decreases both complexity
and computation time while simultaneously mitigating the “spooky action at a distance” phenomenon [13]]. A method
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for generating the parameterization of the multi-target state for each population as a function of the CPHD multi-target
state estimate and sensor FOV is also presented.

The work presented in this paper represents a confluence of independently developed tools for SO state propaga-
tion, uncertainty propagation, and multi-target filtering. Further, the tools have been produced so as to facilitate the
use of results in higher-level applications that rely on, for example, accurate observation-to-track associations (e.g.,
SO characterization).

The paper commences with a description of the GM-CPHD filter with the PUB model. Individual components of
the SO tracking algorithm are then discussed, with some emphasis placed on state and uncertainty propagation due
to the significant effect of system dynamics on overall filter run time. Finally, filter results are shown for a randomly
generated, near-GEO catalog of 700 SOs that is representative of the publicly available Two-Line Element (TLE)
catalog. The capabilities of the proposed birth model are demonstrated through instantiation and solution convergence
for newly observed, randomly generated SOs.

2. THE GM-CPHD FILTER WITH A PARTIALLY-UNIFORM BIRTH MODEL

Bayes multi-target filtering provides an analog for the Bayes single-target filter that yields a probabilistic representa-
tion of a multi-target state. Prediction of the multi-target state accounts for variations in the number of targets, i.e.,
spontaneous birth, spawning, and object death, while the update accounts for detection probability, clutter, and the
possibility of more than one observation of a given object. Let the single-target state and measurement spaces be
denoted by X and Z, respectively. In the context of Random Finite Set (RFS) based multi-target filters, we represent
the multi-target state and observation by

Xy = {wl,wg,...,ka}CX, (D)
Z, = {Zl,ZQ,...,Z]wk}CZ, (2)

where x; € X is a realized random vector for a single-target state, z; € Z is a realized measurement, and the sets Xy,
and Z;, have cardinality Ny and M}, respectively, at time t;. For this work, we assume that errors in z are Gaussian
distributed with covariance matrix Ry and a known single-target observation model

z = h(z;0,t), 3)

where o are parameters associated with the observer (e.g., ground-station location) and are omitted without loss of
clarity. When the probability of detection pp , < 1 or clutter measurements may be produced by a given sensor, then
Ny, does not strictly equal M},. The probability density function (PDF) of X}, is denoted by 7y (X).

Like the single-target Bayes filter, the multi-target filter requires models for prediction and update of the PDF. In
the context of an RFS-based approach, prediction of 7; from ¢;_; to tj is described by the Chapman-Komolgorov
equation [2]]

Telk—1 (Xgjp—1) = /f(Xk\k—1|X) m(X)d(X), 4
which leverages the set integral
— 1
/f(X)(SX = ZE/f({xl,x%...,xi})d(azl,xg,...wi)7 5
i=0

and temporal variations in the multi-target state are described by the Markov transition kernel f (X elt1] X ) This
transition kernel describes changes in the multi-target state due to state propagation and variation in the number of
targets (e.g., birth and death). Given a realized RFS Zj,, the Bayes measurement update is

9(Zk| Xiph— 1) a1 (Xjr—1)

T (Xk|Z)) = J9( 2 X )mp -1 (X)0X

(6)

where ¢g(Z|X) is the multi-target likelihood function for a given sensor. The function g(Z|X) accounts for pp ; and
clutter.

The following sections describe the specific multi-target tracker used in this work. While the closed-form RFS-
based filter presented in [2] is often intractable, several simplifications exist that allow for practical applications.
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This includes the Probability Hypothesis Density (PHD) filter [[14}/15]], R-FISST [16], and the various labeled multi-
Bernoulli filters [[17-20]. The current work uses the Cardinalized Probability Hypothesis (CPHD) filter, which is a
partial second-order form of the Bayes multi-target filter [2]. The remainder of this section describes the form of the
CPHD used in the proposed space-object tracker.

In the CPHD, the multi-target state X, is parameterized by a discrete cardinality distribution py(n) describing the
number of targets and a PHD vy, () representing the density of targets in X. This PHD is also called the single-target
intensity. This work uses the Gaussian mixture CPHD filter proposed in [[10] combined with a partially-uniform birth
model to instantiate newly discovered targets [11]]. The intensity is approximated by a Gaussian mixture, i.e.,

Zw N (:c T, ,P(Z) (N

where each of the J components has a weight w(? > 0, a mean Z(¥) € X, and a corresponding covariance matrix
P()_ The Partially-Uniform Birth (PUB) model presented in [[11]] assumes a newborn target may appear anywhere in
the sensor FOV with uniform probability, which shares similarities with SO tracking. The PUB model for the newborn
target intensity is

vp(@) = wp U (8 Zwé,w( )b Pi) ®)

where the subscript B denotes spontaneous birth, wp j is the mean number of new targets appearing at ¢, the intensity
in the FOV is uniform with bounds B, 6 is the observable part of the single-target state, and ¢ is the unobservable
portion with the dependence on x removed for the sake of notational clarity in future discussions. When using optical
observations for SO tracking, 8 could be topocentric right ascension and declination while ¢ includes the range, range-
rate, and angle rates. The model in Eq. (8)) assumes a Gaussian mixture in the unobservable direction where w,(f,)c > 0,
> wb k = 1, and the given mean and covariance are 5( and Pd(> ,)c, respectively. Like the presentation of the CPHD
filter in [21], the following describes the prediction and update of the surviving target intensity in terms of x and the
birth model as [GT qu] T

To distinguish between intensities for surviving and newborn targets, the PUB-CPHD filter augments the state
vector with a binary variable 8. The case 8 = 1 denotes a component of the birth intensity and 3 = 0 corresponds to
a surviving target. Given the previous cardinality estimate py_1(n),

Mmax

Prlk—1( Zka n—i ZCka 1) ps(1 —ps)’ 7, n=0,..., Nmax, ©)

where pp . is the cardinality distribution for new targets with binomial coefficient CY = 5!/(i!(j — i)!). Prediction of
the surviving target intensity is

Jk—1
.= (0) (1)
Vgjk—1(2,0) Zwk‘k X ( wk\k—l’Pk\k 1) (10)
with
Wiy = pswi’y, (11

Jjk—1 = Jr—1, and the mean f,(:‘)kil and covariance P(ll)C , of the predicted Gaussian component are produced

via the unscented transform and a given single-target dynamics model. This work employs the square-root unscented
transform presented in [22]] with constants « = 1 and 5 = 2 (here using the notation in the provided reference). The
predicted birth intensity is then

Vglp—1(x, 1) = vp k(). (12)
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From tj, to tx41, newborn targets become surviving targets and 8 = 1 for all surviving targets. The CPHD measure-

ment update when using the PUB model is

o [Zk, vkjp—1] (n)

n) = _1(n),

pi(n) <Wo[2kvvmk—1]7pMk—1>pMk ()

Jrlk—1 ‘

Z Wl N (e, Pl

Jrk—1 '
—|—Z Z wfﬁg(z)]\/(m zr:k 7P())
zeZ =1
vk(m,l) ~ ZwB,k(Z)N( Zwbk ( ¢k ,P(l)),
zeZ
where
‘= (U1 [Zk, Vkpe—1] » Prji—1)
(Vo [Zks vip-1] » Prjr—1)
X(z)::<W1[Zk"{z}aka—l]apMk—1>
(Vo [Zks Vije—1] » Prji—1)
min(|Z]|,n) n—(j4u)
, (1 =pp) (1,v)) =
v, |Z, = Zl — i )Np. (|12 P, % - =(Z, ,
2010 =30 021 Mon (21 =0) Bl x B e ()
(Lkg) [w Thik 1

- s Kk Bk
E(Z,v) = e (2) +pp Z wk|k 1qk z)|:z€eZ;,

i () =N (220 PY).
and the updated weights are
(4)

wm,k = (]‘ - pD) le(c,])kfl’

wik(2) =pp g’ (2) - fk)> ()ewy_y;
<1,/€k>

nk(z)

WB,k

wp.k(2) =
The update of v, (x, 3) in Egs. and is an approximation since their derivation assumes that
N(0;z,R)15(0) ~ N(6; z, R),

where

wo={; 1o

13)

(14)

15)

(16)

a7)

(18)

19)

(20)

2n

(22)

(23)

(24)

(25)

For the cases where the uncertainty is small compared to the FOV B, the simplification in Eq. (24) holds. A newborn

target becomes a surviving target after first appearing, hence, before the CPHD time update

vg(x,0) = vg(x,0) + vi(x, 1).

(26)
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This sum of intensities is then used in Eq. (I0) for the surviving target prediction. To maintain tractability due to an
increase in Ji, GM components are merged and pruned as outlined in [[10] with additional component management
methods discussed in later sections.

Upon updating the cardinality and intensity using the CPHD, target states may be extracted to form X},. Using the
cardinality distribution

Ny = argmax pi(n), 27
the estimated multi-target state is
~ Ny Ny
Le={a"} (28)
i=1

where a:,(c) are the mean vectors of the Ny, components in vg (2, 0) with the largest weights.

The “spooky action” effect in the CPHD results from Eqs. (I%]} @I) The additional factor added by the cardinality
through the measurement set likelihoods ¥,, enforces that > w . However, when a missed detection occurs,
the corresponding component weight decreases by the factor 1 — pp in Eq. (21). If, for example, the cardinality indi-
cates a high probability of two targets, but one is missed, then the weight on the other target increases to compensate.
Hence, targets separated in space such that they are statistically independent may influence each other in the CPHD
measurement update. This is known as “spooky action at a distance” [2]] and may be mitigated through the designa-
tion of distinct, statistically non-interacting populations. Our method for mitigating this is discussed in the following
sections.

3. SPACE OBJECT TRACKER

The described CPHD filter provides a mathematical framework for the proposed space-object tracker, which utilizes
several tools to reduce computation time, improve robustness, and increase portability. Additionally, they address
elements specific to space-object tracking when compared to the classical CPHD literature (e.g., see [10L/11]]). The fol-
lowing sections begin with specific elements required for the tracker, and conclude with a description of the integrated
toolset. Except where noted, software is implemented in MATLAB with some computationally expensive operations
written in C/C++ and Fortran.

3.1. COMPUTATIONALLY EFFICIENT ORBIT STATE AND UNCERTAINTY PROPAGATION

The predicted mean and covariance of each GM component — required for the computation of vy, _; — are calculated
using the adaptive entropy-based Gaussian-mixture information synthesis (AEGIS) method [23]]. In the AEGIS formu-
lation, the multi-target state is represented using a GM, the number of components of which is allowed to increase over
time based on the nonlinearity of the system dynamics. The state and uncertainty of each component are propagated in
time using the unscented transform [22]]. The orbital equations of motion are formulated using Cowell’s method, and
all sigma points for a given component are placed in a single state vector and propagated simultaneously. The linearly
propagated differential entropy, propagation of which is required by the AEGIS method, is also placed in the state
vector. For the case of « being position and velocity, this results is a 79-element state vector for each GM component:
13 sigma points of six states each, joined by the differential entropy. While this strategy precludes the possibility
of parallelizing the propagation of each sigma point for a given component, the more attractive parallelization at the
component level remains viable.

The AEGIS method detects nonlinearity by comparing the propagated differential entropy with a differential en-
tropy value calculated at the end of each propagation step based on the propagated covariance via the sigma points.
If the difference between the two differential entropy values is greater than a user-defined threshold, then the GM
component splits into multiple components, each of which is then propagated individually. Though an event-finding
algorithm may be used to more precisely determine the time at which the differential entropy tolerance is violated,
no such technique is implemented in the current work due to the required small propagation step sizes. (See further
discussion of step sizes below.)

It is noted that the linearized time derivative of the differential entropy for a GMM component is equal to the trace
of the Jacobian of the mean orbital state of that component. In general, this relation necessitates the calculation of the
full Jacobian. However, the trace of the Jacobian of a conservative force (e.g., gravity) is zero, so only the Jacobians
of nonconservative contributions to the dynamics model need be evaluated [[24].
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State and uncertainty propagation dominate overall computation time of the GM-CPHD filter because of the large
number of GMM components and non-trivial orbital dynamics. Therefore, several measures are taken to prioritize
efficiency. First, while the majority of filter operations are performed using MATLAB, propagation code is written
in Fortran to take advantage of the speed of the compiled language. The Fortran routines are compiled into a shared
library, which are loaded into the MATLAB workspace. From there, the propagation routines are then invoked directly
from MATLAB, and output variables are returned to the MATLAB workspace. Using this paradigm, multi-CPU
parallelization at the GM component propagation level is accomplished via the MATLAB parfor construct.

For many astrodynamics applications, high-order, variable-step-size linear multistep or explicit Runge-Kutta meth-
ods are typically used to propagate states and uncertainties [[25H27]]. However, for the current application, the intervals
between measurements — and the corresponding propagation durations — are short compared to the relatively slowly
and uniformly varying dynamics of the near-GEO environment. As a result, the step sizes for typical high-order
methods would be artificially truncated from their optimal values to accommodate measurement updates, leading to
inefficiency. A fourth-order, fixed-step, explicit Runge-Kutta method is therefore used instead [28]]. To prevent infor-
mation loss due to frequent conversions of a covariance matrix to or from sigma points, the propagated state vector is
stored and only regenerated after a measurement update of that component.

The efficiencies of the individual elements of the single-state dynamics model are addressed, as well. Ephemeris
calculations for the positions of the Sun and Moon and for the orientation of the Earth are performed using cubic-
spline interpolations of publicly available NAIF SPICE ephemeris data [29-31]. Coefficients are precalculated for the
timespan of interest and saved in binary files. During filter initialization, the coefficients are loaded into RAM and
stored for the duration of the filter runtime. This strategy has been shown to improve ephemeris retrieval speeds by
one or more orders of magnitude compared to the common technique of directly calling SPICE routines, and provides
adequate accuracy for the current application. Additionally, because ephemeris calculations are functions of time only,
the simultaneous propagation of all sigma points for a given component allows for a single ephemeris calculation to
be reused in the dynamics models of all 13 sigma points.

The spherical harmonics coefficients used to calculate the geopotential are also loaded into RAM a single time
during filter initialization to avoid unnecessary repetitive operations [32]]. It is noted that interpolation-based geopo-
tential calculation methods are capable of significantly outperforming spherical harmonics implementations for high-
degree/order fields [33[34]. However, the spherical harmonics formulation is used in the current work due to the
relatively low-degree/order field required for acceptable propagation of the near-GEO catalog under consideration.

The final element of the single-state dynamics model is solar radiation pressure (SRP). The SRP acceleration is
calculated using a standard cannonball SO model with constant area-to-mass-ratio and coefficient of reflectivity [35]].
A conical Earth shadow model is used. Unlike gravitational forces, SRP is nonconservative; however, the trace of the
SRP Jacobian in the current model is zero, so the calculation is avoided for the propagation of differential entropy.

The single-state dynamics model is summarized in Table[T]

Table 1. Single-state dynamics model.

Force Implementation Notes

Geopotential 10 x 10 spherical harmonics potential Coefficients loaded into RAM at initializa-
tion; cubic spline Earth orientation calcula-
tion

Sun and Moon gravity = Point-mass potential Cubic spline ephemerides

SRP Cannonball SO with conical Earth shadow  Jacobian not required

3.2. MODELING BIRTH WITH THE PROBABILISTIC ADMISSIBLE REGION

Methods based on the admissible region provide an initial probabilistic description of a newly-detected space ob-
ject [1236]. The admissible region approach describes the initial state using a measurement z with physics-based con-
straints to limit the possible solutions in the unobserved directions (e.g., see [37,38]]). In the case of four-dimensional
(4D) optical observations, i.e., observations of angles and angle-rates, the constraints reduce the space of admissible
range and range-rate solutions. Typical constraints include bounds on the semimajor axis and/or eccentricity. The
Constrained Admissible Region (CAR) approach assumes a uniform distribution of possible range and range-rate
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pairs in the admissible space, which is approximated using a GM model to yield a PDF of the initial satellite state [23]].
Alternatively, the Probabilistic Admissible Region (PAR) uses sampling-based methods to yield a more accurate ap-
proximation of the admissible region as a function of random inputs. For example, the PAR approach may be used
to account for the measurement PDF and constraints (e.g., a uniform distribution of possible semimajor axis values).
Generated samples are then employed to produce a GM model for the admissible region for use in a filter. See the
provided references for details on the CAR and PAR and Fig. [I] for a comparison of the two resulting PDFs for a case
outlined in [21]].
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Fig. 1. Comparison of the CAR (left) and PAR (right) for the same optical observation and semimajor axis/eccentricity

constraints [@]

In [21]], we demonstrate that the PAR may be combined with the PUB-CPHD filter while not violating any as-
sumptions in the filter derivation. In this context, 6 is the four-dimensional angle and angle-rate observation and the
PAR produces a GM for the range and range-rate vector ¢p. The CAR cannot be used in this filter without violating
assumptions in the birth model. Specifically, the birth model in Eq. () assumes independence between the realized
6 and the Gaussian mixture for ¢, but the CAR produces the range/range-rate GM as a function of the observation.
However, the PAR may be defined as a function of the FOV and generated using the observation distribution U/(5),
which is consistent with the independence assumption. Hence, a PAR-based representation of the range/range-rate
PDF may be used in the PUB-CPHD filter. Generation of the samples uses a C++ tool that interfaces with MATLAB
via mex. Other software required to generate the PAR-based GM uses MATLAB. This process requires approximately
7 seconds per PAR, which can increase filter runtime when executed with each measurement scan.

To reduce computation time, this tracker only generates a PAR when the CPHD indicates a high likelihood of a
new object. For a given measurement z, Eq. produces the intensity of a new object via wp (). We only create a
PAR when this weight is greater than the GM component pruning threshold in the CPHD filter. Since any component
with a weight below this value will be removed after the measurement update, the software skips the generation of the
PAR for such cases. A low weight occurs when x(z) is small, which corresponds to cases when the filter determines
that the measurement is likely clutter or is produced by a surviving object.

3.3. 4D OBSERVATION GENERATION

The use of the PAR assumes a 4D observation of right ascension, declination, and their rates. These measurements
are not provided using optical sensors, but may be generated via, for example, a least-squares fit of a time series of
angle measurements over a short time duration [39]. Such methods assume that observations are grouped using a form
of observation-to-observation association. As described in [40]], linear models may be employed to link observations
from a series of optical images. This process also reduces the number of clutter observations to a 0.01 probability (in
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the case of [40]]). We use a similar approach, but in the context of the GM-PHD filter to account for missed detections
and clutter. The GM-PHD is similar to the previously presented GM-CPHD filter, but without the estimation of a
cardinality distribution. More details of the GM form of the PHD filter are found in [[15].

Given a collection of observations over a prescribed time period from a single sensor, the 4D observation generation
tool produces angle and angle-rate measurements. The GM-PHD filter used for grouping observations detects objects
and estimates their right-ascension, declination, angle rates, and accelerations state. Each optical image produces one
or more right-ascension/declination observations that we group into an RFS Zj,. Given the sets Zx, Zy41, ..., Zk+ K,
each are used in the GM-PHD filter with a linear dynamics model. Upon processing all available observation sets,
the GM-PHD filter produces a collection of likely objects in the measurement space and the measurements associated
with those objects. The least-squares algorithm for generating 4D measurements and the observation-error covariance
matrix Ry, [39] uses the observations associated with likely tracks. The time duration of the series and the number of
frames determines the accuracy of the measurements.

This work also considered the use of a PHD smoother [41]] to reduce false detections. However, testing of the
tool demonstrated a lack of robustness in cases where the last measurement scan in the time series produces a missed
detection for an object. When this occurs, the smoother reduces the likelihood that a track exists, thereby increasing
the number of missed detections. Instead, testing demonstrated that inspecting the last two GM-PHD solutions for
tracks yielded sufficient robustness for generating 4D measurements.

3.4. APPROXIMATE MULTI-SENSOR CPHD FILTER

A multi-sensor implementation of the CPHD filter allows for processing angles-only and 4D observations in the same
filter. While the generation of 4D observations allows for using the PAR-based birth model, not all objects observed
produce the minimum of three measurements required for the least-square regression. For example, a space object that
exits the field of view after one angle-only measurement scan fails to yield sufficient information to approximate the
angle-rate. However, that single data point may be used to update the multi-target state, and the tracker uses the 4D
measurements and any unused 2D observations. Processing both 4D and 2D measurements from the same sensor at
the same time with the same field of view requires the multi-sensor CPHD measurement update to reduce filter error.

This work uses the approximate multi-sensor CPHD filter proposed in [42]. The iterated-corrector approach,
i.e., successive measurement updates for different sensors, allows for fusing measurements from different sensors
in the CPHD. However, this approach can bias the filter when, for example, the sensors have different detection
probabilities [43]. While the multi-sensor CPHD filter is computationally intractable [[14]], [42] proposed a principled
approximation to the true solution. To illustrate the method, the CPHD intensity update Eqs. (I4) and (I3)) may be
combined and written as [44]]

wl@,8) = L (212.8) vy (@, 8) 29)

where Ly is an update operator and the j superscript denotes an update via the jth sensor. The iterated-corrector
update may be expressed as [43]]

o) = L (2012 8) L (27 12,5) -+ LY (2o, B) v (. 9 60)
for sensors 1,...,s. In this case, the updated solution varies with the order of the L") terms. The approximate

multi-sensor CPHD filter removes dependence on the order of update through a normalization term:

1) (4710,0) U2 (247, ) 18 (27128) s 2.9

vg(x, B) = Ni (31
Somon S IV (2010, 8) LY (271, 8) - LD (2 2,8) Syp (@, 8) de
where Ny, is the updated number of objects and
Vg(k—1(, B
Skik—1(z, B) = kljvli() (32)
klk—1

Full details on the method may be found in [42]], and [45] demonstrates improved performance when using the ap-
proximate multi-sensor PHD filter instead of an iterated-corrector. While not demonstrated in the current paper,
comparisons of the iterated-corrector and approximate CPHD solution are consistent with the results of [45].
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3.5. CPHD FILTER WITH TWO POPULATIONS

The current implementation of the GM-CPHD filter leverages a dual-population model to: (i) mitigate the “spooky
action at a distance” discussed previously, (ii) account for only a subset of objects in the FOV, and (iii) reduce com-
putation time. The cardinality distribution p(n) and the PHD v () are split to yield two multi-target states. One state
represents objects inside of the FOV while the second describes those believed to be outside of the sensor’s view. This
requires a splitting of both the cardinality and the intensity based on the FOV boundaries. Upon splitting the state, we
perform a measurement update using the CPHD parameters describing the population inside of the FOV. Hence, the
“spooky effect” is isolated to components in a given population. This also reduces the measurement update computa-
tion time by using smaller values of ny,,x, IV, etc. Upon performing the measurement update, the two populations are
recombined to form a single multi-target state for the objects in the surveillance region. The remainder of this section
outlines the splitting and combination process.
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Fig. 2. Illustration of splitting a single Gaussian component to account for the FOV.

Simple splitting of the intensity based on the FOV compares the mean of the predicted measurement Gaussian with
the sensor limits, i.e., if 8 € B for the ith component, then the component is designated as in the FOV. However, for
example in the case where the mean is near the FOV edge, there can be a significant portion of the density function
both inside and outside of the FOV. Fig. [2]illustrates this in the leftmost image. (Note that this is an example for the
sake of illustration and is not based on an SO simulation.) As seen in the figure, while the mean of the component at
(0, —0.1) is outside of the FOV, there is a non-zero density within the field of view that indicates the object may be
detected. However, this component would be included as part of the population outside of the FOV using the initial
definition. For tests with the GM-CPHD filter for space objects, the filter would assume a missed detection for any
objects with true states just outside of the FOV. This result causes the filter to reduce the weight of the component,
and thereby confidence in its existence, when there is no observation but a high probability of detection. Early testing
demonstrated a loss of known objects due to such a phenomenon. Alternatively, the filter may generate a possible new
track based on the realized measurement, thereby adding a filter bias. This work outlines a new method for splitting
the PHD, i.e., the object density function, to better account for objects near the FOV boundary.

To reduce filter biases when the mean of a component is near the FOV boundary, we split a component in right-
ascension/declination space to generate GM approximations of the portion inside and outside of the FOV. In [46], the
authors split a component along the major principle axis based on the three-component library in [23]]. Instead, the
proposed method splits a given component along the principle axis closest to the shortest line between the mean and the
FOV boundary. Splitting is done recursively until the probability of a realized measurement for each component is less
than 0.05 or greater than 0.95. Fig. 1 also illustrates the resulting split of the GM components to isolate contributions
inside and outside of the a given region. A case near the corner of the FOV is selected to illustrate that the solution
for the two densities captures the boundary in the description of the new intensities. While not illustrated, the leftmost
image is recovered (qualitatively) when merging all components output via the previously described procedure.

The cardinality distribution for a given population is computed using the weights of GM components in the cor-
responding intensity function. Assuming that weights approximate the probability that an object exists in the ith
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component and w(*) < 1 for all 4, then the cardinality distribution generated via a Bernoulli approximation is [47]

Jrov (1) (/)
. w w
o) = I (1—w<a>) e ({110(1),,..,110('])}) (33)

=1

where ¢;(+) are the elementary symmetric functions. Computational complexity of these elementary symmetric func-
tions is O(J?), and generation of these functions uses a C tool to reduce computation time. This efficiency gain is
critical for cases in the numeric results section where J = 700.

The combination of the updated CPHD state for objects inside the FOV with the cardinality and intensity for the
outside objects is straightforward. For the intensity

v(x) = v (x) + 09 (), (34)

which, in the case of the GM-CPHD, is a union of the weights, means, and covariance matrices of the two intensities.
The cardinality distribution of the full multi-target state is the convolution of the probability mass functions, i.e.,

o0

p(n) = Z pD (k) p O (n — k), n=0,..., Nmax- (35)
k=0

Upon combining the two populations, the GM-CPHD time update is performed to the next time of interest.

3.6. INTEGRATED SPACE OBJECT TRACKER
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Fig. 3. Block diagram for the space-object tracker

Fig. [B]illustrates the combination of these tools to produce the proposed space-object tracker. The process begins
with observation RFSs Z; to produce the 4D observations (denoted as tracklets in the image) and the set of unused
2D observations. This produces the time ¢; of each new measurement set Z; with FOV boundaries ;. The filter then
loops over time to process observations at each time ¢;. Although not explicitly stated, observation sets at the same
time use the previously described multi-sensor measurement update. The output of the tracker includes the multi-target
state parameterized by p; and vy along with a table of measurements used in the update of each GM component in vy.

4. NUMERICAL RESULTS

This section describes the performance of the proposed space-object tracker for maintaining custody of a catalog of
space objects while establishing custody of newly detected objects. The section begins with a description of the general
test scenario, followed by presentation and discussion of results.



4.1. SCENARIO DEFINITION

The near-GEO catalog used for this simulation is representative of the public TLE catalog available onlineﬂ We extract
all TLEs from the public catalog for Feb. 27, 2013 with mean motions between 0.9 and 1.1 revolutions per sidereal day,
which yields 1,111 samples. These limits on mean motion correspond to semimajor axis limits of [39376, 45100] km.
We then form a 20-component Gaussian mixture PDF in the six-dimensional orbit element space describing the density
of objects near GEO using the EM algorithm [48]]. Finally, we sample the PDF to generate a 700-object catalog for
use in these simulations. The selection of the simulated catalog is constrained to only include objects within the field
of regard (FOR) for the three simulated optical sensors.

Table 2. Upper and Lower Limits for Initial Covariance Standard Deviations

Orbital Element Lower Bound Upper Bound
Semimajor Axis (km) 0.1 1.0
Eccentricity 1075 10~*
Inclination (°) 1073 102
Right Ascension (°) 1073 102
Argument of Perigee (°) 1073 102
True Anomaly (°) 1073 1072
250 250

200 -
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Fig. 4. Statistical consistency (as Mahalanobis distance) and absolute position RSS errors for the synthetic space-
object catalog at epoch.

The initial filter estimate of the space-object catalog uses the 700 generated orbital element states and a randomly
generated covariance matrix. For each object, the standard deviation for uncertainty for each element is sampled from
a uniform distribution with the boundaries given in Table 2] The mean state in orbital elements (from the randomly
generated TLE) and the diagonal covariance are used with the unscented transform and converted to Cartesian position
and velocity. Sigma points for the transformation are selected such that no invalid values are produced, e.g., a negative
eccentricity. The true object state is produced by sampling this covariance matrix, which yields an initial space-object
catalog statistically consistent with the true catalog. Fig. [d] provides the distribution of initial Root-Sum-Square (RSS)
of the position state errors and the distribution of Mahalanobis distances at the initial epoch time. Both the true state
and the multi-target state are then propagated forward for 24 hours before simulating measurements. For this reason,
presented results begin at hour 24. This yields an approximate Root-Mean-Square (RMS) position error of 8 km when
measurements are first available, which is illustrated in the results presented below. The Gaussian components are
propagated using the AEGIS method for approximating a non-Gaussian posterior PDF. This GM representation of

! Available at https://celestrak.com|or https://www.space-track.org/
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the space-object catalog is provided to the filter as vg(x). The initial cardinality distribution is initialized such that
p(N) = 1 where N is the number of initially known objects for a given case.

Table 3. Ground Station Coordinates [49]]

Station Latitude (deg) Longitude (deg) Height (m)
Socorro, NM 33.82 -106.66 1510.2
Maui, HI 20.71 -156.25 3058.6
Diego Garcia -7.41 72.45 -61.2
6 10

Maui, HI Socorro, NM
n S n S~
| | | |
Total # of Obs
o S o ==
n
o
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| | |
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I
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Fig. 5. Number of observations per measurement scan (left) and summary statistics over the scenario and for each
satellite (right)

Table [3] describes the positions of the ground stations used for generating simulated angles-only measurements.
Coordinate system reduction uses the IAU2000/2006 standard [5O]. All objects within the 2° x 2° field of view
(FOV) may produce a measurement in a single scan. Observations are generated every six seconds with pp = 0.9
and the sensor changing its pointing direction every 30 seconds. This yields five measurements from which the
4D measurements may be generated. As mentioned previously, the tools assume a minimum of three single-epoch
measurements to form a 4D observation vector. The assumption of independence between measurement scans yields
pp =~ 0.9914 for the 4D measurements (the probability of at least three successes given five independent trials with
a 0.9 probability of success). The remaining angle-only observations then have pp = 7.74 x 1073, which equals the
probability that an object in the FOV is detected and no 4D measurement is generated. This disparity in the pp values
for the 4D and 2D measurements necessitates the use of the multi-sensor CPHD filter. Measurement noise for single-
epoch angles measurements is 1 arcsec, which is reduced through the generation of the 4D measurements. No clutter
measurements are included in the presented results and such tests are designated as future work. Fig. [3]illustrates the
number of observations for each sensor at each time and the number of observations per space object over the two-day
simulation.

As described previously, we use the PAR in combination with a PUB model to instantiate new tracks in the
CPHD filter in a manner similar to [21]]. The PAR itself is generated with random inputs defined uniformly over the
instantaneous FOV, the semimajor axis limits [39000, 45100] (commensurate with, but slightly larger than the catalog
limits), and a maximum orbit eccentricity of 0.1. The Gaussian mixture is formed using 20,000 samples in the range
and range-rate direction. Since some components produced by the procedure have large axes, e.g., 1,000 km, these
components are further split to have a maximum range uncertainty of 150 km to be more manageable for propagation.
Each PAR requires 1000-5000 of these smaller GM components depending on the case. Most of these are quickly
merged and/or pruned by the CPHD filter.

The CPHD filter requires additional parameters describing object survival and GM component management. This
filter assumes ps = 0.99. This assumption is conservative since space objects near GEO seldom depart that region of
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space, but death can occur through, for example, a satellite break-up event. To prevent an exponential increase in the
number of GM components in the filter, components within a Mahalanobis distance of 3 are merged and any with a
weight less than 10~ are pruned. See [15] for more details on the merging and pruning algorithm. Additionally, since
some GM components are added to the filter and not observed again, we also prune components based on a maximum
size. We quantify size using differential entropy

1
T= 3 log |2meP| (36)

where any components with 7" > 10 are removed from the multi-target state. Differential entropy is one method
for quantifying the “diversity” of a PDF, and larger values reflect a larger covariance matrix in the case of a Gaussian
distribution. Operationally, sensor tasking (e.g., see [46]) may be employed to limit growth in the size of the covariance
ellipsoid and avoid the need for this requirement. Future work will explore other methods for putting a maximum on
the size of a covariance before an object is considered “lost” or nonexistent.

One metric for describing the filter accuracy is the Optimal Sub-Pattern Assignment (OSPA) [51]]

m 1/p
d;c) (X,Y) = (:L [;relhri Z d (2, yﬂ(i))p +cP(n— m)] ) 37
i=1
where X and Y are RFSs, i.e., the estimated and true RFSs, II is an assignment set relating an element x € X to
y € Y, d is the minimum of ¢ and the distance between the input arguments, and ¢ and p are the cut-off and order
parameters, respectively. The OSPA metric quantifies the minimum RMS distance between elements of the estimated
and true RFSs and includes a penalty c for errors in cardinality. If the penalty term is ignored (the second term inside
the brackets), then it describes the RMS error of the min[m, n] elements in the sets. The assignment II is determined
using minimization via auction. For the results present in this paper, only position is considered for OSPA with p = 2,
¢ = 1000 km, and the penalty term ignored. The optimal value of ¢ of the calculation of OSPA varies with time for
this application, and we simplify the presentation of accuracy by selecting a large value and ignoring the penalty.
The following sections details results for the proposed space-object tracker for maintaining a catalog. The first
section describes performance with all objects initially known to the filter. The next section then considers the case with
a subset of the 700 objects unknown to the filter and custody is established through the track instantiation procedure.

4.2. KNOWN OBJECT CATALOG MAINTENANCE

This section describes the ability of the filter to maintain custody of the 700 objects in the catalog when all are initially
known. The initial cardinality estimate for the case is po(700) = 1 and p(n) = 0 for n # 700. The AEGIS-
propagated GM for the 700 object catalog yields vo (). While theoretically not required since all objects are known to
the filter, the birth model is not disabled for this test. The space-object tracker requires ~110 minutes using six cores
to complete the 48-hour scenario on a Linux desktop computer with a dual 2.6 GHz Intel Xeon E5-2690 v4 running
Red Hat Enterprise release 7.2. As outlined previously, the majority of the software is written in MATLAB with some
routines in C/C++ using the gcc v.4.8.5 compiler. The propagator is written in Fortran and compiled using the gfortran
version 4.8.5 compiler.

Fig.[6] describes the accuracy of the estimated number of objects, i.e., cardinality, and a description of the number
of GM components required for the filter estimate. While not exhibited in the figure, the probability of fewer objects,
e.g., p(699), fluctuates slightly due to missed detections but the filter compensates with follow-up observations. The
cardinality estimate remains constant at 700 objects and requires between 700 and 720 GM components. For this
test, increases in the number of GM components result from the possible combination of hypotheses when using the
multi-sensor CPHD approximation and not a hypothesized new object.

Fig. |7| provides the filter position OSPA accuracy. The filter converges on a solution accurate to approximately
200 m, which matches the observation noise of 1 arcsec for near-GEO objects. While not illustrated here, the mean
number of measurements per object determines the convergence rate when not employing sensor tasking [46[]. The
reduction in OSPA accuracy shortly before 60 hours after the epoch results from an observation of a single object not
recently observed at that point in the simulation.

4.3. SIMULTANEOUS KNOWN AND NEWBORN OBJECT TRACKING

The test case presented in this section duplicates that of the previous one, but with 15 satellites selected as initially
unknown to the space-object tracker. Newborn objects are selected by the simulation framework such that: (i) they
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Fig. 7. Position OSPA accuracy for the case with known objects

are initially detected in the first ten hours of the simulation, and (ii) there are at least 100 angles-only observations
over the two-day timespan to allow for possible solution convergence. Assuming no missed detections and perfect
4D observation generation, this yields a minimum of 20 angle/angle-rate observations over the 48-hour observation
campaign. Future work will characterize tracker performance with fewer observations of newborn targets. The initial
CPHD state for this case assumes p(650) = 1 and includes the AEGIS-propagated components of the GM for the
known objects. When initially observed such that a 4D observation is generated, the filter determines the weight of the
birth components and, when deemed necessary, uses the PAR to instantiate an initial intensity for the newborn objects.
For this case, the space-object tracker requires approximately 121 minutes using six cores on the same Linux desktop
computer.

Fig. [ presents the performance of the space-object tracker based on the cardinality and estimated state accuracy.
During the first 10 hours as newborn objects appear, the estimated cardinality increases and approximately equals the
true number of objects. In some cases, a delay results from an initially low CPHD weight wp 1 (z) for a possible new
object, which requires a follow-up observation to confirm the object’s existence. The filter does include some clutter
tracks arising from duplicate instances of the PAR for the same object. In some instances, follow-up observations
of the initially unknown object occur before there is a sufficiently high confidence in its existence to prevent another
instance of the birth model. Over time, as illustrated in the plot, the filter prunes all but one of these duplicate objects.
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The filter requires up to 1400 GM components, which the tracker prunes with follow-up observations of the newborn
objects.
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Fig. 9. Position OSPA Accuracy for the Case with Newborn Objects

Fig. [0]illustrates the accuracy of the filter-estimated state via position OSPA without the cardinality penalty. The
error is further broken down into components from the initially known and newborn objects. Initially known object
accuracy remains similar to the previous case in which only known objects were simulated. The OSPA accuracy for
newborn objects determines the total accuracy, which is expected. The increase in error for the newborn objects at the
50-hour mark results from an instance of the birth model. Fig.[§|demonstrates a similar increase in the cardinality and
number of GM components at that time. This instance of the birth model introduces an error in the estimated state,
which is resolved with future observations. Upon viewing the RMS position accuracy, the filter has converged on a
mean state accuracy of approximately 100-200 m over the two-night scenario. The error in the initially known objects
is larger at the final time due to a nontrivial number of targets not recently observed.
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5. CONCLUSIONS

The proposed space-object tracker, which is based on the GM-CPHD filter, provides a tractable means for estimating
the number of objects in a given surveillance region and the single-target states. Tracking of SOs using the CPHD filter
requires several tools customized for space-object tracking, (i) which reduces the computation load and compensates
for limited information content when using angles-only measurements, (ii) a restricted FOV when compared to the
region of interest, and (iii) the instantiation of new objects in the multi-target state. The space-object tracker leverages
newly implemented orbit state and uncertainty propagation tools developed for the system that reduce computation
time. Splitting of the Gaussian components near the edge of the FOV adjusts the CPHD intensity function used in
the measurement update, which reduces instances of lost targets due to a believed missed detection. The space-object
tracker requires a birth model to add a possible new target to the multi-target state. An object birth model based on the
PAR in the CPHD requires the use of angles and angle-rates, which is generated from a time series of single-epoch
observations using a GM-PHD filter in the measurement space. Combining the reduced four-dimensional observa-
tions with additional angles-only measurements requires the use of the approximate multi-sensor CPHD measurement
update to prevent a filter bias. Combining these tools yields a space-object tracker capable of performing joint data
association and state estimation. This includes the simultaneous maintenance of a prior space-object catalog and estab-
lishing custody of newly discovered objects with estimation accuracies at the final time comparable to the measurement
errors. These tools run faster than realtime using a combination of MATLAB, C/C++, and Fortran software.

Future work includes expanded testing of the software and processing of real data. This includes testing the tools to
establish custody of newborn objects after a satellite breakup event, such as a collision. Additionally, robustness will be
improved by combining GM component track labels with an auction algorithm, which prevents potential swapping of
GM component labels between closely spaced targets. Processing of real data will impact the measurement modeling
in the filter, which will affect runtime and accuracy.
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