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ABSTRACT

The total number of active satellites, rocket bodies, and debris larger than 10 cm is currently about 20,000. Con-

sidering all resident space objects larger than 1 cm this rises to an estimated minimum of 500,000 objects. Latest

generation sensor networks will be able to detect small-size objects, producing millions of observations per day. Due

to observability constraints it is likely that long gaps between observations will occur for small objects. This requires

to determine the space object (SO) orbit and to accurately describe the associated uncertainty when observations are

acquired on a single arc. The aim of this work is to revisit the classical least squares method taking advantage of the

high order Taylor expansions enabled by differential algebra. In particular, the high order expansion of the residuals

with respect to the state is used to implement an arbitrary order least squares solver, avoiding the typical approxi-

mations of differential correction methods. In addition, the same expansions are used to accurately characterize the

confidence region of the solution, going beyond the classical Gaussian distributions. The properties and performances

of the proposed method are discussed using optical observations of objects in LEO, HEO, and GEO.

1. INTRODUCTION

Since the era of space exploration started, the number of space objects (SO) orbiting the Earth has on average grown.

This population includes active spacecraft and space debris [1]. The dominating contributors to the evolution and

stability of the space debris environment are fragmentation processes, e.g. explosions and collisions. Because of their

frequency and the impact these phenomena have on debris creation, the space debris population is expected to grow

with a cascade effect (already predicted some 40 years ago, [2]). Due to very high speed in orbit, even relatively small

pieces can damage satellites in a collision resulting in the need of monitoring even small fragments.

Identifying observations belonging to the same object will be one of the main challenges of orbit determination.

One requirement to perform reliable data association is to have realistic uncertainties for initial orbit solutions, which

could also be used to initialize Bayesian estimators for orbit refinement [3]. Meeting this requirement demands two

main steps: solve the orbit determination (OD) problem, and accurately describe the associated confidence region.

In the OD process it is customary to distinguish between the initial orbit determination (IOD) and the accurate

orbit estimation (AOE). The former is used for the computation of six orbital elements from six observations with

no a priori knowledge of the spacecraft orbit. The AOE, on the other hand, is used for the improvement of a priori

orbital elements from a large set of tracking data [4]. When an object is detected for the first time it is highly probable

(depending on the observation strategy) that more than six observations on a very short orbital arc are taken. Thus,

more observations than those required for IOD are available, but their distribution along the orbit is not the typical one

of AOE (i.e. observations spread over several orbital revolutions).

One approach to deal with very short arcs (in the case of optical observations) is based on attributable set and

admissible regions [5]. An optical attributable is made of two angles (e.g. right ascension and declination) and their

angular rates A =
(

α,δ , α̇ , δ̇
)

and it is computed by fitting a polynomial through observations of a very short arc

(defining a so called tracklet). Independently from the number of observations acquired for a newly detected object,
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only four quantities are retained in the attributable. As a result, the orbit is undetermined in the range ρ , range-rate

ρ̇ space. The admissible region lies the 2D plane generated by the two degrees of freedom of the attributable and

its boundaries are defined by some physical constraints such as the energy and minimum/maximum distance from

the Earth. This concept has been proposed to correlate optical observations of both SO orbiting the Earth as well as

asteroids [6, 7]. Recently, extensions of the admissible region concept have been proposed, in particular by endowing

it with statistical properties [8, 9, 10]. This resulted in the advantage of allowing for the inclusion of uncertainties in

observations, measurements and timing.

In this work we take a different path. Instead of using attributable and admissible regions we attempt at solving

a least squares (LS) problem, in which all the observations belonging to a same tracklet are used. The process is

started with an initial guess provided by an IOD solver that uses the observations at the ends and in the middle of

the observation arc. An arbitrary order LS solver is implemented to take fully advantages of differential algebra (DA)

techniques [11, 12, 13]. DA supplies the tools to compute the derivatives of functions within a computer environment.

More specifically, by substituting the classical implementation of real algebra with the implementation of a new

algebra of Taylor polynomials, any function f of v variables is expanded into its Taylor polynomial up to an arbitrary

order k with limited computational effort. In addition to basic algebraic operations, operations for differentiation and

integration can be easily introduced in the algebra, thus finalizing the definition of the differential algebra structure of

DA [14]. Similarly to algorithms for floating point arithmetic, methods to perform composition of functions, to invert

them, to solve nonlinear systems explicitly, and to treat common elementary functions are available in DA [15]. By

using DA we are able to implement an arbitrary order LS solver (referred to in the reminder of the paper as differential

algebra least squares (DALS)) and more importantly we are able to approximate the target function as an arbitrary

order polynomial. This allows us to define the confidence region of the solution by retaining high order terms typically

neglected by linearised theories. These linearised theories imply ellipsoidal confidence regions and Gaussian statistics.

Evaluating high order terms represents a key point of our study as an accurate representation of the confidence region

in the initial phase of OD is crucial for observation correlation and initialization of Bayesian estimators.

In summary in this work we focus our attention on the OD of SO observed on short arcs with optical instruments

with following goals: 1) studying the convergence properties of DALS, 2) characterizing the confidence region of

the LS solution by using high order Taylor polynomials. The paper is organized as follows. First, an overview on

the classical method of least squares and the representation of the confidence region of its solution is given. The

description of the DA implementation of the least squares solver is presented next, followed by the description of a

set of algorithms useful to describe the confidence region of the solution in a full nonlinear way. The properties and

performances of the proposed algorithms are shown using the orbit determination of four objects in different orbital

regimes as test cases. Some final remarks conclude the paper.

2. CLASSICAL LEAST SQUARES

The basic formulation of orbit determination as a nonlinear least squares problem is summarized. First, we introduce

the LS problem set-up and classical methods employed for its solution and then we describe the uncertainty of the

result as confidence ellipsoids.

2.1 Problem Formulation and Solution

The goal is to determine the orbit of an object given some noisy observations. The orbit is described in terms of n x 1

state vector xxx at a reference epoch t0. The state vector can be expressed in different ways, for example by the position

vector rrr and the velocity vector vvv in Earth-centered inertial (ECI) reference frame.

The standard approach to the OD is based on the LS method, devised by Gauss [16]. Starting from a tentative value

of xxx = xxx(t0), the observations at each observation epoch are computed. zzzccc is a m x 1 vector that contains the computed

observations, zzzccc = hhh(xxx), with m being the number of measurements. Note that, as this paper focuses on short-arc OD,

the number of measurements is (relatively) small. The nonlinear function hhh includes:

• propagation from t0 to observation epochs;

• conversion of the state vector into measurements.

Due to sensor noise, the observations zzzccc differ from the actual ones, zzz (a vector with the same dimension as zzzccc): the

differences are called residuals.
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Let ξξξ = zzz− zzzc be the m x 1 vector containing the residuals. The LS solution is that state that minimize the target

function

J(xxx) = ξξξ
T
(xxx)ξξξ (xxx) (1)

To find the minimum, stationary points of J(xxx) need to be found, i.e.

∂J

∂xxx
= 000 (2)

It can be proved that the LS estimate is equivalent to a maximum likelihood estimate [17] when the noise of the

observations is Gaussian[18, 19].

Two main difficulties arise in solving Eq. (2) [20]:

• It represents a system of nonlinear equations, generally without an explicit solution. As a result an iterative

method is needed;

• A stationary point of J can be a maximum or a saddle as well. Thus, it is required that the Hessian of the target

function, H = ∂ 2J
∂xxx2 , is definite positive.

A system of nonlinear equations can be solved by using Newton’s method. The method will converge given an

appropriate choice of the initial estimate used to start the process. This is generally provided by the solution of the

IOD problem, i.e. when the minimum number of observations is available (m = n). At a generic step i, the solution xxxi

is available (or the IOD solution, when i = 1). The gradient of J(xxx) can be expanded at first order around xxxi.

∂J

∂xxx
(xxx)≈

∂J

∂xxx
(xxxi)+

∂ 2J

∂xxx2
(xxxi)(xxx− xxxi) (3)

Then, the solution at the subsequent step is found by equating the previous expansion to 0:

000 =
∂J

∂xxx
(xxxi)+

∂ 2J

∂xxx2
(xxxi)(xxxi+1 − xxxi),

where the terms on the right side can be computed as follows:

• From the value of the solution xxxi, it is possible to compute the residuals ξξξ (xxxi) and then

∂J

∂xxx
(xxxi) = 2ξξξ

T
(xxxi)F (4)

where F is a m x n matrix with the partial derivatives of the residuals with respect to the state vector components,

F =
∂ξξξ

∂xxx
(xxxi) (5)

For methods used to correctly compute matrix F (called the design matrix) see [21];

• For the second term,
∂ 2J

∂xxx2
(xxxi) = H = 2(FT F + ξξξ

T
(xxxi)S) = 2C (6)

where

S =
∂ 2ξξξ

∂xxx2
(xxxi) (7)

is a three-index array of shape m x n x n, while

C = FT F + ξξξ
T
(xxxi)S (8)

is a n x n matrix, called normal matrix.

In conclusion, from Eq. (2.1), the solution of the iterative method is

xxxi+1 = xxxi −C−1FT ξξξ (9)
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Due to practical problems in computing the second derivatives in the matrix S, the full Newton’s method is typically

avoided for the OD problem [22]. The quantity ξξξ
T

S in the expression of C is often neglected (as it contains the

residuals this terms is small when the residuals are small), leading to the so called differential correction technique

[20], a variant of Newton’s method. As the differential correction does not compute the full Hessian of the cost

function it is impossible to establish whether the convergence point is a local minimum (that is, the Hessian matrix H

is positive semidefinite).

In LS formulation often the residuals are weighted to take into account sensors with different accuracies. Let ξ ′
i be

the true residual and ξi the normalized one:

ξi =
ξ ′

i

σi

,

with σi being the standard deviation of the sensors. It is essential to highlight that a uniform weight does not matter

in the solution, although it matters when describing the confidence region of the solution [20, 21].

2.2 Classical Confidence Region

The solution of the LS xxx∗ is the value of the state vector that minimizes the cost function, J(xxx∗) = J∗. However, xxx∗

does not represent the true orbit, which lies within a confidence region. In order to outline this region, let us consider

the value of the target function J in a neighbourhood of xxx∗,

J(xxx) = J∗+ δJ(xxx) (10)

in which δJ(xxx) is called the penalty. (Throughout the paper δJ will be used to indicate the functional expression of

the penalty, whereas ∆J will be used when the penalty assumes or it is assigned a numerical value.)

The confidence region of the solution is defined as the region in which δJ is less than a fixed value (also called the

control value) K2. In terms of the penalty function the confidence region Z(K) is defined as

Z(K) = {xxx ∈ R
n : δJ(xxx)≤ K2}. (11)

An expression for δJ(xxx) can be obtained by expanding J(xxx) around xxx∗ and neglecting terms of order≥ 3 in δxxx= xxx−xxx∗:

J(xxx)≈ J∗+
∂J

∂xxx
(xxx∗)T δxxx+

1

2
δxxxT ∂ 2J

∂xxx2
(xxx∗)δxxx = J∗+

∂J

∂xxx
(xxx∗)T δxxx+

1

2
δxxxT Hδxxx, (12)

where H = ∂ 2J
∂xxx2 (xxx

∗). As in the LS solution xxx∗ the gradient of J is zero, ∂J
∂xxx
(xxx∗) = 000, it follows

J(xxx) = J∗+
1

2
δxxxT Hδxxx. (13)

By equating Eq. (10) and (13), the confidence region definition becomes

δJ(xxx)≈
1

2
δxxxT Hδxxx = δxxxTCδxxx ≤ K2. (14)

Equation (14) represents the classical expression of the confidence region, with the Taylor expansion of the function

J(xxx) limited to 2-nd order. As the penalty has a quadratic form, the confidence region is described by an ellipsoid,

whose axes can be determined by the eigenvector decomposition of the normal matrix (or its inverse, the covariance

matrix).

The LS method can be given a probabilistic interpretation. If the error of each observation is an independent

random variable with normal distribution and zero mean, the solution of a LS problem is a random variable with a

multivariate gaussian probability density function (pdf) pxxx(xxx). In particular, xxx∗ is the mean of the Gaussian distribution

and the covariance matrix is the inverse of the normal matrix P =C−1 [16]. The LS solution is statistically described

by

pxxx(xxx) =

√

|C|

(2π)n/2
e−

1
2 (xxx−xxx∗)T C(xxx−xxx∗) =

√

|C|

(2π)n/2
e−

1
2 δJ(xxx∗). (15)

The contour levels of the penalty function are ellipsoids of equal probability and a certain percent confidence region

of the LS solution is obtained by properly selecting the value of the control value K2.

Copyright © 2016 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) – www.amostech.com



3. DIFFERENTIAL ALGEBRA LEAST SQUARES

In this section we present a high order iterative procedure to solve the LS problem together with algorithms to describe

the confidence region of the solution when the orders above the second are retained in the representation of the penalty

function.

3.1 Solution of LS Problem

We start by describing a general algorithm to find the solution of a system of nonlinear equations in DA formalism.

The aim is to solve ggg(((xxx))) = 0. At a general step i:

1. Given the solution xxxi (from the previous step, or from the initial guess when i = 1), initialize the components of

the state vector xxxi as k-th order DA variables:

xxxi = xxxi + δxxxi;

2. The evaluation of ggg in DA framework delivers its k-th order Taylor expansion around xxxi , T k
ggg (δxxxi). Thus, ggg

will be the sum of a constant part gggi (given by the solution of the last step, ggg(xxxi) = gggi) and an origin-preserving

Taylor polynomial δggg, function of the DA variables δxxxi

ggg(xxx)≈ T
k

ggg (δxxxi) = ggg(xxxi)+ δggg(δxxxi) = gggi +T
k

δggg(δxxxi) (16)

The following direct map is available

δggg ≈ T
k

δggg(δxxxi); (17)

3. Invert the map of Eq. (17), obtaining

δxxxi ≈ T
k

δxxxi
(δggg); (18)

4. Evaluate the inverse map in −gggi to compute the correction ∆xxxi

∆xxxi = T
k

δxxxi
(−gggi)

xxxi+1 = xxxi +∆xxxi

5. Iterate until a convergence criterion is met or the maximum number of iterations is reached.

After convergence, the algorithm provides the solution of the set of nonlinear equations as well as the Taylor expansion

of the function ggg(xxx) at high order around the solution xxx∗.

The solution of the LS problem requires finding the stationary point of the cost function J(xxx). If in the previous

algorithm we set ggg(xxx) = ∂J
∂xxx
(xxx), then an arbitrary order solver of the LS problem is obtained, i.e. the DALS solver. The

DALS solver has two main advantages with respect to the classical differential correction:

• As the objective function J(xxx) is expanded to an arbitrary order, we have the correct (full) expression of the

Hessian matrix H. This can be used to check whether the stationary point is actually a minimum;

• The polynomial representation of the objective function J(xxx) allows us to analytically represent it in a neigh-

bourhood of the minimum. This feature enables the nonlinear representation of the solution confidence region.

Like for all the iterative procedures, a convergence criterion needs to be defined. In our implementation we use two

convergence criteria: the first one is based on the size of the correction ∆xxx, while the second is based on the change of

the target function J. Thus, the iterative process is terminated when one of the two following conditions is met:

‖∆xxx‖∞ ≤ εx

∆J ≤ εJ

(19)

where εx and εJ are established tolerances.

Although the algorithm presented in this section works at arbitrary order, it has been noticed that the inclusion of

terms above the second does not improve the convergence while significantly increasing the execution time. Thus, a

second order DALS solver is used in this work.
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3.2 Confidence Region Representation

When considering short observational arcs, terms above second order in the expression of δJ(xxx) are in general non

negligible. The contour levels of δJ(xxx) still characterise solutions with equal probability but, due to the presence

of high order terms, the solution statistics are no longer Gaussian and surfaces of equal probability are no longer

ellipsoids. In this section we present two algorithms to describe the confidence region of the LS solution taking full

advantage of the high order representation of δJ(xxx) enabled by DA.

After convergence, DALS provides the k-th order Taylor expansion of J(xxx) around the optimal solution

J(δxxx∗)≈ J(xxx∗)+T
k

δJ(δxxx∗) (20)

δJ(δxxx∗) = T
k

δJ(δxxx∗), (21)

where δxxx∗ = xxx− xxx∗. In Eq. (12) terms up to order k are retained. Given an arbitrary direction and a confidence level,

the boundaries of the confidence region along this direction can be found by exploiting the polynomial expression

of J(xxx). The availability of algorithms to compute such boundaries is of fundamental importance, for example when

samples of equal probability need to be drawn to correlate observations or to initialize a particle filter [23]. In such

cases a set of random directions may be generated and points with equal probability along these directions may be

computed. Two algorithms are presented. The first method, referred to as state-dependent quadratic approximation

along fixed direction (SDQA-FIXED), is based on a state-dependent quadratic approximation of J in the proximity of

xxx∗. In contrast, the arbitrary order fixed direction (AO-FIXED) uses the polynomial representation of J and a nonlinear

solver to compute the boundaries of the confidence region along the desired direction.

SDQA-FIXED. From the expression of T k
δJ
(δxxx∗) provided by DALS it is possible to compute the gradient

∂T k
δ J

∂xxx
and

the Hessian matrix
∂ 2T k

δ J

∂xxx2 at a generic point xxxi in the neighbourhood of xxx∗. A quadratic approximation of δJ around xxxi

is (let δxxxi = xxx− xxxi)

δJ(δxxxi)≈
∂T k

δJ

∂xxx

∣

∣

∣

∣

T

xi−x∗
δxxxi +

1

2
δxxxT

i

∂ 2T k
δJ

∂xxx2

∣

∣

∣

∣

xi−x∗
δxxxi = ggg(xxxi)

T δxxxi + δxxxT
i C(xxxi)δxxxi (22)

As both ggg and C are functions of the point at which they are computed this formulation is referred to as state-dependent

quadratic form. The confidence region is given by

ggg(xxxi)
T δxxxi + δxxxT

i C(xxxi)δxxxi ≤ K2 − (J(xxxi)− J(xxx∗)) (23)

where the term ∆J(xxxi) = J(xxxi)− J(xxx∗) takes into account the presence of a penalty in xxxi with respect to xxx∗. According

to Eq. (23), it is possible to use the quadratic approximation to evaluate the confidence region at a generic point xxxi

and not only in the solution xxx∗. When higher order terms are considered the confidence region provided by the state-

dependent quadratic approximation changes with xxxi. The following algorithm has this purpose: find the points along

a given direction vvv (i.e. a n dimensional unit vector) such that ∆J = K2.

1. Initialize the starting point with the solution of LS, i.e. xxxi = xxx∗;

2. Compute, at xxxi, the gradient ggg(xxxi) and the normal matrix C(xxxi). At the first step ggg(xxxi) = ggg(xxx∗) = 0, but it will be

non-zero in successive steps;

3. Let δxxxi = αvvv. The Taylor expansion of J(xxx) at 2-nd order around xxxi gives

δJ(δxxxi)≈ ggg(xxxi)
T αvvv+αvvvTC(xxxi)αvvv = K2 − (J(xxxi)− J(xxx∗)); (24)

4. Transform vvv =Vṽvv, where V is the matrix whose columns are the eigenvectors of the normal matrix at xxxi, to get

ggg(xxxi)
TVα ṽvv+α ṽvvTV TC(xxxi)Vα ṽvv = K2 − (J(xxxi)− J(xxx∗)); (25)

5. The matrix V TC(xxxi)V is diagonal, with the eigenvalues 1

γ2
i

, i = 1 . . .n ([24]). The second term in Eq. (25) can be

written as

α2
n

∑
i=1

ṽ2
i

γ2
i

;
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Eq. (25) becomes

ggg(xxxi)
TVṽvvα +

n

∑
i=1

ṽ2
i

γ2
i

α2 = K2 − (J(xxxi)− J(xxx∗)), (26)

which is a quadratic form in α . The equation provides two solutions for α , α+ and α−. When xxxi = xxx∗, ggg(xxxi) = 0

and J(xxxi) = J(xxx∗), then

α2
n

∑
i=1

ṽ2
i

γ2
i

= K2 (27)

α+,− =±K

√

√

√

√

√

1
n

∑
i=1

ṽ2
i

γ2
i

(28)

The two solutions are symmetric with respect to xxx∗ (due to the quadratic approximation). In contrast, when

xxxi 6= xxx∗, α+ 6= α− due to the gradient term ggg(xxxi)
TVṽvvα . After solving the Eq. (26), the current solution is

updated as xxxi+1 = xxxi +α+,−vvv, in which only one of two solutions is chosen.

6. Evaluate ∆J(xxxi+1) = J(xxxi+1)− J(xxx∗) with the k-order polynomial provided by DALS (Eq. (21)). If ∆J 6= K2,

steps 2-5 are repeated. It is worth noting that, if δJ is expanded at second order in the classical way, the process

stops after a single iteration, because ∆J 6= K2 directly at first iteration.

AO-FIXED. Given an arbitrary direction and confidence level the boundaries of the confidence region can be com-

puted directly with the polynomial representation of the penalty function, i.e. without resorting to the state-dependent

formulation. The algorithm can be summarized as follows.

1. Start by approximating δJ in xxx∗ as a 2-nd order polynomial. Because ggg(xxx∗) = 0,

δJ ≈ δxxxTCδxxx, (29)

where δxxx = xxx− xxx∗;

2. Evaluate δxxx along vvv:

δxxx = α(2)vvv. (30)

α(2) is the magnitude of the displacement along vvv. At second order the boundary of the confidence region along

vvv is given by

δJ ≈ α(2)vvvTCvvvα(2) = K2; (31)

3. Solve Eq. (31) for α(2)

α
(2)
+,− =±K

√

1

vvvTCvvv
(32)

α(2)vvv is the point along vvv such that ∆J(δxxx) = ∆J(α(2)vvv) = K2. There are two solutions, symmetric with respect

to xxx∗ (due to the quadratic approximation).

4. By using α
(2)
+,− as the initial condition, numerically compute the points, along the direction vvv, in which the

k-th order approximation of δJ is K2. This requires the solution of a k-th order polynomial equation in α ,

T k
δJ
(αvvv) = K2, which can be easily obtained by a nonlinear solver using both α

(2)
+,− as initial guesses. We refer

to the final solution as α
(k)
+,−.

Both SDQA-FIXED and AO-FIXED deliver the same values of the boundaries of the confidence region along a

fixed direction when a same value of K2 is used. The value K2 defines the confidence region and it must be chosen

based on the percent confidence level we want to draw. According to the F-test method [25] the value of K2 for

confidence level of 100(1−α)% can be estimated by

δJ(xxx)≤
n

m− n
J∗Fα

n,m−n = K2, (33)

in which Fα
n,m−n is the upper α percentage point of the F-distribution.
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3.3 Evolution of the Weak Direction

The confidence region associated to the LS solution is in general a n dimensional region. However, in many cases of

practical interest this region is stretched along one direction, called the weak direction. The weak direction is defined

as the predominant direction of uncertainty in an orbit determination problem [26], i.e. it is the direction along which

the penalty δJ is less sensitive to variations of the state vector. The determination of the weak direction can be a key

element when studying the time evolution of the confidence region. In fact, when this region is highly stretched, it can

be approximated as a mono-dimensional set and sampling can be performed along the weak direction, thus drastically

reducing the number of samples needed. Note that this concept can be extended to 2-D when the confidence region is

significantly elongated along two dimensions.

When a pure quadratic form is used to represent the penalty function, the weak direction is determined by the

eigenvector corresponding to minimum eigenvalue of the normal matrix or the maximum eigenvalue of the covari-

ance matrix. However, when high order terms are retained, the weak direction is point dependent. Similarly to the

SDQA-FIXED algorithm, the computation of the evolution of the weak direction can be performed by taking advan-

tage of a state-dependent quadratic approximation of the penalty δJ. The algorithm for computing the evolution of the

weak direction is referred to as the state-dependent quadratic approximation along the weak direction (SDQA-WEAK),

and it can be summarised as follows:

SDQA-WEAK

1. Start from the solution point of LS, xxxi = xxx∗. As done in Eq. (22), approximate

δJ(δxxxi)≈ ggg(xxxi)
T δxxxi + δxxxT

i C(xxxi)δxxxi (34)

2. Compute ggg(xxxi) and the normal matrix C(xxxi). At the first step ggg(xxxi) = ggg(xxx∗) = 0, but it is non-zero in successive

steps;

3. Evaluate eigenvectors and eigenvalues of C. Indicate with V the eigenvector matrix and Cd the diagonal form of

C with elements 1

γ2
1

. . . 1
γ2

n
. Order the eigenvectors such that vvv1 corresponds to the minimum eigenvalue 1

γ2
1

;

4. Use the transformation δxxxi =Vδ x̃xxi such that Eq. (34) becomes

δJ(δxxxi)≈ ggg(xxxi)
TVδ x̃xxi + δ x̃xxT

i Cd(xxxi)δ x̃xxi; (35)

5. As V =
[

vvv1, . . . ,vvvn

]

, evaluate δ x̃xxi along the eigenvector corresponding to the minimum eigenvalue (this eigen-

vector defines the weak direction),

δ x̃xxi = α











1

0
...

0











where α is the magnitude of the variation. Eq. (35) becomes

δJ(δxxxi) = ggg(xxxi)
T vvv1α +

α2

γ2
1

(36)

By solving for α

ggg(xxxi)
T vvv1α +

α2

γ2
1

= K2 − (J(xxxi)− J∗), (37)

the boundary of the uncertainty region along the weak direction is computed;

6. Proceed along vvv1 taking only a fraction of α to update the point

xxxi+1 = xxxi +∆xxxi = xxxi +Vδ x̃xxi = xxxi + hαvvv1 (38)

where h is a chosen step size;

7. Compute the value of ∆J(xxxi+1) = J(xxxi+1)− J(xxx∗) with the k-order polynomial delivered by the DALS solver.

Repeat the steps 2− 6, until the value of ∆J(xxxi) exceeds the fixed threshold K2 that determines the boundary of

the confidence region.
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4. Test Cases

Four different orbits are used as test cases: a low Earth orbit (LEO), a geostationary Earth orbit (GEO), a geostationary

transfer orbit (GTO), and a Molnyia. The orbital parameters and the object’s catalogue number (SSC) are reported in

Table 1 (a,e, i,Ω,ω ,M are the classical orbital elements).

Table 1: Test cases, orbital parameters

Orbit type LEO GEO GTO Molnyia

SSC 04784 26824 23238 40296

Epoch JED 2457158.4277 2457163.2824 2457167.1008 2457165.0708

a km 7353.499 42143.781 24628.972 26569.833

e - 0.002640 0.000226 0.699849 0.723221

i deg 74.0295 0.0356 3.962 62.794

Ω deg 179.6401 26.278 315.676 344.538

ω deg 359.079 42.052 240.885 271.348

M deg 22.252 72.455 13.735 347.726

For all the objects optical observations (i.e. right ascension and declination) are simulated from Teide observatory,

Tenerife, Canary Islands, Spain (observation code 954). Objects in GEO, GTO and Molnyia are observed with a

telescope similar to the optical ground station (OGS) with an observation strategy that re-observes the same portion

of the sky every 2 minutes. The measurement noise is Gaussian with zero mean and standard deviation σ = 0.5
arcsec. The object in LEO is observed with a wide field of view camera, with observations taken every 7 seconds and

exposure times of 3 seconds. In this case σ = 5 arcsec. Two scenarios are simulated with 8 or 15 observations. When

8 observations are used, the observational arcs range from 1.93 deg for the Molnyia to 3.51 deg for the GEO; when 15

are considered, the arc length ranges from 3.96 deg for the Molnyia to 7.02 deg for the GEO. Tab. 2 summarizes the

observation conditions and Fig. 1 depicts the observation geometries for each test case.

The results discussed in the following sections assume the availability of an initial orbit provided by the solution

of an IOD problem. This preliminary solution is computed with a high order algorithm based on the solution of two

Lambert’s problems between the central epoch and the two ends of the observation arc (for more details the reader can

refer to [27]). Finally, it is worth mentioning that Kepler’s dynamics is considered throughout this section.

4.1 DALS Convergence Properties

For each test case in Table 2 100 simulations were run in which synthetic observations were generated by adding

Gaussian noise to the ideal observations. The DALS solver was used to estimate the orbit at the center of the obser-

vation window (at observation #5 for the 8-observation scenario and #8 for the 15-observation one) as this was found

to maximize the algorithm performances and robustness. The tolerances εx and εJ were chosen such that convergence

was reached when one the following conditions was met

||∆xxx||∞ ≤

{

1 m for position

1 mm/s for velocity
∆J ≤ m

( σ

100

)2

.

The DALS solver converged for 99.72 % of the tests, taking on average 2 only iterations. (Note that algorithm

convergence does not provide any information on solution quality, e.g. convergence to a local minimum). In Table 3

Table 2: Test cases, observation window

Test Case First observation ∆t σα ,δ

yr mo day0 hr0 s arcsec

LEO 2015 MAY 15 22.15 7 5

GEO 2015 MAY 22 21.34 120 0.5

GTO 2015 JUN 02 05.07 120 0.5

Molnyia 2015 MAY 22 22.00 120 0.5
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Figure 1: Observation geometry for the different test cases with 15 observations.

the median of the absolute error (with respect to the reference orbit) in position (km) and velocity (km/s) is reported,

for the four test cases and different numbers of observations. On average the estimation errors of DALS solution

are lower than those associated to the IOD solution, showing that the inclusion of all the individual observations can

improve the orbit estimation even for very short arcs. In addition, the improvement in accuracy of the LS is greater

when longer observational arcs is considered. Finally, as one may expect, the median of the errors decreases with the

number of observations, i.e. the orbit estimation becomes more accurate for longer observational arcs.

To analyse the solution accuracy without resorting to the (unknown in a real scenario) true solution, the absolute

values of the residuals (scaled by the measurements σ ) were analyzed. For each test case the median of these absolute

values was then computed for the 100 simulations, and the maximum value reported in Table 4. The values reported

in the Table 4 are compatible with measurement statistics. Fig. 2 reports the results of the simulations for Molnyia

orbit when 8 observations are considered. The statistics of the absolute value of the dimensionless residuals are plotted

and compared with the IOD solutions. First, it is worth noting that the residuals of the IOD solutions are almost zero

at the 1-st, 5-th, and 8-th observations, i.e. those used for the IOD. This result is obvious as the IOD solutions are

deterministic and exactly produce the available observations. On the other hand, the residuals significantly grow at

other observation epochs. On average the residual are much smaller and more uniformly distributed when LS solutions

are analyzed. From these analysis it can be concluded that the LS solution improves the orbit provided by the IOD

even when only few measurements distributed on a very short arc are available

4.2 Confidence Region

The confidence region of the LS solution is represented in modified equinoctial elements (MEE). The state vector

xxxMEE = (p, f ,g,h,k,L), in which p = a(1− e2) is the semilatus rectum, f = ecos(ω +Ω) and g = esin(ω +Ω),
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Table 3: Median of the absolute value of the error (with respect to the true solution) in position (km) and velocity

(km/s), for IOD and DALS solutions

Number of observations

8 15

IOD DALS IOD DALS

LEO
Pos 5.832e+01 4.449e+01 1.540e+01 6.050e+00

Vel 2.569e-01 1.861e-01 7.414e-02 3.035e-02

GEO
Pos 5.756e+02 4.454e+02 1.115e+02 6.856e+01

Vel 4.443e-02 3.262e-02 8.358e-03 5.407e-03

GTO
Pos 4.758e+02 3.227e+02 9.718e+01 6.576e+01

Vel 2.680e-02 1.884e-02 5.893e-03 3.393e-03

Molnyia
Pos 4.093e+02 2.564e+02 1.025e+02 5.826e+01

Vel 2.235e-02 1.442e-02 5.628e-03 3.043e-03

Table 4: Maximum of the median of the absolute values of the normalized residuals.

Number of observations

8 15

LEO
ξα [1/σ ] 6.661e-01 8.085e-01

ξδ [1/σ ] 6.980e-01 6.922e-01

GEO
ξα [1/σ ] 6.853e-01 7.066e-01

ξδ [1/σ ] 7.117e-01 7.402e-01

GTO
ξα [1/σ ] 6.955e-01 7.250e-01

ξδ [1/σ ] 6.790e-01 7.762e-01

Molnyia
ξα [1/σ ] 6.255e-01 7.177e-01

ξδ [1/σ ] 6.615e-01 7.423e-01

h = tan(i/2)cos(Ω) and k = tan(i/2)sin(Ω), and the true longitude L = Ω+ω +ν . MEE were chosen as they absorb

part of the nonlinearity of orbital dynamics and thus bring benefits when propagating the confidence region [28, 29].

When the cost function J is approximated with a 2-nd order polynomial, the solution vector is normally distributed

and its statistics are fully describe by its mean (the LS solution) and covariance matrix as shown in Eq. (15). The

contour surfaces of the penalty function are ellipsoids whose axes are proportional to the square root of the eigenvalues

of the covariance matrix.

In Tables 5 and 6 the covariance matrices for the GEO object are reported in the case of 8 and 15 observations

respectively. The diagonal terms of the covariance matrix are very large when short arcs are considered. By com-

paring the two tables it can be appreciated how these terms lower when the observations are spread on a longer arc.

This finding is further confirmed when the square root of the maximum eigenvalue of the covariance matrix with 15

observations γ15
max is compared to that of 8 observations γ8

max. On average for the LEO case
γ15

max

γ8
max

= 0.1849, for the GEO

γ15
max

γ8
max

= 0.1914, for the GTO
γ15

max

γ8
max

= 0.2112 and for the Molnyia
γ15

max

γ8
max

= 0.1824.

In Table 7 the covariance matrix for scenario with 8 observations separated by 4 minutes (same observational arc

as 15 measures separated by 2 minutes) is reported. This covariance matrix is similar to the one with 15 observations,

confirming that the length of the observational arc plays a major role in the definition of the confidence region. In ad-

dition, it can be noticed that for arcs of same lengths the confidence region is slightly smaller when more observations

are included.

The results shown thus far are relative to a classical second order representation of the penalty δJ. By inspection

of the terms above the second order in the expression of T k
δJ
(δxxx∗) it can be readily understood that for very short arcs

higher order terms play a significant role in the definition of the confidence region. This is clearly shown in Figures

3-6 in which the 85, 90 and 95 percent confidence regions computed at different orders are displayed for all the test

cases when 8 observations are used. Given the value of n, m, and J(xxx∗) and desired confidence percent Eq. (33) is used

to find the proper values of K2. The boundaries of the confidence regions are then computed by either SDQA-FIXED
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Figure 2: Statistics of the absolute value of the dimensionless residuals on α and δ , for IOD and DALS solutions. The

observed object is in Molnyia orbit

Table 5: Covariance matrix in MEE for GEO and 8 observations

p [km] f g h k L [rad]

5.0920123e+06 -8.9547143e+01 -1.0650759e+01 1.5536300e-01 -1.2065074e+00 -1.3639190e-01

-8.9547143e+01 1.5748250e-03 1.8675471e-04 -2.7543301e-06 2.1214725e-05 2.3983609e-06

-1.0650759e+01 1.8675471e-04 2.6824098e-05 -1.4105794e-07 2.5457500e-06 2.8691229e-07

1.5536300e-01 -2.7543301e-06 -1.4105794e-07 1.2522745e-08 -3.5873937e-08 -4.0955955e-09

-1.2065074e+00 2.1214725e-05 2.5457500e-06 -3.5873937e-08 2.8598508e-07 3.2324982e-08

-1.3639190e-01 2.3983609e-06 2.8691229e-07 -4.0955955e-09 3.2324982e-08 3.6545165e-09

or the AO-FIXED algorithm along directions in the plane defined by the two eigenvectors associated with the two

largest eigenvalues of the covariance matrix. The figures show that, when δJ is expanded at order higher than 2, the

confidence region is no longer represented by ellipsoids. It is also worth observing how the shape of confidence region

remains essentially unchanged above order 4, thus suggesting order 4 as default expansion order.

As a final result, Figure 7 shows the projection of the samples generated along the weak direction in the p− L,

f − g and h− k planes together with the true solution. The gray scale is proportional to the value of δJ, i.e. to the

solution probability. It is apparent that the weak direction is bent and the confidence region is longer when very shorter

arcs are considered. When the observations span a longer arc the weak direction resembles more a straight line that

passes closer to the true solution.

5. Conclusions

In this work we focus our investigation on the OD problem when optical observations are taken on very short arcs,

i.e. less than 10 deg. A classical least squares problem was formulated and DA techniques were used to implement

an arbitrary order solver (referred to as DALS solver) and to nonlinearly describe the solution confidence region. For

this purpose, three different algorithm were implemented: two to determine the confidence region along an assigned

direction (SDQA-FIXED and AO-FIXED) and one to study the evolution of the weak direction (SDQA-WEAK). The

main findings of this work can be summarized as

• The formulation of a least squares problem and its solution via the DALS on average improve the solution made

available by IOD;
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Figure 3: 2-D confidence region for the LEO test case with 8 observations at different expansion orders. The 2-D

plane is defined by the two eigenvectors associated with the two largest eigenvalues of the covariance matrix. The axes

are in scaled units.
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Figure 4: 2-D confidence region for the GEO test case with 8 observations at different expansion orders. The 2-D

plane is defined by the two eigenvectors associated with the two largest eigenvalues of the covariance matrix. The axes

are in scaled units.
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Figure 5: 2-D confidence region for the GTO test case with 8 observations at different expansion orders. The 2-D

plane is defined by the two eigenvectors associated with the two largest eigenvalues of the covariance matrix. The axes

are in scaled units.
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Figure 6: 2-D confidence region for the Molnyia test case with 8 observations at different expansion orders. The 2-D

plane is defined by the two eigenvectors associated with the two largest eigenvalues of the covariance matrix. The axes

are in scaled units.
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Figure 7: Projection on p− L, f − g, h− k planes of the evolution of the weak directions for GTO object with 8

(left) and 15 (right) observations. The star indicates the optimal solution found by the DALS and the square the true

solution. Note that the true solution is not the same in the p−L planes as the LS solution refers to different epochs for

the 8- and 15-observation cases.
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Table 6: Covariance matrix in MEE for GEO and 15 observations

p [km] f g h k L [rad]

1.8168618e+05 -3.2018546e+00 -4.8442433e-01 7.1359627e-03 -4.4223249e-02 -5.0162799e-03

-3.2018546e+00 5.6430383e-05 8.5102068e-06 -1.2686786e-07 7.7917549e-07 8.8363321e-08

-4.8442433e-01 8.5102068e-06 1.4683747e-06 -1.1699532e-08 1.1902194e-07 1.3627376e-08

7.1359627e-03 -1.2686786e-07 -1.1699532e-08 6.3490977e-10 -1.6830486e-09 -1.8656513e-10

-4.4223249e-02 7.7917549e-07 1.1902194e-07 -1.6830486e-09 1.0772493e-08 1.2225812e-09

-5.0162799e-03 8.8363321e-08 1.3627376e-08 -1.8656513e-10 1.2225812e-09 1.3915385e-10

Table 7: Covariance matrix in MEE for GEO and 8 observations separated by 4 minutes

p [km] f g h k L [rad]

2.9925663e+05 -5.2508673e+00 -7.9459210e-01 1.1492387e-02 -7.1271923e-02 -8.0395247e-03

-5.2508673e+00 9.2140160e-05 1.3899915e-05 -2.0337197e-07 1.2502988e-06 1.4099964e-07

-7.9459210e-01 1.3899915e-05 2.3887892e-06 -1.9153710e-08 1.9096494e-07 2.1761432e-08

1.1492387e-02 -2.0337197e-07 -1.9153710e-08 9.8904909e-10 -2.6538518e-09 -2.9184732e-10

-7.1271923e-02 1.2502988e-06 1.9096494e-07 -2.6538518e-09 1.6987286e-08 1.9173605e-09

-8.0395247e-03 1.4099964e-07 2.1761432e-08 -2.9184732e-10 1.9173605e-09 2.1719357e-10

• The covariance matrix of the solution of the LS problem has large eigenvalues whose magnitude rapidly de-

creases with observation lenght;

• The confidence region of the solution of the LS problem is not accurately described by ellipsoids as terms above

the second order in J are not negligible;

• The weak direction can be significantly bent

Our future work will be devoted to using the developed tools for observation correlation problem and particle

filters initialization.
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