

Approved for Public Release; Distribution Unlimited. Case Number 16-2781

Enabling GEODSS for Space Situational Awareness (SSA)

Sam Wootton
The MITRE Corporation

I. ABSTRACT

The Ground-Based Electro-Optical Deep Space Surveillance (GEODSS) System has been in operation
since the mid-1980’s. While GEODSS has been the Space Surveillance Network’s (SSN’s) workhorse in terms of
deep space surveillance, it has not undergone a significant modernization since the 1990’s. This means GEODSS
continues to operate under a mostly obsolete, legacy data processing baseline. The System Program Office (SPO)
responsible for GEODSS, SMC/SYGO, has a number of advanced Space Situational Awareness (SSA)-related
efforts in progress, in the form of innovative optical capabilities, data processing algorithms, and hardware upgrades.
Each of these efforts is in various stages of evaluation and acquisition. These advanced capabilities rely upon a
modern computing environment in which to integrate, but GEODSS does not have one—yet. The SPO is also
executing a Service Life Extension Program (SLEP) to modernize the various subsystems within GEODSS, along
with a parallel effort to implement a complete, modern software re-architecture. The goal is to use a modern,
service-based architecture to provide expedient integration as well as easier and more sustainable expansion. This
presentation will describe these modernization efforts in more detail and discuss how adopting such modern
paradigms and practices will help ensure the GEODSS system remains relevant and sustainable far beyond 2027.

II. BACKGROUND

The Ground-Based Electro-Optical Deep Space Surveillance (GEODSS) System operates in a multi-tower
configuration in three locations around the globe. It has been operational since the mid-1980s, serving as a deep
space surveillance workhorse with no significant technological update since the 1990s. This means GEODSS
continues to operate under a mostly obsolete, legacy data processing baseline. Since GEODSS’ most recent,
significant modernization, hardware and software technology has profoundly evolved.

The System Program Office (SPO) responsible for GEODSS, SMC/SYGO, has a number of advanced
Space Situational Awareness (SSA)-related efforts in progress, in the form of innovative optical capabilities, data
processing algorithms, and hardware upgrades in various stages of evaluation and acquisition. These efforts support
SMC/SYGO’s rapid and aggressive vision committed to providing premier space surveillance via ground-based
optical mission systems. The SPO is currently exploring partnerships and integration opportunities with many SSA
capability providers across Government, Industry and Academia. These capabilities will rely upon a modern data
processing environment in which to integrate, but GEODSS does not yet have one.

III. IMPACTS/DISCUSSION

Over the coming years, the SPO will continue to execute numerous mission infrastructure and capability
improvements. These planned enhancements include continued deployment of a multi-phase Service Life Extension
Program (SLEP), which modernizes various subsystems throughout GEODSS. SLEP’s primary goals are to extend
GEODSS’ technological life and reduce long-term sustainment costs, with ancillary goals of lowering capability
integration costs and easing computing hardware expansion. The current phase focuses on computing hardware and
features scalable solutions based upon hardware virtualization hosted on x86 commodity hardware.

Scalability and hardware virtualization are foundational to evolve GEODSS from where it is today into
what it has the potential to become, which SLEP features. A horizontally scalable architecture allows pooling of
additional nodes to achieve increased performance or storage, while a vertically scalable architecture allows the

Copyright © 2016 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) – www.amostech.com

Approved for Public Release; Distribution Unlimited. Case Number 16-2781

addition of more resources, such as processors or memory, to existing hardware for increased performance. Both
attributes are important to GEODSS’ future capabilities as storage, processing, and modernization requirements
expand. Leveraging commodity hardware with virtualization is key to this solution as well. While commodity
hardware expedites procurement, virtualization simplifies integration, as well as improves system reliability,
maintainability, and availability.

In close alignment with SLEP, the SPO is also modernizing the data processing software architecture. A
multitude of contractors, developers, and leaders sustained GEODSS’ software for more than thirty years and
produced today’s “spaghetti code” that causes future sustainment challenges. Some examples include code copied
and pasted instead of referenced, archaic messaging, and data storage design and techniques that are not aligned with
modern practices. The result of not addressing the architecture is more cost and time expended to fix or enhance
software capabilities, or less capability for a given cost. Capability integration into the legacy software is not
expedient nor sustainable as experimental prototyping requires significant hardware and software hardwiring.
Additionally, the legacy code base and structure are not aligned with current and future software generations,
making talent acquisition more difficult.

To address the current software architecture challenges, the SPO requires the new architecture to be
loosely-coupled, modular, and “integrable”. A loosely-coupled architecture has software elements with little to no
knowledge of or dependency on other elements such that modifying one element has little to no effect on other
software elements. Modular software is a style that organizes functionality into separate, interchangeable modules
that implements one piece of functionality. “Integrable” is a term coined by the Software Engineering Institute (SEI)
at Carnegie Mellon University (CMU) meaning a component’s interfaces are well-defined and well-documented [1].
Well-defined interfaces will allow capability providers to understand how to develop and implement an interface to
GEODSS and effectively “plug-in” to it. Aligning with these attributes while closely following sound coding
practices and standards will prevent “spaghetti code” while also simplifying sustainment and expansion.

To best achieve the SPO’s technical goals and sustainment vision, the GEODSS sustainment contractor
recommended a microservice architecture. A microservice architecture shares some general, strategic commonality
with a Service Oriented Architectures (SOA) approach, but microservices could be viewed as a further SOA
refinement or a next step in the software evolution. Early SOA patterns did not stipulate how to architect a service,
but developers delivered monolithic services featuring a single, logical executable tied to a single, monolithic
database and executed within a single application or web container. These early services were a step in the right
direction and provided a movement away from legacy stovepipes or “cylinders of excellence”. SOA patterns were
not bad or unsustainable, but they were not autonomous, modular, or resilient like microservices.

Microservices are a suite of small services built around a capability with decentralized data storage
providing run-time and sustainment advantages. Each service independently deploys in its own container with its
own interface, functionality, and data management. System resiliency increases because each service runs in its own
container, which can be individually and continuously monitored as well as automatically restarted upon failure.
Legacy systems and their monolithic services required an application or system restart upon failure, thus negatively
impacting system downtime, while the microservice approach provides faster and automatic restart resulting in little
to no system downtime. Additionally, independent containers also provide scalability as the system can
appropriately load-balance services. Heavily used or resource-heavy microservices can be reallocated within the
virtualized infrastructure to ensure system loads are optimally balanced.

Fig. 1 visually depicts the architectural differences between microservices and the aforementioned
monolith. Within a monolithic architecture, all services run within the same container or single application and
share a single data store, as shown on the left. Microservices feature single, individually deployed services having
an independent data store, running within its own container, as presented on the right. Occasionally, a data store
(i.e., database) can be shared by a limited number of services, but that is not the general pattern [2].

Copyright © 2016 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) – www.amostech.com

Approved for Public Release; Distribution Unlimited. Case Number 16-2781

Fig. 1. Monolith vs. Microservices

Microservices’ modular characteristics of decentralized storage and independent functionality make them
well-fit for efficient integration and long term software sustainment. Data storage belongs to an individual service,
or can be shared across very few, offering less complex data models and designs. Furthermore, developers are not
tied to a single language, database vendor, or specialized product. The architecture can support a multitude of
languages and data storage products, which can be advantageous as GEODSS explores capability integration with
external providers. Independent functionality contained within a microservice provides less complex code resulting
in more expedient sustainment than monolithic services. Enhancements and/or maintenance may result in
modifying numerous services or data repositories, and when this occurs, regression and unit testing become simpler
due to the microservices’ compartmentalized nature. Tests can be less complicated and more expedient, permitting
enhanced or even automated integration testing. Large, well-known cutting-edge technological companies like
Amazon, eBay, and Netflix successfully applied a microservice architecture that implements these advantages.

A focus on more testing, integration, delivery, and deployment to the point where all steps become
continuous is a key tenet of a “DevOps” paradigm, which microservices support. DevOps is short for “Development
Operations” and involves collaboration between operations and development engineers throughout the entire
development lifecycle, from design through development to production. Some important DevOps features include
an increased focus on end-product delivery, improved product quality through continuous insight into delivery, and
reduced time-to-field by using continuous integration feedback. Within DevOps, the customer not only works
directly with the developer throughout the entire product’s development, much like an Agile or Lean paradigm, but
concentrates on business results by focusing on speed and quality of software through continuous insight [3]. Fig. 2
depicts the software development evolution from current, longstanding practices into the DevOps paradigm where
continuous integration and deployment further evolve into continuous operations [4].

Copyright © 2016 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) – www.amostech.com

Approved for Public Release; Distribution Unlimited. Case Number 16-2781

Fig. 2. DevOps Movement

The GEODSS SPO is taking steps towards a full DevOps paradigm by pursuing microservices. The
GEODSS’ sustainment contractor prototyped a set of microservices exploiting the new hardware and software
architecture and will soon prepare those microservices for operation. SLEP’s infrastructure will also permit an
incremental delivery instead of a large, “big bang” delivery most programs execute. An incremental microservice
fielding provides advantages such as flexible execution and less technical risk due to a number of legacy integration
challenges. The SPO will continue to incrementally deliver a new set of data processing microservices until all
functionality is instantiated and the legacy code can be fully retired.

IV. CONCLUSION

Upon implementing the new hardware and software environments, GEODSS and its SPO will find
themselves in a position to expediently incorporate partner capabilities in a sustainable manner. By taking
advantage of technology paradigms that ease sustainment and integration, new capabilities will integrate without
storage or processing concerns and can “plug-in” due to well-known and defined software interfaces. This robust
and extensible infrastructure provides the foundation and blueprint for continual expansion and modernization.
Realizing the modern architecture’s benefits and newly integrated capabilities, GEODSS will publish not only data,
but also SSA knowledge, thus making its relevance last far beyond original intentions.

V. REFERENCES

[1] Software Engineering Institute. “A Framework for Software Product Line Practice”. Retrieved June 2016, from
http://www.sei.cmu.edu/productlines/frame_report/softwareSI.htm.

[2] Fowler, Martin. “Microservices”. Retrieved June 2016, from
http://martinfowler.com/articles/microservices.html.

[3] Marschall, Matthias. (July 12, 2012). “How are Lean, Agile, and Devops related to each other?” Retrieved July
2016, from http://www.agileweboperations.com/lean-agile-devops-related

[4] Correlsense, Inc. (August 27, 2013). “’Continuous Operations’ a great idea – but details of execution still
matter”. Retrieved July 2016, from http://www.correlsense.com/continuous-operations-a-great-idea-but-details-of-
execution-still-matter/.

Copyright © 2016 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) – www.amostech.com

http://www.sei.cmu.edu/productlines/frame_report/softwareSI.htm
http://martinfowler.com/articles/microservices.html
http://www.agileweboperations.com/lean-agile-devops-related
http://www.correlsense.com/continuous-operations-a-great-idea-but-details-of-execution-still-matter/
http://www.correlsense.com/continuous-operations-a-great-idea-but-details-of-execution-still-matter/

