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ABSTRACT

Parameter errors in orbital models can result in poor orbit determination (OD) using a traditional Kalman filter. One
approach to account for these errors is to consider them in the so-called Schmidt-Kalman filter (SKF), by augmenting
the state covariance matrix (CM) with additional parameter covariance rather than additively estimating these so-called
“consider” parameters. This paper introduces a new SKF algorithm with polynomial chaos expansion (PCE-SKF). The
PCE approach has been proved to be more efficient than Monte Carlo method for propagating the input uncertainties
onto the system response without experiencing any constraints of linear dynamics, or Gaussian distributions of the
uncertainty sources. The state and covariance needed in the orbit prediction step are propagated using PCE. An in-
clined geosynchronous orbit scenario is set up to test the proposed PCE-SKF based OD algorithm. The satellite orbit
is propagated based on numerical integration, with the uncertain coefficient of solar radiation pressure considered. The
PCE-SKF solutions are compared with extended Kalman filter (EKF), SKF and PCE-EKF (EKF with PCE) solutions.
It is implied that the covariance propagation using PCE leads to more precise OD solutions in comparison with those
based on linear propagation of covariance.

1. INTRODUCTION

Due to the rapid increase in the population of earth-orbiting objects, state estimation of these space objects for mission
planning and collision avoidance is therefore of great significance. The Kalman filtering technique is widely used for
orbit determination (OD), which combines both orbit prediction (OP) and observation update together in a sequential
manner. However, non-gravitational perturbations, e.g. solar radiation pressure and atmosphere drag acting on the
space objects, cannot be modelled precisely in the OP process due to the uncertainties associated with these parameters.
This leads to deteriorated OD results using the traditional Kalman filter.

One approach to account for parameter errors in a dynamic system is to consider them in the so-called Schmidt-
Kalman filter (SKF), by augmenting the state covariance matrix (CM) with additional parameter CM rather than
additively estimating these so-called “consider” parameters. This methodology originated by S. F. Schmidt in the mid
1960s [1] is especially useful when parameters have low observability [2]. Zanetti et al. [3] addressed the issues with
relation to recursive implementation of SKF. Stauch and Jah incorporated the SKF into an unscented Kalman filter
framework [4]. A SKF based orbit determination scheme is introduced in [5] with a simplified orbit dynamical model
for onboard computing, where the atmospheric drag and solar radiation pressure coefficients are considered.

In order to obtain optimal estimates, filters need to handle uncertainties involved in the system’s dynamics and
associated observations. As an alternative to statistical methods, the polynomial chaos expansions (PCE) method is
proposed to account for the effects of arbitrary, time-invariant uncertainties associated with model parameters and
initial conditions [6]. The PCE approach has been proved to be more efficient than Monte Carlo method for propa-
gating the input uncertainties onto the system response, by establishing an alternative deterministic surrogate system
with linear combination of orthogonal basis functions. Any constraints of linear dynamics, or Gaussian distributions
of the uncertainty sources are no longer required in PCE. It has been integrated with filters for state and parameter
estimation [7–9].

This paper introduces a new SKF algorithm with polynomial chaos expansion (PCE-SKF) for orbit determination.
The state and covariance needed in the OP step are propagated using PCE. More specifically, the CM is computed
from samples generated in PCE instead of linear propagation by the state transition matrix (STM) and sensitivity
matrix (SM). The proposed PCE-SKF is applied to OD of space objects. An inclined geosynchronous orbit (IGSO)
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scenario is set up to test the proposed algorithm. The satellite orbit is propagated based on numerical integration, with
the uncertain solar radiation pressure (SRP) coefficient considered. Range observations from three ground stations are
used in the measurement update step. To evaluate the impact of SRP coefficient into the OD accuracy, both Gaussian
and uniform distributions are used to represent the uncertainty associated with the SRP coefficient. The PCE-SKF
solutions are compared with those using extended Kalman filter (EKF), SKF and PCE-EKF (EKF with PCE).

The rest of the paper is organised as follows. Section 2 revisits the Schmidt-Kalman filter for state estimation
and parameter compensation. The polynomial chaos expansion approach for uncertainty propagation is introduced
in Section 3, followed by a description of the proposed PCE-SKF algorithm for orbit determination. After this, a
numerical example is given to test the PCE-SKF algorithm and conclusions are presented.

2. SCHMIDT-KALMAN FILTER

We formulate the nonlinear orbit dynamics and the measurement equation into a discrete form in order to be imple-
mented in the SKF:

Xk = g(Xk−1,wk), (1a)

yk = h(Xk,vk), (1b)

where the augmented state X is composed of both the orbital state x and “consider” parameters p, and the subscript
k indicates the time index. The operator g represents the numerical integration operator for the orbit propagation. But
the “consider” parameters p are kept constants all the time. h denotes the nonlinear measurement function. w and v
indicate the process noise and measurement noise, respectively, both of which are assumed to be white noise sources.
Specifically, these distributions are given by:

wk ∼ N (0,Qk),

vk ∼ N (0,Rk). (2)

In the prediction step of the SKF, satellite trajectory is propagated using Eq. 3, while the “consider” parameter vector
p is kept constant in Eq. 4:

x̂−k = f(x̂+
k−1, p̂

+
k−1,0), (3)

p̂−k = p̂+
k−1. (4)

On the other hand, the covariance matrix P is predicted for each block as shown in Eq. 5:[
P̂x P̂xp
P̂px P̂p

]−
k

=

[
Θ̂ Ψ̂
0 I

]
k−1

[
P̂x P̂xp
P̂px P̂p

]+

k−1

[
Θ̂T 0

Ψ̂T I

]
k−1

+

[
Qx 0
0 Qp

]
k−1

, (5)

where Θ and Ψ denote the STM and sensitivity matrix, respectively. Solutions of these matrices can be found in
Ref. [10].

By expanding Eq. 5, one can obtain the formulas for predictions of each block, as shown in Eq. 6-9:

P̂−x,k = (Θk−1P̂
+
x,k−1 + Ψk−1P̂

+
px,k−1)ΘT

k−1

+ (Θk−1P̂
+
xp,k−1 + Ψk−1P̂

+
p,k−1)ΨT

k−1 +Qx,k−1, (6)

P̂−xp,k = Θk−1P̂
+
xp,k−1 + Ψx,k−1P̂

+
p,k−1, (7)

P̂−px,k = P̂+
px,k−1Θ

T
k−1 + P̂+

p,k−1Ψ
T
k−1 = P̂−,Txp,k , (8)

P̂−p,k = P̂+
p,k−1 +Qp,k−1. (9)
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The update step of the SKF reads,[
x̂
p̂

]+

k

=

[
x̂
p̂

]−
k

+

[
Kx(y − h(x̂,0))

0

]−
k

, (10)[
P̂x P̂xp
∼ P̂p

]+

k

=

{[
I 0
0 I

]
−
[
Kx

0

]
k

[
Hx 0

]
k

}
×
[
P̂x P̂xp
∼ P̂p

]−
k

×

{[
I 0
0 I

]
−
[
Kx

0

]
k

[
Hx 0

]
k

}T
+

[
Kx

0

]
k

Rk

[
Kx 0

]T
k
, (11)

Kx,k = P̂−x,kĤ
T
x,k(Ĥx,kP̂

−
x,kĤ

T
x,k +Rk)−1. (12)

Expand Eq. 11 for each entry to obtain the following updating equations:

P̂+
x,k = (I −Kx,kHx,k)P̂−x,k +Kx,kRkK

T
x,k, (13)

P̂+
xp,k = (I −Kx,kHx,k)P̂−xp,k, (14)

P̂+
px,k = P̂+,T

xp,k , (15)

P̂+
p,k = P̂−p,k. (16)

Note that the updating of the entry P̂px,k presented in Eq. 15 is not displayed in Eq. 11.

3. THE POLYNOMIAL CHAOS APPROACH

The polynomial chaos approach was firstly introduced by Norbert Wiener when Hermite polynomials were used to
model stochastic processes with Gaussian random variables [11]. After Xiu extended the PCE to more general or-
thogonal polynomials using Wiener-Askey scheme [6], the PCE approach has recently regained its popularity for
quantifying the propagation of uncertainty in nonlinear dynamical systems. The PCE framework has many attractive
features which are potentially well suited for numerical computations with usually a substantially smaller computa-
tional effort compared to Monte Carlo sampling.

Generally two steps are involved in PCE algorithms: 1) the construction of a computationally efficient surrogate
model of the system using the orthogonal polynomials and 2) the stochastic propagation of the initial uncertainties
through evaluation of the surrogate model. In the context of PCE, the solution X of Eq. 1a can be represented by an
infinite series of orthogonal polynomials [12]:

X(t, ξ) = c0φ0 +

d∑
i1=1

ci1φ1(ξi1) +

d∑
i1=1

i1∑
i2=1

ci1i2φ2(ξi1 , ξi2)

+
d∑

i1=1

i1∑
i2=1

i2∑
i3=1

ci1i2i3φ3(ξi1 , ξi2 , ξi3) + · · · (17)

where φk is the generalised polynomial basis function of order k determined using the Wiener-Askey scheme [6] based
on the PDF of multidimensional random variables ξij (ij = 1, 2, . . . , d) that typically represent the uncertainties in
model parameters or initial and boundary conditions. In the PCE context, the polynomial bases have been expanded
into other types of functions. For instance, Legendre, Laguerre, and Jacobi are optimal selections for modelling
the effects of random variable described by uniform, γ and β, respectively, in order to achieve theoretical exponential
convergence of the approximation. The above expansions can be formulated into a concrete form via multidimensional
basis functions, i.e.:

X(t, ξ) =
∑
α∈Nd

0

CαΦα(ξ)
(
Nd0 := {(α1, . . . , αd) : αj ∈ N ∪ {0}}

)
(18)

where α ∈ Nd0 is a multidimentional index notation; Φk(ξ) denotes the multivariate basis function which is defined as
the tensor product of univariate polynomial basis functions with the assumption that the random univariate variables
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ξi are independent, identically distributed:

Φα(ξ) = Φα(ξ1, ξ2, . . . , ξd) = φ(1)
α1

(ξ1)φ(2)
α2

(ξ2) · · ·φ(d)
αd

(ξd) (19)

where αd ∈ N1
0 denotes the degree of the univariate polynomials φ(d)

αd (ξd). In practice, the assemble of orthogonal
polynomials in Eq. 18 needs to be truncated to a finite number. A standard truncation strategy corresponds to the total
degree p of the polynomials and the dimensionality d of the random variables characterising the input uncertainties,
hence the approximation ofX with truncated PCE expansions is given as:

X̂(t, ξ) =
∑
α∈Ad

p

CαΦα(ξ)
(
Adp = α ∈ Nd0 : ‖α‖0 ≤ d, ‖α‖1 ≤ p

)
. (20)

3.1. ISOPROBABILISTIC TRANSFORMATION

In a real world scenario, the input variables for the system are always non-standard. In the context of gPC, isoprob-
abilistic transformations are introduced to transform the dependent random vector X into a Gaussian or a uniform
vector [13]. Generally two steps are included: independency transformation (e.g. Nataf transformation [14, 15] with
the Gaussian copula) and standardisation process.

According to Sklar’s theorem, if the random variables have a joint distribution Fξ(ξ) with n marginal distributions
F1(ξ1), . . ., Fn(ξn), then there exists an n-dimensional copula C satisfying [13, 16]:

Fξ(ξ) = C(F1(ξ1), . . . , Fn(ξn)). (21)

The Nataf transformation T1 : Rn → Rn is used to get an independent Gaussian random vector [17]:

ξ̄ = T1(ξ) = (N−1(ξ1), . . . ,N−1(ξn)) (22)

where N is a Gaussian distribution function and ξ̄ is a multivariate Gaussian random vector with standard random
marginals. This transformation is feasible with known marginal distributions of X and the correlation matrix, which
corresponds with the copula theory as well.

Then the transformation T2 : Rn → Rn is used to obtain a standard Gaussian independent random vector η:

η = T2(ξ̄). (23)

For instance, in the case of Gaussian variables
{
ξ̄i ∼ N (µi, σi)

}d
i=1

, the transformation is expressed as:

ξ̄i = µi + σiUi, Ui ∼ N (0, 1). (24)

Hence, the transformation
η = TGauss(ξ) = T2(T1(ξ)) (25)

can be used to obtain the standard independent Gaussian random vector η from the dependent random vector ξ.
With the isoprobabilistic transformation above, the approximate state X in Eq. 20 can be formulated as PCE with

respect to the independent Gaussian vector η:

X(t,η) =
∑
α∈Nd

0

CαΦα(T−1
Gauss(η)) =

∑
α∈Nd

0

C̄αΦα(η). (26)

3.2. NON-INTRUSIVE APPROACH TO SOLVE PCE COEFFICIENTS

To build up the approximation of the solution X̂ of Eq. 26, the polynomial coefficients need to be solved. The
approaches can be categorised into two types: intrusive and non-intrusive approaches. In an intrusive approach, all the
dependent random variables in the system equations are replaced with PCE expansions, which is straightforward but
difficult to implement due to the fact of rewriting the whole program. Therefore, only non-intrusive approach is used
in this work.

The system model is treated as a ”black-box” so that the PCE coefficients are solved based on a set of simulation
response evaluations. Generally two primary strategies have been proposed to calculate the polynomial coefficients
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non-intrusively in the literature, i.e., the spectral projection and the least-squares regression (LSR) [14, 18]. The
spectral projection method, like the common tensor-product quadrature strategy, generally suffers the curse of dimen-
sionality. The LSR method is used in this work, which solves the coefficientsC by minimising the cost function [14]:

C ≈ arg min
C̄α

1

M

M∑
j=1

X(t,ηj)−
∑
α∈Ad

p

C̄αΦα(ηj)

2

. (27)

According to Eq. 27, the PCE expansions and corresponding coefficients can be written into a linear system:
Φα1

(η1) Φα2
(η1) · · · ΦαN

(η1)
Φα1(η2) Φα2(η2) · · · ΦαN

(η2)
...

...
. . .

...
Φα1

(ηM ) Φα2
(ηM ) · · · ΦαN

(ηM )




ˆ̄CTα1

ˆ̄CTα2

...
ˆ̄CTαN

 =


XT (t,η1)
XT (t,η2)

...
XT (t,ηM )

 . (28)

The Eq. 28 can be formulated in a simple form:
HĈ = Y (29)

where H is a M ×N matrix, Ĉ is the matrix of PCE coefficients, and Y is comprised of the surface response of the
system model. The solution of the PCE coefficients can be given:

Ĉ = (HTH)−1HTY . (30)

Figure 1 illustrates the degree of theN th multivariate polynomial functions with respect to each univariate polynomial
function. In this case, six inputs of position and velocity components are propagated using maximum 4th degree PCE.
The value of each coefficient is shown in Figure 2.
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4. PCE-SKF BASED OD

In this section, the PCE method is used for propagating the augmented state (orbital state and parameter) and its
associated covariance in the framework of SKF. Because the PCE theory creates an estimate of the covariance matrix,
there is no need to calculate the Jacobian matrix of the non-linear orbit dynamics and use the functional form of
matrix in Eq. 6-9. Moreover, even if the Gaussian assumption has been widely used in moderately nonlinear systems
with good performance, it might fail in certain problems. For instance, Gaussian distribution is clearly not an ideal
distribution to represent errors in uncertain, positive spring coefficients. Filters with PCE provide a feasible approach
to deal with non-Gaussian uncertainties associated with the state and parameter.

In the prediction step of SKF, the covariance matrix of the augmented state shown in Eq. 5 can be estimated from
the PCE process instead. Because the LSR method is used for calculating PCE coefficients, a Monte Carlo (or other
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sampling methods such as Halton) samples are generated. The approximate predicted covariance can be obtained by
using statistical averages of the experimental state samples (with a large number) predicted by the system dynamical
model: [

P̂x P̂xp
P̂px P̂p

]−
k

=

(
Xe
k − X̄e

k)(Xe
k − X̄e

k

)T
K

(31)

where Xe
k (resp. X̄e

k) denotes the experimental state sample (resp. the mean of the experimental state sample) from
the PCE process, and K is the number of samples.

After the same process of update step of the SKF in Eq. 10-12, the covariance matrix of the state is updated with
new observations. It is used as input into the PCE process in the next epoch based on the copula theory introduced in
Section 3.1.

5. NUMERICAL EXAMPLES

5.1. OBSERVATION SIMULATION AND FILTERING SETTINGS

The proposed PCE-SKF algorithm is applied to orbit determination for space objects in the high altitude region (e.g.
the geosynchronous orbit), where the solar radiation pressure is one of the largest non-gravitational perturbations and
can therefore have significant influence on their orbital dynamics. A variety of models have been used to study solar
radiation pressure for various applications. Among them, the simplest model is the cannonball model, which assumes
that the force caused by solar radiation pressure acts along the object-Sun line and the object is in a cannonball-like
shape with uniform optical properties in space. But it is not sufficient enough for the analysis of SRP acceleration
with a constant SRP coefficient. In this study, it is assumed that the error of the SRP model is absorbed by the
SRP coefficient. Our focus is to account for this type of uncertainty in the OD process. The acceleration of SRP is
formulated as the following Eq. 32 for the cannonball assumptions:

aSRP =
PSRCRAS

m
rs (32)

where PSR denotes the solar radiation pressure constant, CR denotes the solar pressure parameter, AS denotes the
effective area facing the Sun, m is the object mass and rs denotes the vector from the object to the Sun.

Table 1. Satellite Force Model

Satellite model Cannon-ball model (constant surface and mass) [10]
Earth gravity field GGM03S (20× 20) [19]

Planetary ephemerides
Low precision model for the Sun, Moon, Mars,

Mercury, Venus, Jupiter, Saturn, Uranus, Pluto [10]

Solar Radiation Pressure
Assumes the surface normal is always aligned with the Sun.

Includes eclipses and distance from the sun. [10]
Coordinates transformations IERS1996/IAU1980 transformations [10]

An IGSO is simulated to demonstrate the orbit determination process with force models given in Table 1. The
orbital model incorporates gravitational perturbations from all planetary bodies in the solar system in addition to a
high fidelity gravity model of the Earth. As for nonconservative forces, only SRP is considered with the acceleration
model given in Eq. 32. The initial state of the reference orbit is given in Table 2 and satellite’s parameters are given in
Table 3. Three ground stations (see Table 4 for the location information) are chosen for measurements simulation. An
elevation mask of 20◦ with an interval of 30s is used for all the measurements.

Table 2. Satellite Initial Conditions in ECI Coordinate System (m, m/s)

x (m) y (m) z (m) vx (m/s) vy (m/s) vz (m/s)
37334419.253 6402992.005 -13817229.687 -1259.3 2409.9 -1709.8

For the filters, the orbital model is the same with that used for observation simulation, except that the SRP coef-
ficient is set as 1.2. No process noise is considered in this study. So only the SRP modelling error due to the SRP
coefficient deviation will be handled in the filter. An offset of 1m is given to each position component of the initial
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Table 3. Satellite’s Parameters

Satellite’s mass (kg) SPR effective area (m2) SPR coefficient
1800 110.5 1.0

Table 4. Ground Stations Location

ID Location Lattitude Longitude
Yarragadee WA, Australia −29.0464◦ 115.3467◦

Mount Stromlo ATC, Australia −35.3161◦ 149.0099◦

Tanegashima Japan 30.5565◦ 131.0154◦

Table 5. Filters’ Initial Condition in ECI Coordinate System

x (m) y (m) z (m) vx (m/s) vy (m/s) vz (m/s)
37334420.253 6402993.005 -13817230.687 -1259.3 2409.9 -1709.8

SRP coefficient 1.2

orbital state in comparison with the reference orbit (see Table 4). Accordingly, the initial covariance matrix for the
orbital state is given by:

P0 = diag
(
1.0, 1.0, 1.0, 1.0−6, 1.0−6, 1.0−6

)
(m,m/s). (33)

For the SRP coefficient, two distributions are used to represent its uncertainty: Gaussian and uniform distributions,
with a variance value of 0.2 and an interval of

[
1.1, 1.3

]
, respectively.

5.2. ORBIT DETERMINATION SOLUTIONS

Orbit determination solutions are generated by EKF, SKF, PCE-EKF and PCE-SKF. The position and velocity esti-
mates in the Earth Centred Earth Fixed (ECEF) coordinate system are plotted in Fig. 3 and Fig. 4, respectively. In these
simulations, 4th degree of PCE is employed. The SRP coefficient is assumed as Gaussian distributed in the PCE-SKF
algorithm. Due to the fact that the process noises are not added in the filter, generally the STDs (Standard Deviation)
of errors are smaller than the RMS (Root Mean Square) values. As for the x component of the position, the filtering
solutions with PCE fluctuate more heavily than the solutions without PCE. In other two directions, both the EKF-PCE
and SKF-PCE solutions are more stable than the EKF and SKF solutions. The statistics of the state estimate is shown
in Table 6 - 9. With PCE for covariance matrix propagation, the orbital state estimation could be improved signifi-
cantly. For instance, the 3D RMS of the positioning errors is reduced from 0.244m by SKF to 0.121m by SKF-PCE,
and the 3D RMS of the velocity estimation errors is reduced from 3.336 × 10−4m by SKF to 2.082 × 10−4m by
SKF-PCE.

Table 6. EKF Solutions - ECEF Coordinate System

x (m) y (m) z (m) 3D (m) vx (m/s) vy (m/s) vz (m/s) 3D (m/s)
MEAN -0.003 -0.054 0.040 ∼ 2.052e-3 -1.888e-4 6.655e-6 ∼
STD 0.012 0.127 0.085 0.153 1.580e-4 1.673e-4 1.971e-4 3.030e-4
RMS 0.012 0.137 0.093 0.166 1.581e-4 2.513e-4 1.956e-4 3.555e-4

Table 7. PCE-EKF Solutions - ECEF Coordinate System

x (m) y (m) z (m) 3D (m) vx (m/s) vy (m/s) vz (m/s) 3D (m/s)
MEAN 6.381e-4 0.048 0.124 ∼ -4.332e-5 -8.827e-5 7.867e-5 ∼
STD 0.050 0.046 0.073 0.099 2.486e-5 1.069e-5 2.525e-5 3.701e-5
RMS 0.118 0.057 0.099 0.165 3.246e-5 2.520e-5 1.265e-4 1.330e-4

To evaluate the impact of the SRP coefficient in the orbit determination solutions, both Gaussian and uniform
distributions are used in the PCE process to quantify the uncertainty associated with the SRP coefficient. PCE-SKF
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Table 8. SKF Solutions - ECEF Coordinate System

x (m) y (m) z (m) 3D (m) vx (m/s) vy (m/s) vz (m/s) 3D (m/s)
MEAN -0.002 -0.021 0.054 ∼ 8.670e-6 -1.125e-3 -2.943e-5 ∼
STD 0.018 0.193 0.140 0.239 1.286e-4 2.099e-4 1.968e-4 3.152e-4
RMS 0.018 0.192 0.149 0.244 1.278e-4 2.366e-4 1.974e-4 3.336e-4

Table 9. PCE-SKF Solutions - ECEF Coordinate System (Gaussian Distribution for the SRP Coefficient)

x (m) y (m) z (m) 3D (m) vx (m/s) vy (m/s) vz (m/s) 3D (m/s)
MEAN 0.007 -0.058 -0.023 ∼ -2.112e-5 -1.055e-4 1.728e-4 ∼
STD 0.064 0.030 0.081 0.108 2.676e-5 1.589e-5 1.951e-5 3.673e-5
RMS 0.068 0.046 0.083 0.117 6.041e-5 4.996e-5 2.234e-4 2.367e-4

based satellite position estimates are plotted in Fig. 5. With the Gaussian SRP coefficient, the RMS of state estimation
errors in the ECEF coordinate system is

[0.068, 0.046, 0.083, 6.041× 10−5, 4.996× 10−5, 2.234× 10−4](m,m/s),

while that with the uniform SRP coefficient is

[0.068, 0.046, 0.083, 5.846× 10−5, 4.948× 10−5, 2.223× 10−4](m,m/s).

Both two solutions are constrained in the 3σ threshold of the variance and they match well through the entire processing
period except some slight deviations occur after the 35th epoch. The 3D RMS of the state estimation errors are
[0.117, 2.367 × 10−4](m,m/s) with the Gaussian distributed SRP coefficient and [0.117, 2.351 × 10−4](m,m/s)
with the uniform distributed SRP coefficient, respectively.
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Fig. 5. Satellite Orbital State Estimate with Different SRP Coefficient Distributions Using PCE-SKF(6th Degree PCE)
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PCE-SKF with different PCE degrees have been tested for orbit determination. The logarithmic statistic values
(STD and RMS) are plotted in Fig. 6. The error statistics drops down as the degree of PCE increases. But after the
4th degree, the OD errors become stable. From these statistic values, the OD solutions with a uniform distributed SRP
coefficient are even somewhat better than those with a Gaussian distributed SRP coefficient.

6. CONCLUDING REMARKS

In this paper, a PCE-SKF algorithm was introduced for orbit determination of space objects, which utilises the poly-
nomial chaos expansion for orbit state and covariance propagation in the Schmidt-Kalman filter framework with an
additional orbital parameter considered. The major advantage of PCE is that it can propagate non-Gaussian uncer-
tainties. Both Gaussian and uniform distributions were used for SRP coefficient quantification and its impact into OD
accuracy was analysed. Additionally with the samples generated in PCE, the covariance propagation leads to more
precise OD solutions in comparison with those based on linear propagation of covariance by STM and SM. It implies
that PCE-SKF can provide more precise solutions to OD with uncertain SRP parameter handled in the simulated orbit
scenario. This paper presented some preliminary OD solutions with an IGSO satellite, but it is feasible to apply the
proposed PCE-SKF algorithm to other scenarios with uncertain dynamical parameters.

7. ACKNOWLEDGMENTS

The authors would like to acknowledge the support of the Cooperative Research Centre for Space Environment Man-
agement (SERC Limited) through the Australian Government’s Cooperative Research Centre Programme. We also
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