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ABSTRACT

Recently, the growing number of inactive Resident Space Objects (RSOs), or space debris, has provoked increased
interest in the field of Space Situational Awareness (SSA) and various investigations of new methods for orbital object
tracking. In comparison with conventional tracking scenarios, state estimation of an orbiting object entails additional
challenges, such as orbit determination and orbital state and covariance propagation in the presence of highly non-
linear system dynamics. The sensors which are available for detecting and tracking space debris are prone to multiple
clutter measurements. Added to this problem, is the fact that it is unknown whether or not a space debris type target is
present within such sensor measurements. Under these circumstances, traditional single-target filtering solutions such
as Kalman Filters fail to produce useful trajectory estimates. The recent Random Finite Set (RFS) based Finite Set
Statistical (FISST) framework has yielded filters which are more appropriate for such situations. The RFS based Joint
Target Detection and Tracking (JoTT) filter, also known as the Bernoulli filter, is a single target, multiple measurements
filter capable of dealing with cluttered and time-varying backgrounds as well as modeling target appearance and
disappearance in the scene. Therefore, this paper presents the application of the Gaussian mixture-based JoTT filter
for processing measurements from Chilbolton Advanced Meteorological Radar (CAMRa) which contain both defunct
and operational satellites. The CAMRa is a fully-steerable radar located in southern England, which was recently
modified to be used as a tracking asset in the European Space Agency SSA program. The experiments conducted
show promising results regarding the capability of such filters in processing cluttered radar data.

The work carried out in this paper was funded by the USAF Grant No. FA9550-15-1-0069, Chilean Conicyt - Fondecyt
grant number 1150930, EU Erasmus Mundus MSc Scholarship, Defense Science and Technology Laboratory (DSTL),
U. K., and the Chilean Conicyt, Fondecyt project grant number 1150930.

1. INTRODUCTION

The precise knowledge of an orbiting object’s position is crucially important in the domain of Space Situational Aware-
ness (SSA) for two collision mitigation routines, namely, launch collision avoidance and conjunction assessment for
in-orbit operational satellites. Recent accidents that contributed to significant increases in the amount of space debris
within the near-Earth environment include the Chinese anti-satellite weapon test in 2007, the unintended collision of
the Cosmos-2251 and Iridium 33 satellites in 2009 and more recently, the breakup of the NOAA-16 satellite in late
2015 [2]. Currently, the size of the US Space Surveillance Network (SSN) catalog of all tracked orbiting objects ex-
ceeds 20,000 items and is expected to grow to over 100,000 targets [6]. Two main sensor types that contribute to SSA
information are radio-frequency (radars) and electro-optical (telescopes). Radars are primarily used for Low-Earth
Orbit (LEO) object observations while telescopes are suited for the observation of higher altitude targets. Radars have
been used for satellite observations since the very first satellite launch in the late 1950s.

The problem of tracking an orbital object poses a number of challenges that are not usually encountered in conventional
tracking applications. These include: (a) highly non-linear motion models that are affected by a large number of
external forces, e.g. third-body perturbations, atmospheric drag and solar flux; (b) limited observation times and
sensor field of view and (c) birth process modeling and initial orbit determination. Furthermore, the presence of noise
and clutter measurements adds complexity to the aforementioned issues.

Current state of the art tracking approaches, based on both radar and visual information, include Multiple Hy-
pothesis Tracking (MHT) [22], Joint Probabilistic Data Association (JPDA) [3] and recently, Random Finite Sets
(RFSs) [19, 20]. MHT and JPDA have been the most common multiple target tracking methods since the 1980s.
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In the past decade, RFS theory has gained popularity, producing filters such as the Probability Hypothesis Density
(PHD) filter [18] and Cardinalized Probability Hypothesis Density (CPHD) filter [24, 29], the Multi-target Multi-
Bernoulli (MeMBer) filter [19] and the §-Generalized Labeled Multi-Bernoulli (6-GLMB) [28] filter. Moreover, a
recent estimation framework for stochastic populations [10], applied to multi-target estimation problems, proposes a
unified probabilistic description of all the system uncertainties (sensor observation process, population of targets en-
tering/leaving the surveillance scene, target motion model, etc.) and introduces the notion of target distinguishability,
allowing for the representation of a target either as an unidentified member of a larger population or as an individual
track, depending on the information collected on the target so far. It is exploited in [4] on a multi-target SSA scenario,
where a priori information on the number and individual states of objects is unavailable, and the number of targets and
their individual trajectories are jointly estimated from the collected observations.

A number of overviews in the field of SSA propose the RFS based filters as a candidate solution for the large-scale,
high-cardinality orbital object tracking scenario [13, 16]. This is because they are based on Bayesian techniques,
which estimate the number of targets, the corresponding probabilities of existence, clutter rate as well as their states
in a joint manner. New studies in the field of RFS based orbital object state estimation include [12, 14]. Recent devel-
opments for estimating the uncertainty of objects in orbit from ground-based sensors include [7], based on alternative
parameterizations for Bayesian filtering developed in [11]. Methods for filtering and classification of objects have
been developed for discriminating between different types of targets in [8].

This paper focuses on the application of the RFS Joint Target Detection and Tracking (JoTT) filter in a real orbital
object radar tracking scenario. The JoTT filter, due to its lower computational complexity than its RFS multi-target
counterparts, is an ideal candidate for the formulation of the space debris tracking problem based on SSA data available
from Chilbolton Advanced Meteorological Radar (CAMRa) recently converted for use in SSA.

This article is organized as follows. Section 2 briefly presents the main source of data, the Chilbolton Advanced
Meteorological Radar (CAMRa). Section 3 contains a brief description of a computationally tractable JoTT filter
approximation, the Gaussian mixture (GM)-JoTT filter is applied to orbital object tracking. Section 4 is devoted to
the results of applying the JoTT Filter to the CAMRa data, in the context of detecting and tracking active and defunct
satellites. Conclusions and future work are discussed in Section 5.

2. CHILBOLTON ADVANCED METEOROLOGICAL RADAR (CAMRa)

This section introduces the CAMRa and the specifications of the data it provides. This will place into perspective the
need for the JoTT filter explained later in Section 3. The radar is part of the Chilbolton atmospheric and radio re-
search facility located near Stockbridge, UK. It is a high-power S-band meteorological radar equipped with a steerable
25m diameter dish antenna. The CAMRa was recently modified to be used as an experimental Space Surveillance
and Tracking (SST) sensor, and was successfully used in the European Space Agency (ESA) “CO-VI” tracking cam-
paign and joint UK-Australian space surveillance experiment [9, 17]. For a more detailed description on the radar
specifications and configurations, the reader is referred to [5].

2.1. The CAMRa Data Format

The necessary orientation and the angular rates of the radar are computed a-priori from the Two Line Elements
(TLEs) [26] of the object of interest, due to the absence of any closed-loop tracking capability. During each data
acquisition step, the values of the co-polar and cross-polar signal strengths within each 75m range bin are recorded
and stored. The resulting Consultative Committee for Space Data Systems (CCSDS)-compliant Tracking Data Mes-
sage (TDM) file contains only one value per time step which corresponds to the highest returned signal strength in the
radar’s current line of sight. An example of a single data entry of the TDM file is shown in Listing 1. It contains the
following fields: range (RANGE [km]), azimuth (ANGLE_1 [degrees]) and elevation (ANGLE_2 [degrees]), the co-
polar (SIGNAL_STRENGTH [dB]) and cross-polar (CROSS_POLAR _SIGNAL_STRENGTH [dB]) signal strengths

Listing 1: TDM Data entry example

RANGE = 2014—-02-28T10:20:25.8579 638.61457294

ANGLE_1 = 2014—-02-28T10:20:25.8579 11.56458378

ANGLE2 = 2014-02-28T10:20:25.8579 16.17708397

SIGNAL_STRENGTH = 2014-02-28T10:20:25.8579 —39.53490067
CROSS_POLAR_SIGNAL_STRENGTH = 2014-02-28T10:20:25.8579 —40.40713882
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Fig. 1: Example CAMRa TDM datasets.

In the case of CAMRa, its data is also negatively affected by the “blind” areas at ([0.075, 517.575] + n 525) km, where
n=0, 1, 2, 3 which appear due to the sampling process in the data acquisition procedure [17]. These areas can be seen
in Fig. 1.

2.2. Cell-Averaging Constant False Alarm Rate Processing

The detection of targets within radar data is based on the received power level exceeding some kind of threshold. The
range-to-target decision from the TDM datasets is obtained by selecting the range bin with the highest power value
from the current line of sight scan. The main shortcoming of this method is that if no target is present in the scan,
the highest signal strength will correspond to some random clutter value. It is necessary to apply a different detection
extraction procedure in order to overcome this problem. A constant signal strength threshold is one of the possible
solutions, however, as the returned power values corresponding to the target detections vary with time and across
datasets, constant thresholding does not provide a robust target detection solution.

Principled detection methods which adapt to the local noise statistics are Constant False Alarm Rate (CFAR) proces-
sors [1]. CFAR detectors are al family of stochastic adaptive-threshold algorithms that estimate the local noise level,
in the vicinity of a range bin’s power value under test, in order to derive an adaptive received power threshold for de-
tection purposes. The Cell Averaging (CA)-CFAR processors are typically used in environments with unknown noise
statistics, and will be applied here. A brief overview of CA-CFAR operation is given in Fig. 2. One can think of the
CA-CFAR processor [1, Chapter 3] as a sliding window operator over the radar’s A-scope that estimates the threshold
based on the current range bin’s neighborhood. The A-scope is the basic radar output that displays the returned signal
strength as a function of range. In the case of the CAMRa data, it shows the range of the returned power values
per single data acquisition step. The CA-CFAR algorithm requires two window sizes to be set. The outer window
determines the size of the neighborhood which will be used in the determination of the threshold. The inner window
(sometimes referred to as the guard cells) sets the size of the close vicinity that will be excluded from the evaluation.
This is due to the fact that the values of the cells located near to the current cell under test are usually directly affected
by its value, and do not provide a true representation of the noise.

When using the received maximum power value TDM files as a filtering input, the dataset consists of a single range
measurement value per timestep accompanied by many clutter detections. On the other hand, when using the CA-
CFAR detections as a filtering input, there is less clutter but possibly more than one detection per timestep. A useful
filter under such conditions is the JoTT filter because all available CAMRa datasets are assumed to contain one target
at most, so it precisely suits the single-target, multi-measurement nature of the processed data.
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Fig. 2: CA-CFAR operation. The cell under test (CUT) neighborhood is evaluated to determine a suitable detection
threshold. The CUT is shown as a black square and the corresponding guard cells are shown in grey.

3. JOINT TARGET DETECTION AND TRACKING FILTER

This section briefly describes the JoTT filter’s theoretical background, state propagation model and additional steps
necessary to maintain the tractability of the algorithm. The operational flow of the JoTT filter is presented in Fig. 3.
The JoTT filter is an RFS-based single-target, multiple measurement filter that models the state of the target as a

Bernoulli RFS [19]:

1—¢q, ifX=0
X=1(gs(x), ifX={x},
0, otherwise

where ¢ is the probability of target existence and s(x) is the spatial distribution of the target.

Input
Processed
Data (.tdm) Post-Processing JoTT Filter
EI?ZC%S - CA-CFAR o Predict ~  Update |——
GM Management
] Prune > Merge ——  Estimate

Fig. 3: The JoTT filter flow diagram. The input is either selected from the preprocessed data from the .tdm file or raw
data from the .netCDF file with the subsequent CA-CFAR processing.

Copyright © 2016 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) — www.amostech.com



For the sake of computational tractability, the GM approximation of the JoTT filter will be used [23]. In the GM-JoTT
filter, the spatial distribution of the target s(x) is modeled as a weighted sum of Gaussian variables each with mean
m() and covariance X(!):

where .4 represents a Gaussian function with weight wli)_ The state of the targe x t is represented as a six-dimensional
vector in the Earth-Centered Inertial (ECI) frame [25]:

=[p V]T:[x y z X ¥ Z']T

The observations z are collected in the local sensor’s range (p), azimuth (8), elevation (¢) (RAZEL) frame.

z=[p 0 9]

3.1. JoTT Filter Prediction

The prediction step of the GM-JoTT filter consists of the two following terms, which predict the probability of target
existence ¢ and its spatial distribution s(x):

Gie—1 =P(1 —qi) +Psqk (1)
Pp(1—qi) Psqr NS ) .50
s, ——b(x)+ —— wyl A (X;m X 1), 2)
Hk—1(X) = i (x) i ; 1 ( klk—1°“k|k )
Birth Survival

where Pg and Ps are the probabilities of target birth and survival and b(x) is the spatial distribution of the newborn
components that are also modeled as a sum of Gaussian distributions. The first terms in Equations 1 and 2 correspond
to the birth components while the last two are associated with the survival component. At each timestep, a single birth
is performed at a range of 1000 km at the current direction of the radar. The predicted mean my;_; and the covariance
Xy x—1 of each Gaussian component are obtained through the corresponding Unscented Kalman Filter (UKF) equations
[15]. The propagation of the target state and sigma points is performed through the numerical integration of the state
vector according to the model where only gravitational interaction between two bodies is taken into account. In this
model, the gravitational acceleration ag is represented as:

u
ag=— 3)
T plP

where u is the Earth’s gravitational constant. The derivative of the state vector x used in the integration is then:

—Hx —Hxp —Hx T
2, 0. 23 2, 2.2)3 2. 2. 23| - €]
WVi+d+3)? (Vg (Vaddad)

d
—x = |X4 X5 Xg
e [

3.2. JoTT Filter Update

Similarly to the prediction, the JoTT filter update is performed in two steps:

1— A
Gk =7 kfk—1 (5)
1— Clk\kflAk |
1— Ni—i ( 0y (f> 0. <0
sk(x) = 7sk|k 1 ( Y Z A (xsmy”; ), (6)
1- 1 - Ak zeZ i=
Miss-detected components Detected components
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where

where Pp is the probability of target detection, Ly (z) is the Gaussian likelihood, A k(z) is the clutter intensity and wfc
is the weight of a single Gaussian component. A; is a temporary variable used to calculate the normalization factor in
Equations 5 and 6. In the case of the single-measurement scenario, the update equation is as follows:

P N @) (D). 30
Sklk—1(X) + A Z <) A (xsmy X)), @)

i=1

The first term in Equation 6 corresponds to the miss-detected components, for which the spatial distribution is not

updated and is multiplied by (1 — Pp) while the second term corresponds to the detected components. The updated
(i)

Gaussian component mean m,({‘ ,i) and covariance Zk| X

are also computed through the corresponding UKF equations.

3.3. Merging and Pruning

Within the JoTT filter, the number of elements in the Gaussian mixture grows in an exponential manner, and thus,
for computational tractability, reduction mechanisms are necessary. The pruning step removes Gaussian components
with weights below a pruning threshold. The weights of the remaining components are normalized thereafter. During
the merging step, if a distance between two or more Gaussian components is less than a merging threshold, they are
combined in a single component with a joint weight. At this stage, the Hellinger distance [21] is used as a merging
criteria.

4. RESULTS

This section presents and discusses the experimental results. Since ground-truth is unavailable, filter evaluation is
performed in a qualitative manner by superimposing the estimated target state onto the source data and making visual
comparisons. The range filter estimates, determined from single raw measurements per timestep of the Cosmos-1544
and Cosmos-1939 satellite passes, previously shown in Fig. 1, are presented in Fig. 4. As can be seen from the plots,
the JOoTT filter successfully detects and continues to track the target even in the regions shown in Fig. 1, where no
target-related measurements appear to be present. In both cases the filter is capable of maintaining the track continuity
during the blind zones. As the probability of target survival Ps is set to one, it continues to estimate the target state
until the end of the observation time. The ECI frame estimates corresponding to the Cosmos-1544 satellite pass are
presented in Fig. 5.

The range estimates for the CFAR processed datasets, with multiple detections per observation, are presented in Fig 6.
Both of the graphs contain the pass of the Global Precipitation Measurement (GPM) satellite at different times. As
can be seen from Fig. 6(a), the initial estimation is corrected as soon as enough target-related detections are acquired.
The input to the JoTT filter is the detection set produced by the CA-CFAR processor. It should be noted that after
applying the CA-CFAR processor, empty measurement sets are possible. As an example, the cardinality of the CA-
CFAR detections for the GPM satellite pass (Fig. 6(b)) is shown in Fig. 7. As seen from Fig. 7(b), the majority of time
steps contain no detections, while the number of the detections in the remaining part (Fig. 7(a)) varies from one up
to six. A useful property of the JoTT filter is that empty detection set inputs are valid, and provide useful information
regarding target existence.
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Fig. 5: The GM-JoTT filter ECI frame estimates of the Cosmos-1544 satellite pass.
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5. CONCLUSIONS

This paper presented the application of the JoTT filter to the problem of state estimation of an orbital object in a real
radar observation scenario. The problem of filtering raw and post-processed radar data was addressed. The JoTT
filter demonstrated sufficient performance in estimating target presence and state from the CAMRa measurements.
The filter provided an appropriate test bed of a single-target case that can be generalized to the multi-target case in
the multi-Bernoulli filter. Future work could include the implementation of a forward-backward smoothing algorithm
using methods developed in [27] for better state vector estimation as well as the introduction of appropriate Initial Orbit
Determination (IOD) routines. Robust versions of the filter that can estimate the unknown probability of detection and
clutter rate on-line are also being developed.
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