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Abstract 
 

Automated detection of changes of GEO satellites using photometry is fundamentally dependent on near real time 
association of non-resolved signatures and object identification. Non-statistical algorithms which rely on fixed 
positional boundaries for associating objects often results in mistags [1]. Photometry has been proposed to reduce 
the occurrence of mistags. In past attempts to include photometry, (1) the problem of correlation (with the catalog) 
has been decoupled from the photometry-based detection of change and mistagging and (2) positional information 
has not been considered simultaneously with photometry. The technique used in this study addresses both problems. 
It takes advantage of the fusion of both types of information and processes all information concurrently in a single 
statistics-based framework. This study demonstrates with Las Cumbres Observatory Global Telescope Network 
(LCOGT) data that metric information, i.e. right ascension, declination, photometry and GP element set, can be used 
concurrently to confidently associate (identify) GEO objects. All algorithms can easily be put into a framework to 
process data in near-real-time. 
 

1. Introduction 
 
Non-statistical algorithms which rely on fixed positional boundaries for associating objects, such as the standard 
Report Observation Association (ROTAS) codes, work well with the uncongested space and small space objects 
catalog of the past. However, the catalog, as well as the population of objects not listed in the catalog, has grown in 
size substantially. To complicate the situation further, satellites in allocated GEO clusters are actively kept in slots 
and require frequent station-keeping. As a result, orbital information often becomes stale as soon as or soon after an 
ephemeris is generated, which may result in cross-tagging and corrupt reported metric and photometric data. 
 
In optical images taken by Las Cumbres Observatory Global Telescope Network (LCOGT), one telescope pointing 
may show multiple satellites, but identification cannot be done with certainty given only positional information 
derived from the most recent TLEs- two or more satellites may be closer than the uncertainties in their calculated 
positions. 
 
In this paper, we test an algorithm that combines both metric and photometric data to identify satellites in a system 
that can be set up to process data and provide answers in near real-time. The tests were conducted on LCOGT data 
taken at various cadences and focused on the stressing scenario of GEO clusters and the occasional presence of non-
resident objects. Our use of metric data is different from techniques which rely on improving the ephemeris— the 
latter typically suffer from an inherent time lag from the last maintenance maneuver. 
 

2. Data collection and cadences 
 
Las Cumbres Observatory Global Telescope Network (LCOGT) owns and operates a network of 0.4m optical 
telescopes located in Chile, Maui, Australia, and the Canary Islands (Spain) that are used for SSA applications. Each 
telescope [Figure 1] has an SBIG STX-6303 CCD camera that provides a FOV of 0.3 by 0.5 degrees. Pixels are 1.16 
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arcseconds square on the sky.  All observations are made using a Pan-STARRS w filter, with a central wavelength 
of 665 nm and a width of 442 nm. 
 
Data collection for this study emulates operational satellite 
observations. To maintain the orbital parameters of a satellite, 
up to 6 observations are collected per day with a cadence of at 
least one hour. This is to ensure that a significant portion of the 
orbit is sampled. In addition, observations are scheduled at 
different times across different days for the same reason. The 
scheduling algorithm utilized schedules observations on a 
rolling basis by first checking if a site is experiencing good 
weather, if there are any conflicting observations, and if at least 
one hour has passed since the previous observation. This 
process somewhat randomizes the sampling and is able to fill in 
the orbit. 
 
Since geostationary satellites appear to remain over the same 
spot on Earth, they are always visible from a given sensor if 
above the sensor limits. Consequently, there are portions of the 
day when the satellite is not observable in optical wavelengths- 
when the Sun is up. This amount of time can be minimized by 
using multiple sensors located at different longitudes, provided 
the satellite is visible from those sites. Even though LCOGT 
has this ability, solely the 0.4m telescope in Chile is used for 
this study. 
 
During an observation, the telescope tracks the satellite making 
it a seeing-limited point and the background stars streaks 
[Figure 2]. The centers of the star streaks correspond to the 
position of that star during the middle of the exposure (i.e. 1 
second into a 2 second exposure). To determine the 
coordinates of the image, each streak center is 
measured and matched to stars in a known catalog 
using astrometry.net [2]. Once a successful solution is 
reached, the position of the satellite is measured. This 
technique produces positions accurate to within 0.8 
arcsec. Image time stamps are accurate to 10 
milliseconds. Each exposure is processed to remove 
the electronic bias or pedestal and is corrected for the 
pixel-to-pixel sensitivity variations.  
 
The wide-band brightness of the satellite is measured 
by integrating its flux using pre-existing 
astronomical image processing packages [3][4]. 
This flux is converted into an astronomical 
magnitude using Eq. 1 by referencing to a zero-point determined from catalogued stars of known brightness. The 
zero-point of each telescope is a constant known value. 
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Each measurement is grouped into time, w-mag, and J2000 right ascension and declination coordinates. In this 
report, we use the term tracklet to denote a metric and photometric measurement associated with a single signal 
integration interval. For geosynchronous objects, a tracklet corresponds to a fixed point in geocentric coordinates. 
 

Figure 1. LCOGT network telescope. 

Figure 2. Frame image with satellite and star tracks. 
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We collected three separate sets of data. Two sets are of the three ANIK satellites in the cluster located at 107W: 
satellites Anik F1 (NORAD #26624), Anik F1R (NORAD #28868) and Anik G1 (NORAD #39127). Observations 
in the first set span from August to December 2015, and depending on the weather conditions at site, they cover up 
to about 10 hours per night. In the second set, high cadence data of the same cluster was taken on Dec-10-2015. The 
last set was of the 101W cluster, the results of which are not presented in this paper. 
 

3. Concurrent spatiotemporal and brightness technique (COSTB) 

Correlating the tracklets with orbital element sets in the satellite catalog is a challenge when there are multiple 
objects in the sensor’s field of view and orbital information is not current or accurate enough to distinguish one from 
another using positional information. The problem is worsened by the occasional intrusion of objects which are not 
resident to the cluster. We propose using both positional information and reproducible photometry to distinguish the 
stabilized satellites and associate the tracklets with their identities. Reproducibility of photometry is expected of 
three-axis stabilized satellites. 

Positional information can be represented by an object’s apparent longitude and declination. Apparent longitude is 
derived from right ascension and TLE-based range. The main idea behind the COSTB technique is the use of both 
sources of information to infer a satellite’s identity. When the evidence presented by one source of information is 
inconclusive, we can check the evidence from the other source. This form of information fusion is performed via p-
values, which are metrics of likelihood. 

P-values are calculated based on the differences between expected and measured positions/magnitudes. The 
likelihood of a measured difference also depends on the empirically derived distribution of differences. COSTB 
does not provide better identification by improving the accuracy of the satellite’s orbit. It concurrently considers 
positional trends, spatiotemporal information, and photometry to perform association and correlation. It also refrains 
from assigning an identity when the evidence is not probabilistically robust. 

4. COSTB in production 

4.1 Generating baseline photometry or model light curves 

The flow of COSTB in production is shown in Fig. 3. Before kicking off automated satellite identification, model 
light curves must be generated for each satellite, and those light curves must be tagged correctly. The algorithm uses 
observed trends of apparent longitude to do so. At this time, trends in declination have not been used effectively to 
identify the satellites- occasional station-keeping maneuvers affect the trends of declination more so than those of 
longitude. 

 

Figure 3. Flow chart of COSTB processing 
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While orbital information contained in two-line element sets (TLEs) is not fresh, not sufficiently accurate and 
sometimes not at all representative if generated before a maneuver, the measured positions still display trends that 
qualitatively fit those of the element sets. Measurements from Aug-13-2015 as well as corresponding TLE derived 
positions of the three resident satellites in the 107W cluster are shown in Fig. 4. The trends displayed by the 
measured longitudes show qualitative similarity to the TLE-predicted values.  

 

Figure 4. Measured apparent longitudes (color-coded dots) and TLE-based longitudes (colored lines) of the three 
Anik satellites in the 107W cluster on August 13, 2015. The measured and calculated positions show similar trends.  

The trends of measured longitude approximately agree with the corresponding TLE-based trends, while the 
designated satellite identities do not. We use the residuals of the TLE and measured longitudes to estimate the 
likelihood of each identity, as shown in Fig. 5. A RANSAC-based algorithm [5] is used to find the best fit linear 
trend for each element set [Fig. 5]. 

 

Figure 5. Detrended apparent longitudes (color-coded dots) and linear trend retrieved by RANSAC for each satellite (TLE) for 
Aug-13-2015. Color coding is according to the preliminary site-assigned IDs.  

Copyright © 2016 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) – www.amostech.com



For each measured longitude, a p-value score is computed. These scores range from 0 (not likely) to 1 (very likely). 
The parameters of the distribution of measured longitudes are empirically estimated and used to calculate the p-
value of each tracklet. The distribution is assumed to be normal and p is calculated using Eq. 2, where Δl is the 
tracklet’s apparent longitude residual and σ an a-priori estimate of the standard deviation of the Δl distribution. 
Tracklets near the best fit line will have a high p-value. 

                      (2) 

It is fairly straightforward to compute a composite p-value using Fisher’s method [6] and estimate the likelihood of 
combined evidence, or multiple p-values. The tracklet p-values for Aug-13-2015 [Fig. 6] are well separated and 
readily distinguishable: for each TLE, the highest p-values are clearly higher than the second highest p-values. In 
this data set, the algorithm-assigned identities agree with the site-assigned identities. 

 

Figure 6. P values of the tracklets recorded Aug-13-2015. Note the substantial separation between the high p-
valued dots from the lower p-valued dots. For this night, preliminary identification assigned by the site, shown as 
color code, agrees with the order of p-values. 

On the night before, Aug-12-2015, the site-assigned identities disagree with the COSTB IDs [Fig. 7]. In the first 
panel, the RANSAC algorithm associates all tracklets in the vicinity of the nearly horizontal line as belonging to 
TLE #1. Within this panel, the site assigned the first group of tracklets as TLE #2 (green) and the last three groups 
as TLE #3 (blue). The site ID’s sequence is green-blue-blue while the algorithm selects the dots near the line. The 
assignment of TLE #3 in the third panel shows similar issues with mistagging. 

The Aug-12-2015 p-values are shown in Fig. 8. The assignment of tracklets to TLE #2 is straightforward, however 
the second group of tracklets in the top and bottom panels are difficult to identify as the p-values are not easily 
separable. The site assigned some of these tracklets as green (TLE #2) and others as blue (TLE #3). When p-values 
are ambiguous, the algorithm does not assign identities- the p-values must all be above a user-defined threshold. 

Using longitude-based p-values, we are able to identify the tracklets [Fig. 6 and 8]. While it is not clear from Fig. 9 
that the algorithm tags are correct, the corresponding tagged light curves, shown in Fig. 10, suggest that the tagging 
was done reasonably well. Note that color-coding is based on algorithm-assigned identities in these plots. 
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Figure 7. Detrended apparent longitudes (color-coded dots) and linear trend retrieved by RANSAC for each satellite (TLE) for 
Aug-12-2015. Color coding is according to the preliminary site-assigned IDs. For this session, the tracklets with different site-
assigned IDs line up with the linear trends found for the first and third TLEs.  

 
Figure 8. P values of the tracklets recorded Aug-12-2015. In the top and bottom panels, there is no clear  separation between the 
high p-valued dots from the lower p-valued dots. For this night, preliminary identification assigned by the site, shown as color 
code, does not agree with the order of p-values. 
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Figure 9. Longitudes of tracklets with COSTB-assigned IDs. Color coding is based on the algorithm.  

 
Figure 10. Magnitude of tracklets with COSTB-assigned IDs. Color coding is based on the algorithm. The magnitudes follow 
three distinctive traces. Color-coding is based on algorithm-assigned identities. 

In general, the three light curves in Fig. 10 are well separated and visually continuous except for near 8UT. At first, 
the crossing of light curves near 8UT seems to be problematic because there is no clear distinction between the 
green and blue tracklets based on magnitude. However, one also notices that the measured longitudes of those two 
satellites (blue and green in Fig. 8) are well distinguishable for those times. On the other hand, while the red and 
blue longitudes are nearly indistinguishable near 7UT, their magnitudes are quite different and easily 
distinguishable. This illustrates why using both positional and photometric information is more effective than using 
either position or photometry alone.  
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4.2 On-line tagging 

With the photometry baseline established, the COSTB algorithm can be applied to measured longitudes and 
magnitudes in near-real-time. The term “on-line” is used to mean that identification is required after each 
measurement and in this context, is equivalent to “near real time”. The delay is due to data processing and data 
retrieval. The COSTB algorithm executes in less than 10 seconds with a PC running Matlab and, depending on 
factors such as network connection, data processing can begin on the order of minutes after being collected. 

The longitude-based p-values are calculated as in 4.1. For on-line tagging, we need to add photometric evidence. To 
demonstrate the utility of COTSB in congested areas of the GEO belt, we studied the 107oW ANIK cluster and the 
101oW cluster. Only the results on the more challenging ANIK cluster will be presented here.  

For each measurement, there are typically three tracklets for the three resident satellites and additional ones for non-
resident objects. For each tracklet, three p-values [Eq. 2] are calculated to represent its relative likelihood of 
belonging to each of three satellites. In the absence of non-resident objects, only three tracklets are measured, and 9 
longitude-based p-values calculated. Those 9 longitude-based p-values are combined with the 9 magnitude-based p-
values. The discussions of magnitude-based p-values will be presented later. The best combined p-value for each 
resident (ID) is selected based on two criteria: being the highest p-value in the cluster and its ratio to the next highest 
value greater than a user-defined threshold. While absolute likelihood is not available, the use of probability ratio is 
justified by the law of likelihood (ratio).  

The magnitude-based p-value is calculated as follows. For three-axis stabilized satellites, visual magnitudes are 
reproducible in UTC from one night to the next. For each satellite, its expected magnitude can be inferred from 
previous photometry (model or baseline light curves).  

The expected magnitude of each satellite can be inferred from baseline photometry. The abrupt effects of 
atmospheric extinction are effectively removed by applying the technique of differential magnitude [7]. To calculate 
the expected magnitude, we use a third order polynomial fit to model data in the relevant time interval and find the 
expected value by interpolating. The polynomial fit is weighted to de-emphasize old photometry and emphasize 
more recent data. This step is necessary because while light curves are reproducible, they also exhibit a noticeable 
seasonal dependence. 

A high cadence continuous light curve is not necessary as long as there is enough magnitude data sampled around 
the time of estimation. The likelihood of each tracklet relative to each resident satellite is represented by a 
magnitude-based p-value. Deviations of the measurements from the expected magnitudes are used to calculate the p-
values. 

The final selection of the most likely identity for a tracklet is based on a combination of the best longitude and 
magnitude p-values. The selection logic has been designed (1) to minimize the number of false identities and (2) to 
make use of both positional and brightness information. By setting the selection criterion stringent, we can manage 
the occurrence of false identification. 

4.3 Updating baseline photometry 

After each session, baseline photometry is updated to reflect seasonal changes that continuously transform the light 
curve. The magnitudes of all identified tracklets are added to the database with time stamps. The stamps are used to 
track the age of photometry data and to calculate the weights of the polynomial fit mentioned in section 4.2.  

Fig. 12 shows all the magnitudes of the baseline database and new measurements from the test. The baseline was 
originally formed with measurements described in section 4.1 (Aug 13-16). The color-coded dots represent the Aug 
13-16 database. The color-coded plus symbols represent new data contributed by Aug 18 measurements. As an 
example, the new data points (+ symbols) near 0 UTC are circled in Fig. 13. Other clusters of new magnitudes can 
be found at 4, 6 and 8 UTC. 
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Figure 11. On-line or near real time tagging of the tracklets. 

 

Figure 12. On-line or near real time tagging of the tracklets. 
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Figure 13. Magnitude of tracklets with COSTB-assigned IDs. Color coding is based on the algorithm. The dots are 
magnitudes which have been identified in the baseline period. The color-coded plus symbols are the magnitudes 
which have been identified on-line  in the Aug-18-2015 test. The magnitudes follow three distinctive traces. 

 

5. Detection of non-resident objects 

Data taken Dec-10-2015, between 1 and 9 UTC, was collected with a dense cadence in order to (a) construct a set of 
continuous light curves to be used as reference for the 107 W cluster and (b) demonstrate the ability to detect in near 
real-time the presence of a non-resident object approaching or entering the cluster. The second objective is quite 
important because uncorrelated objects are known to cause incorrect tags and compromise metric data. The ability to 
flag intruding objects is also crucial for SSA. We find in Fig. 14, a display of apparent longitudes and declinations as 
functions of time, a triplet of objects with similar trajectories (resident satellites), a streak of tracklets with high 
inclination (red) between 6:40 and 7:24 UTC and a single tracklet (black) in the vicinity of the cluster at 2:34 UTC. 
The small longitudinal drift of the highly inclined track (red) suggests that this object is near geosynchronous. The 
object responsible for the single tracklet (black) is probably in a low orbit. 

The analysis shows that there were several mis-tags of the resident satellites as indicated by the flip-flopping 
identities (color-coding in Fig. 14 is based on initial site-assigned tags) of the tracklets in each of the three tracks in 
the middle of the data cube. Applying position-only COSTB techniques, the same used to generate baseline light 
curves in section 4.1, to this data reveals the identities of the three satellites associated with the triplet of continuous 
tracks. Fig. 15 shows the retagged data points for the resident satellites. 
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Figure 14. The tracklets were recorded on Dec-10-2015 and shown in a scatter plot in a detrended DEC-detrended 
longitude and UTC coordinate system. The dots are color-coded based on initial site-assigned IDs. 

 

Figure 15. The tracklets were recorded on Dec-10-2015 and shown in a scatter plot in a detrended DEC-detrended 
longitude and UTC coordinate system. The dots of the resident satellites are shown and color-coded based on 
COSTB identification. 

The tagged magnitudes shown in Fig. 16 suggest that the identification of the Anik satellites is satisfactory. Only 
three tracklets were discernibly incorrect. Two of those occurred at the beginning of the measurement session when 
longitudinal trends had not been established. The third incorrect tag occurred at 4:10. It’s encouraging to note that 
out of the 1089 tracklets recorded that night, only three seem to be incorrect in this visual inspection. The benefit of 
determining where the resident objects are at any given time helps us uickly identify non-resident objects. By the 
process of elimination, it is straightforward to single out non-residents or uncorrelated objects. 
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While this analysis was done after the full sets of data had already been collected and we have not yet shown that the 
algorithm can be used in near real-time, we are confident that on-line identification and flagging of uncorrelated 
objects can be achieved using concurrent spatiotemporal and photometric information.  

 

Figure 14. Magnitudes of the resident satellites with color coding based on COSTB identification. 

6. Discussions and Conclusion 

The objective of this study was to demonstrate that the tracklets of three-axis stabilized geosynchronous satellites 
can be identified and correlated with the element sets in near real time. To generate near real time tags for 
measurements, we developed an algorithm that combines astrometric and photometric information that computes the 
likelihood (p-values) of each measurement relative to each resident satellite. For each tracklet and each element set, 
we obtained two p-values, one representing how well the longitude fits the linear trends of the the respective 
longitudes, and the other showing how well the magnitudes agree with model photometry. To calculate the latter, we 
collected “baseline” light curves and we continue to update them with newly identified magnitudes. For a cluster of 
three resident satellites, there are 6 p-values for each tracklet. Selecting the best fit ID is based on all those 6 p-
values. While the logic of selection is still preliminary, the results have been satisfactory. 

Further development of the selection logic is warranted to reduce the number of mis-tags and non-results. An 
essential step for this process is to update the light curves or model brightness values to accommodate seasonal 
variations. Once the magnitudes are identified with high combined p-values, they can be added to the set of 
magnitudes. Using time stamps, the more recent magnitudes values can displace the older values.  

Currently, the decision to add new magnitudes has not been automated because we have not developed an algorithm 
that validates the new data. Validation is needed to reject magnitudes that have been corrupted by thin clouds. While 
the computation of magnitude-based p-values is not affected by cloud extinction because we use differences in 
magnitudes, the baseline magnitudes can still be corrupted by cloud-affected data. We will work on automating this 
step. 

Rapid identification of resident satellites will greatly reduce the adverse effect of mistagging metric and photometric 
information. When the combined probabilistic indicator is marginal, the site has the option of not reporting metric 
data. Because identification of resident satellites can be achieved as soon data is available, the ability to detect non 
resident objects is greatly enhanced.  
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