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ABSTRACT

Speckle interferometry is a common method used to obtain astronomical images using ground-based
telescopes to image through a turbulent atmosphere-telescope system. However, when imaging more
complicated astronomical objects such as satellites, speckle interferometry methods necessitate the sep-
arate recovery of the object’s Fourier phase to obtain more detailed images. Bispectral methods are
one approach to solving this complementary problem of phase recovery in speckle interferometry. They
retrieve an object’s Fourier phase by matching it to the object’s bispectrum, a collectable statistical
quantity from the speckle data. Mathematically, phase retrieval from the bispectrum can be formulated
as a large-scale, non-linear least-squares problem. We consider several optimization schemes from the
literature for solving this phase retrieval problem. In particular, we focus on accelerating the speed and
convergence of this optimization while maximizing the quality of the recovered image through efficient
implementation, Hessian based optimization, and appropriate regularization.

1. INTRODUCTION

Astronomers have developed a number of techniques to solve the problem of obtaining high-resolution
astronomical images in the visual spectrum from ground-based telescopes. Due to the faintness of many
such astronomical objects, particular interest is paid to techniques that can produce high-resolution
images from photon-limited data. One common method for obtaining high-resolution images under such
circumstances is speckle interferometry, which was initiated by Labeyrie’s observation in 1970 that high
spatial frequency information could be recovered from low-light, short-exposure images [4]. His method
uses two sets of short-exposure image frames, one set of the desired object and the other of a reference
star, to obtain a single, composite reconstruction of an object’s energy spectrum (or Fourier modulus.)
However, while the object’s recovered energy spectrum contains sufficient information about the object to
produce images for many simple astronomical objects, it proves insufficient for obtaining high-resolution
images for more complicated objects. In the case of a more complicated object, obtaining a high-resolution
image also necessitates the reconstruction of the object’s Fourier phase. Several methods have been
proposed for this phase reconstruction, most utilizing an object’s triple correlation, its bispectrum, or
some subset of these high-order statistical correlation measures which are obtainable from the data [3, 9].

The goal of this paper is to review and expand on several of the algorithms presented in the literature
for phase recovery using an object’s bispectrum. In particular, we focus on the mathematical formulations
of these phase retrieval algorithms as large-scale, non-linear least-squares problems and approach them
using an optimization framework. Areas of interest include efficient implementation, the potential for
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Hessian or approximate-Hessian based optimization, and appropriate regularization to improve the quality
of the resulting images.

The paper is organized in the following sections. Section 2 provides a brief description of the speckle
interferometry problem and the efficient collection of the object’s bispectrum. Note that this paper only
aims to cover this setup in sufficient depth to present the subsequent bispectrum recovery problem in a
cogent manner. For a more extensive discussion of the speckle interferometry problem, we recommend the
articles listed in the bibliography, particularly the paper of Negrete-Regagnon [7]. Section 3 introduces
the problem of phase recovery from an object’s bispectrum including the objective functions, gradients,
and (approximate) Hessians used for the optimization schemes. Section 4 provides some numerical results
for optimization, and the final sections offer some concluding remarks and acknowledgements.

2. PROBLEM SETUP

Calculating the Object Power Spectrum

Before one can consider Fourier phase recover using bispectral methods, one must approach the primary
problem of speckle interferometry: recovery of the object’s Fourier modulus or power spectrum. To do
this, we start from the model for describing the blurring of an object f(x, y) by an atmosphere-telescope
system resulting in an observed image i(x, y). For a single short-exposure observation, this blurring is
expressed in terms of the convolution operator

i(x, y) =
∫∫ ∞
−∞

f(x′, y′)h(x′ − x, y′ − y)dx′dy′ (1)

where h(x, y) is the point spread function (PSF) that models the blurring of a given point of the object as
a function of the atmosphere-telescope system. In Fourier space, the convolution property of the Fourier
transform allows the equation above to be expressed by

I(u, v) = F (u, v)H(u, v) (2)

where the multiplication is taken component-wise in two dimensions. Here, I(u, v), F (u, v), and H(u, v)
denote the two dimensional Fourier transforms of their lower-case counterparts in Eq. 1. We refer to
H(u, v) as the optical transfer function (OTF), which can be expressed as a product of fixed aberrations
due to telescope optics and random aberrations due to atmospheric turbulence. A more complete discus-
sion of the properties and accurate simulation of H(u, v) can be found in the paper by Negrete-Regagnon
and the references therein [7].

The equations above describe a single instance of the blurring of an object, resulting in a single short-
exposure image frame. In practice when dealing with photon-limited imaging, multiple frames are needed
to provide sufficient data to recreate a single, high-resolution composite image. Following this lead, if we
assume a set of N short-exposure images and denote the Fourier transform of the kth image by Ik(x, y),
then the ensemble average∗ of the N resulting realizations of Eq. 2 is given by

〈Ik(u, v)〉 = F (u, v)〈Hk(u, v)〉 (3)

This approach is equivalent to producing the Fourier spectrum of a single long-exposure image, but has
the drawback of suppressing desirable high-frequency information due to the “averaging out” effect of
the ensemble-average operation. In order to avoid this drawback, Labeyrie proposed taking the ensemble
average of the modulus squared of the Fourier transform of the data [4]

∗Define ensemble average by 〈Ik(u, v)〉 =
1

N

NX
k=1

Ik(u, v)
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〈|Ik(u, v)|2〉 = |F (u, v)|2〈|Hk(u, v)|2〉 (4)

Here, the modulus squared operation produces strictly non-negative values for the ensemble average
which allows for the retention of high-frequency information about the Fourier spectrum of the object. It
follows then that simple component-wise operations provide an expression for the recovery of the Fourier
modulus of the object

|F (u, v)| =
[
〈|Ik(u, v)|2〉

〈|Hk(u, v)|2〉+ ε

] 1
2

(5)

We make several remarks about the above expression. First, the ε in the denominator is a small parameter
added to prevent division by zero. Also, we note that the modulus squared OTF, |H(u, v)|2, is commonly
called the modular transfer function (MTF) and in practice is unknown. Instead, it is replaced by the
ensemble average of the Fourier modulus squared of an appropriate reference star, the second set of
short-exposure image data collected for speckle interferometry. If we denote the kth frame of this star
data by sk(x, y) and its Fourier transform by Sk(u, v), we have

〈|Sk(u, v)|2〉 ≈ 〈|H(u, v)|2〉 (6)

This substitution works because the reference star acts as a point source, and the data should be collected
concurrently with the object data in order to ensure the same astronomical seeing conditions [7]. Effecting
this substitution in Eq. 5, we can calculate the object’s Fourier modulus, or power spectrum, of the object
being imaged by

|F (u, v)| =
[
〈|Ik(u, v)|2〉
〈|Sk(u, v)|2〉+ ε

] 1
2

(7)

Once the above expression has been calculated, a further windowing procedure must be applied in order
to prevent the computed power spectrum from being overwhelmed by noise in the data. Details for this
can be found in Section 7 of Negrete-Regagnon [7].

The above provides a short summary of both the impetus and the means to calculate an object’s power
spectrum. A few other remarks are worth noting. First, an object’s power spectrum provides the most
significant information relevant to accurate image recovery using speckle interferometry. It is the primary
problem in the sense that without an accurate recovery of the object’s power spectrum, recovering its
Fourier phase will not allow for a good resultant image. Related to this, the ability to recover the object’s
power spectrum accurately is dependent on the data signal to noise ratio (SNR) which in turn depends on
atmospheric conditions, light levels of the data (or photoevents per data frame), and optics setup among
other things. For a more complete discussion of these factors, we again recommend Negrete-Regagnon
and its references [7].

Accumulating the Object Bispectrum

Having outlined a method for obtaining an object’s power spectrum using speckle interferometry, we now
turn to the problem recovering the object’s Fourier phase. Most techniques for this focus on the use of
correlation techniques, with much of the literature focusing on the use of the object’s triple correlation
and its Fourier transform, the bispectrum [3, 9]. An object’s triple correlation measures the correlation
of the object against two independently shifted copies of itself in the spatial domain. In two dimensions,
this is expressed by

fTC(x1, y1, x2, y2) =
∫∫ ∞
−∞

f∗(x, y)f(x+ x1, y + y1)f(x+ x2, y + y2)dxdy (8)
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Taking a Fourier transform of the equation above and using the convolution property, we get the object’s
bispectrum

F (3)(u1, v1, u2, v2) = F (u1, v1)F (u2, v2)F ∗(u1 + u2, v1 + v2)

= |F (3)(u1, v1, u2, v2)| exp[iβ(u1, v1, u2, v2)]
(9)

Noting that we already have a method for obtaining the object’s Fourier modulus from the previous
section, we shift our focus to the exponential term of the bispectrum and its angle, which we call the
phase, β(u1, v1, u2, v2).

First, we want to establish the relationship between the phase of the bispectrum and the object’s
phase that we want to recover, φ. It has been shown that similarly to Eq. 4 we can relate the collected
ensemble bispectrum of the data to the bispectrum of the object by

〈I(3)
k (u1, v1, u2, v2)〉 = F (3)(u1, v1, u2, v2)〈H(3)

k (u1, v1, u2, v2)〉 (10)

Further analysis by Lohmann et al. has shown that the bispectral transfer function, 〈H(3)
k (u1, v1, u2, v2)〉

has an expected real value, meaning that its phase is effectively zero [5]. This then gives a direct
relationship between the phase of the data’s bispectrum, β, and the phase of the object that is to be
recovered

β(u1, v1, u2, v2) = φ(u1, v1) + φ(u2, v2)− φ(u1 + u2, v1 + v2)

β(−→u ,−→v ) = φ(−→u ) + φ(−→v )− φ(−−−→u+ v)
(11)

Here, the second expression is identical to the first but substitutes in the vector notation −→u = (u1, v1)
and −→v = (u2, v2). This convention will be used for the remainder of the paper to simplify indexing.
This equation provides a direct relation between the elements of the phase of the data bispectrum and
the phase of the object, and it serves as the starting point for all of the phase recovery algorithms in
Section 3.

However, in order to use Eq. 11 to recover the object phase, one must first be able to efficiently
accumulate the phase of the collected ensemble bispectrum of the data, β(−→u ,−→v ). To do this, we again
look at the exponential term in Eq. 9. Denoting by ψ the phase of a single data frame Ik(u, v), the
exponential part of the equation can be written as

exp[iβ(−→u ,−→v )] = exp[iψ(−→u )] exp[iψ(−→v )] exp[−iψ(−−−→u+ v)] (12)

Taken over the set of N data frames, the phase of the bispectrum then becomes

β(−→u ,−→v ) = angle

(
N∑
k=1

exp[iψk(−→u )] exp[iψk(−→v )] exp[−iψk(−−−→u+ v)]

)
(13)

From this, one can see that efficiently computing the object’s bispectrum becomes a question of identify-
ing the (−→u ,−→v ,−−−→u+ v) triplets necessary to evaluate the right hand side for each data frame (the triplets
remain constant across all frames.) The most efficient method of doing this is by means of an indexing
structure that saves the indices of these triplets and vectorizes computation of the bispectrum accumu-
lation. Additional efficiency can be attained by exploiting the symmetries in the phase of real images
in Fourier space. A description of the logic behind such an indexing structure can be found in work by
Tyler and Schulze [8].
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We note that even with the efficiency afforded by vectorization and symmetry available when using
an indexing structure, the number of bispectrum elements becomes infeasible if −→u and −→v span over
the whole image. In practice, we restrict −→v to a set within some small radius and −→u and −−−→u+ v to
within a larger radius. Fortunately, this choice is not just a computational compromise, but is driven by
considerations inherent in the problem. Both radii are sensitive to both astronomical seeing conditions
and telescope optics and should be chosen with care [8]. A good choice has the effect not only of ensuring
the collected bispectrum has a good signal to noise ratio but also has the practical benefit of making the
number of bispectrum elements computationally feasible for the phase recovery problem.

3. PHASE RECOVERY FROM THE BISPECTRUM

Objective Functions

Once the data bispectrum has been collected, we are prepared to approach the problem of recovering the
object’s phase. All the methods for the phase recovery are based on the relationship provided in Eq. 11.
Considering this relationship across all bispectrum phase elements, we can reformulate the expression in
matrix-vector form

β = Aφ (14)

Here, β is anm×1 vector of all the accumulated bispectral elements corresponding to distinct (−→u ,−→v ,−−−→u+ v)
triplets, φ is the n×1 dimensional unknown object phase, and A is an m×n sparse matrix (with m� n)
with three non-zeros entries per row, two 1’s and one −1 corresponding the sign of the phase elements in
Eq. 11.

From this expression, fitting the phase to the data is formulated as a large-scale least squares problem.
However, linearity is lost due to the fact that the collected bispectrum is only known modulo-2π (or
wrapped.) One idea then is to unwrap the phase to obtain a linear least-squares problem, as proposed by
Marron et al. [6]. Another option is to solve the problem as a non-linear least-squares problem. Multiple
schemes for solving the problem in its non-linear form have been proposed. We adopt this framework.
The first scheme we look at was proposed by Haniff [2]

min
φ
E1(φ) = min

φ

1
2

m∑
j=1

(mod2π(βj − [Aφ]j))
2
wjj (15)

where wjj corresponds to the signal-to-noise ratio of the jth collected bispectrum phase element [7]. If
we define W to be a diagonal matrix with entries wjj and differentiate with respect to the phase, we then
get the gradient and an approximate Hessian

∇φE1 = −ATW [mod2π(β −Aφ)]

∇2
φE1 = ATWA

(16)

We remark here that the introduction of the modulo-2π introduces a number of considerations for the
problem. First, the modulo causes a loss of convexity as there is a periodic local minima for each phase
element every 2π. This makes optimization methods more likely to be caught in one of these local minima
and more sensitive to an intelligent starting guess. Furthermore, E1(φ) is non-differentiable at the many
periodic jump-continuities where the modulo-2π misfit wraps from 0 to 2π. In the derivatives above, we
have simply ignored the modulus during differentiation, an idea which is used in the literature and which
in practice has proven to be effective. However, it may introduce issues during the optimization.
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To avoid the issue of non-differentiability, Haniff’s paper also proposes an alternative non-linear least
squares scheme that minimizes over the misfit in the object’s phasor [2]†. The misfit function for this
scheme is given by

min
φ
E2(φ) = min

φ

1
2

m∑
j=1

(
[cos(βj)− cos([Aφ]j)]

2 + [sin(βj)− sin([Aφ]j)]
2
)
wjj (17)

where the weights wjj are defined identically as above. Again, setting W = diag(wjj) and differentiating
with respect to the phase, we derive expressions for the gradient and approximate Hessian

∇φE2 = ATW [cos(β)� sin(Aφ)− sin(β)� cos(Aφ)]

∇2
φE2 = ATWDA

(18)

Here, � denotes the Hadamard product or component-wise multiplication of vectors and D is a diagonal
matrix defined by D = diag(cos(β) � cos(Aφ) + sin(β) � sin(Aφ)). Note that this formulation still is
non-convex with periodic local minima every 2π, but it is differentiable everywhere.

In both formulations of the phase-matching problem above, the gradients and Hessians are calculated
by differentiating with respect to the phase, φ. However, the final goal of the optimization is to combine
the matched phase with the object’s calculated power spectrum to obtain the best quality image possible
from the data. Thus, it would be useful if the least-square optimization for matching the phase took
into account the resulting image. To this end, Glindemann and Dainty proposed a different approach
to Haniff’s first objective function, E1(φ). Rather than differentiating with respect to the phase, they
proposed considering the phase retrieval as a function of the resultant image, E1(f) [1]‡. To do this one
must also differentiate with respect to the resultant image. This can be done as an extension to Eq. 16
using the chain rule to differentiate the phase with respect to the image. The gradient and Hessian
resulting from this approach are respectively,

∇fE1 = −∂φ
∗

∂f
ATW [mod2π(β −Aφ)]

∇2
fE1 =

∂φ∗

∂f
ATWA

∂φ

∂f

(19)

Here, the gradient is nearly the same as Eq. 16 with the exception of the additional ∂φ
∂f operator. An

expression for this operator and its adjoint, ∂φ
∗

∂f , can be found in the Appendix.

Using this framework, we can also differentiate Haniff’s second objective function, E2, using Glin-
demann’s idea. To our knowledge, this formulation for the minimization has not been explored in the
literature and represents a new extension on the ideas above. The gradient and Hessian of E2(f) with
respect to the resultant image are given by

∇fE2 =
∂φ∗

∂f
ATW [cos(β)� sin(Aφ)− sin(β)� cos(Aφ)]

∇2
fE2 =

∂φ∗

∂f
ATWDA

∂φ

∂f

(20)

†By phasor, we denote the normalized complex exponential of a phase element i.e. a phase φ corresponds to
the phasor exp(iφ) = cos(φ) + i sin(φ)
‡The resultant image can be seen as f = F−1 (|F (u, v)| � exp[iφ]) where F−1 is an inverse 2D Fourier transform

and F (u, v) is the object’s calculated Fourier modulus.
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Differentiating both objective functions with respect to the resultant image has a number of possible
advantages. First, we remarked above on the non-convexity of both least-squares formulations and the
presence of many local minima. Differentiating with respect the resultant image has the potential to
drive convergence to different minima, potentially resulting in improved image quality. Furthermore,
differentiating with respect to the image rather than the phase presents the prospect for regularization
with respect to the resultant image. This would allow for the enforcement of certain desirable image
traits like non-negativity. With this in mind, we look at a potential regularizer.

Regularization

We look at a regularization scheme proposed by Glindemann and Dainty for enforcing non-negativity
[1]. This regularization is used with E1(f) and E2(f) when differentiated with respect to the resultant
image. The regularization introduces a penalty term to discourage the presence of negative pixel values
in the resultant image and is written as

E+(f) =
α

2

∑
γ

|f(γ)|2 (21)

where γ is the set of indices corresponding to negative image values at the current iteration. The
weighting parameter α should be chose so as to drive the solution to positive values while still allowing
the optimization to effectively match the object’s phase to the data bispectrum. Some discussion for
the selection of the regularization parameter will be included in Sec. 4. Next, we must differentiate the
regularizer; the element-wise first and second derivative are given then by

∂E+

∂fj
=

{
αfj if j ∈ γ
0 else

∂2E+

∂f2
j

=

{
α if j ∈ γ
0 else

(22)

These can then be put into vector and sparse, diagonal matrix form for the gradient and Hessian, respec-
tively. Summing them with the gradient and Hessian from Eqs. 19 and 20 then follows.

4. NUMERICAL RESULTS

To test and compare the objective functions introduced in the previous section, we first simulated the
necessary sets of speckle interferometry data. We generated 50 frames of short exposure data for both
the object and the reference star with Fried parameter D/r0 = 30, using different seeds for the random
number generator to ensure independence of the randomness of the two data sets. The object data
was scaled to include 3e6 photo-events per frame and zero-mean Gaussian noise with standard deviation
σrn = 5 was added. The star data was scaled to 5000 photo-events per frame.

From this data, we collected the object’s power spectrum and phase of the data bispectrum. Before
testing the various optimization schemes, we note once again that the objective functions E1(φ), E2(φ),
E1(f), and E2(f) all have frequent local minima. As a consequence, the minimization of both objective
functions is highly dependent on a good initial guess for the phase. To generate this guess, we used the
recursive phase recovery scheme proposed by Tyler [8].

Using the initial phase collected via the recursive algorithm, we then tested gradient descent, non-
linear conjugate gradient (NCLG), and Gauss-Newton methods for minimizing each of the four schemes
proposed in the previous section. Gradient descent is included as a benchmark while NLCG has been
preferred in previous implementations due to reluctance to implement the large linear system solves
necessary for Newton-based optimization [7]. Newton-based methods pose the challenge of solving a
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Figure 1: The subplots show the convergence of the proposed optimization strategies for matching the
object phase φ to the phase of the data bispectrum for 50 frames and D/r0 = 30 with stopping tolerance
tol = 10−6. Subplots (1, 1) and (1, 2) show, respectively, the results for the objective functions E1(φ) and
E2(φ) optimized with respect to the phase, while subplots (2, 1) and (2, 2) show the results for E1(f)
and E2(f) when differentiated with respect to the resultant image. Note that all methods converge to
approximately equal levels, but the Hessian-based methods reach their minima more quickly than the
gradient-based methods. However, this effect is not as apparent when differentiating with respect the
resultant image in subplots on the bottom row.

linear system with the Hessian when choosing a descent direction, but offer the promise of improved
convergence. Thus, we consider whether the Hessian solve can be made efficient enough to offset the
additional cost associated with the method.

Several choices were made for methods parameters. For each optimization method, we used a back-
tracking Armijo line search for the step length parameter. We note that this does not necessarily satisfy
the strong Wolfe conditions necessary for a descent direction in NLCG, but in practice it has proved
sufficient. The results of using each minimization scheme on each of our objective functions can be seen
in Fig. 1. For stopping criteria, we used the relative change in the objective function per iteration. That
is, if the objective value failed to decrease sufficiently by a given tolerance at each iteration, the method
was stopped.

From Fig. 1, we can see that the methods perform as expected in terms of convergence: NLCG
outperformed gradient descent and Gauss-Newton was superior to both in terms of convergence per
iteration. These results were more pronounced in for E1(φ) and E2(φ) than in E1(f) and E2(f), but
the trend remains. However, the results from the figure do not give an indication of the total cost of
the iterations in terms of time and computation. If the cost of the Hessian solve in the Gauss-Newton
method is too costly, the improvement in convergence per iteration may be offset by the expense of each
iteration itself. Thus, we must discuss the efficiency of the Hessian solve and per iteration cost of each
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Figure 2: This shows the non-zero values for the Hessian ATWA and its treatment for the objective
functions associated with the Hessians in Eqs. 16 & 18. The Fourier radius is 64 and second radius of 5
for a 256×256 image. These radii and considerations for symmetry limit the number of phase values to be
recovered, making the matrix highly singular and sparse. The full Hessian with dimension 2562×2562 can
be seen in the first subplot. A symmetric minimum degree permutation shifts the non-zeros toward the
upper left of the matrix in subplot two. In the third subplot, we extract the non-singular sub-matrix in
the upper left corner, extracting a truncated Hessian (dimension 7062× 7062 for these radii.) Finally, we
compute an incomplete Cholesky factorization of this truncated Hessian in subplot four, which preserves
the sparsity pattern and limits fill in.

method before making any comment on the preferability of one method to another.

Handling the Hessian Solve and per Iteration Cost

To approach the Hessian solve for each iteration of Gauss-Newton using E1(φ) and E2(φ), we first note
that the Hessian for E1(φ) in Eq. 16 is independent of the φ making it constant for all iterations of the
optimization. As such, factorization for a direct, sparse solver is an option because any factorization can
be computed once and stored for all iterations of the method. We also recall that due to signal to noise
ratio considerations and the symmetries of real images in Fourier space, the number of phase elements
ñ2 to be recovered for an n× n image is significantly less than n2 and exists within some radius on half
of the Fourier plane. This means that the Hessian is highly rank deficient. Lastly, we note for E1(φ), the
Hessian is symmetric positive semi-definite because W has positive entries. Here, the semi-definiteness
is a direct result of the rank deficiency.

Bearing these traits in mind, we implemented the following approach for the Hessian of E1(φ). First,
we compute and store a symmetric approximate minimum degree permutation to shift the non-zero rows
and columns of the Hessian to the upper upper left-hand corner of the matrix. Next, we extract the
resultant sub-matrix corresponding to the non-zero part of the Hessian. This sub-matrix has dimension
ñ2 × ñ2 and is much smaller than the full Hessian. It is also symmetric positive definite. As such, we
can compute the Cholesky factorization or incomplete Cholesky factorization of the sub-matrix once and
store the factors for all subsequent iterations of the method. This reduces the Hessian solve for each
iteration from a potentially O(n3) operation to a permutation followed by two smaller O(ñ2) triangular
systems, while the factorization is only done once. Additionally, it ensures that the non-zero components
of the direction in the optimization correspond to the phases of elements in the Fourier plane which we
wish to recover. In practice, we tend to use the incomplete Cholesky factorization because it minimizes
fill in and maintains the sparsity pattern which speeds up solving the triangular system while delivering
similar results in the optimization. Fig. 2 shows the transition for the permutation, truncation, and
factorization of the Hessian matrix using MATLAB’s spy.m function.

For the Hessian of E2(φ), the strategy used for the Hessian of E1(φ) presents a problem: the matrix
D in the Hessian in Eq. 18 is dependent on φ. Also, D may contain non-positive entries causing the
extracted permuted matrix to lose both positive definiteness and positive semi-definiteness, thus pre-
venting the Cholesky factorization. To avoid these complications, we omit the matrix D in practice,
making the Hessian for E2(φ) equal to that of E1(φ). This then allows us to follow the strategy used
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E1(φ)
Gradient Descent NLCG Gauss-Newton

LS/Iter. 14.5 15.5 1.0
Sec./Iter. 0.58 0.62 0.12

E2(φ)
Gradient Descent NLCG Gauss-Newton

LS/Iter. 14.4 14.9 1.0
Sec./Iter. 0.86 0.89 0.16

E1(f)
Gradient Descent NLCG Gauss-Newton

LS/Iter. 15.4 14.0 1.0
Sec./Iter. 0.84 0.75 11.06

E2(f)
Gradient Descent NLCG Gauss-Newton

LS/Iter. 15.6 14.9 1.0
Sec./Iter. 1.17 1.12 6.75

Table 1: This table shows the average number of function calls in the line search per iteration and the
average CPU time per iteration for gradient descent, non-linear conjugate gradient, and Gauss-Newton
optimization for each of the four objective functions: E1(φ), E2(φ), E1(f), and E2(f).

above. In practice, this strategy has also delivered comparable convergence while avoiding updates to
the factorization and loss of positive definiteness in the permuted sub-matrix (see Fig. 1.)

The Hessian solves for objective functions E1(f) and E2(f) are more complicated due to the ∂φ
∂f

operator and its adjoint. These operators are dependent on the resultant image f and must be updated
at each iteration. Additionally, the Fourier transforms present in these operators cause a loss of sparsity,
meaning that the Hessians for both E1(f) and E2(f) are full matrices of dimension n × n. This makes
factorization and direct solvers infeasible. However, multiplication with the Hessian can be done effi-
ciently, so instead we use MATLAB’s pcg solver with a low tolerance (≈ 10−1) to determine the search
direction in the Hessian solve.

For E2(f) as for E2(φ), we typically omitted D to ensure that the Hessian operator is symmetric
positive definite, and we use the identical strategy to E1(f), with comparable results.

In Table 1, we can see a comparison of the average number of function calls in the line search and the
average CPU time per iteration for three optimization methods on each of the objective functions. For
E1(φ) and E2(φ), the Gauss-Newton scheme results in a significant speed up of the method. It converges
in fewer iterations, and each iteration is faster than either gradient descent or NLCG due to a reduction
function calls in the line search and the efficiency of the Hessian solve due to the strategy previously
detailed. For E1(f) and E2(f), the situation is less advantageous. The Gauss-Newton method converges
in fewer iterations and displays the same advantages in the line search, but the cost of the iterative solver
for the Hessian system is prohibitive. In order to improve the disparity in CPU times using Gauss-Newton
in these cases, we are searching for a suitable preconditioner to reduce the number of pcg iterations. This
represents future work.

Choosing a Regularization Parameter

Another important decision affecting the performance of E1(f) and E2(f) is the selection of a regulariza-
tion parameter α for enforcing non-negativity when using E+(f). This is complicated by the non-linearity
of our objective functions, which limits the applicability of many standard techniques for regularization
parameter selection.
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For our tests, we found using the average mean-squared error to be an effective method of parameter
selection. If fα is the regularized solution for a given α parameter, we chose the α that minimized the
two norm between the fα and the true solution ftrue. This was tested across a range of alpha and several
different true images to test that the regularization parameter was a realistic choice. We found α = 100
for both gradient-based methods and α = 1000 for Gauss-Newton to be effective parameters for the
methods when using 3e6 photo-events per object data frame and 5000 photo-events per star data frame.
We also note here that in general, α is sensitive to the number of photo-events in the object and star
data and should be determined accordingly.

Using the average mean-squared error, we can ensure that the regularization parameter selected is
affecting our solution and enforcing non-negativity. While using the true solution to select the regular-
ization parameter is not a realistic expectation for real world data, it does verify that the regularization
approach is effective. Finding a method of parameter selection which is independent of knowledge of the
true solution represents future work.

Resultant Images

The final goal of the phase recovery is to combine it with the computed object power spectrum to obtain
a good resultant image. Below, we display the resultant images from E1(φ), E2(φ), E1(f), and E2(f).
For the first two objective functions, the phase is combined with the power spectrum after the iterative
methods, where as for E1(f) and E2(f), the power spectrum is included in the initial guess and the
resultant images come directly from the iterative method. The resultant images for 50 data frames and
D/r0 = 30 can be seen below in Fig. 3.

From the figure, we can see various phases of image recovery. First we note that the power spectrum
alone is insufficient for image recovery. Combining the power spectrum with the initial guess for the
phase makes the object identifiable to the eye, and the subsequent optimization schemes offer varying
improvement to the details of the object. Note that the regularization scheme pushes the negative image
values upward toward zeros, but does not impose strict non-negativity. We have found that picking a
regularization parameter that balances non-negativity and image quality yields the best results. Picking
larger values for α tended to sacrifice resultant image quality for the sake of forcing background values
to be non-negative.

5. CONCLUDING REMARKS

We conclude the paper with some final remarks on the utility of the methods implemented in this paper.
The image quality obtained from the gradient-based methods and Gauss-Newton were mostly comparable,
so the main utility of the Newton-based optimization lies in the improved convergence offered by the
Hessian. In the case of E1(φ) and E2(φ), the Hessian offers not only a significant speed up in terms
of convergence but also per iteration cost due to the one-time, storable factorization and effective line
search. This makes it an attractive option, especially when a good solution is wanted quickly. An efficient
implementation may make it a feasible method for obtaining an initial guess for more expensive methods
such as multi-frame blind deconvolution if not as a stand alone method.

The results for E1(f) and E2(f) were also promising, although not from a cost per iteration per-
spective. The straightforwardness of implementing regularization for these methods results in improved
images, and if a suitable preconditioner can be found for pcg in the Hessian solve, we believe these
objective functions can be made comparable to the gradient-based alternatives. If so, the improved re-
sultant images and prospect for intelligent regularization make this strategy more attractive as a source
for detailed images.

Overall, the work demonstrates the utility of Newton-based optimization for problems in bispectral
imaging. In particular, approaching the problem from a mathematical optimization and scientific com-
puting standpoint introduced numerous areas where improvements were possible.
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Figure 3: This figure shows the necessity of recovering the object’s phase from the bispectrum and
compares the resultant Newton solutions for each of the four proposed objective functions. Note that
the regularization for E1(f) and E2(f) does not enforce complete non-negativity, but by penalizing some
non-negativity succeeds in sharpening some of the edges and details of the satellite image. This represents
a successful compromise in the regularization parameter selection.
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6. APPENDIX

In order to implement the gradient and Hessian for Eqs. 19 and 20, it is necessary to differentiate the
object’s phase with respect to the image at the current iteration. To do this, we first note that the
object’s phase φ can be expressed as a function of the current image f by

φ = arctan
(

Im(Ff)
Re(Ff)

)
(23)

From this, it is then possible to calculate the adjoint gradient operator ∂φ∗

∂f via a combination of the
chain rule and the quotient rule, as done in the appendix of Glindemann and Dainty [1]. The operator
in the direction v is then given by

∂φ∗

∂f
(v) =

Re(Ff)� Im(Fv)− Im(Ff)� Re(Fv)
|Ff |2

=
Im
(
Fv �Ff

)
Ff �Ff

= Im
(
Fv
Ff

) (24)

Here, the Hadamard product, the division, and the squared operation are all taken component-wise,
while F again denotes a two dimensional Fourier transform. Some other considerations are important in
computation. In order to avoid division by zero, the gradient at indices where the denominator is equal
to zero should be set to zero. Also, the Fourier transforms need to be scaled properly according to the
implementation used.

When computing the approximate Hessian for the Newton-based optimization, it is also necessary to
compute the forward operator of Eq. 24 in the direction v. This is most easily done and verified by an
adjoint test, and is expressed as

∂φ

∂f
(v) = Im

(
F
[

Re(Ff)� v
|Ff |2

])
− Re

(
F
[

Im(Ff)� v
|Ff |2

])
= Im

(
F
[
v �Ff
Ff �Ff

])
= Im

(
F
[
v

Ff

]) (25)

Here again, division, squared operations, and Hadamard products are component-wise operations; in-
dices corresponding to division by zero should be set to zero; and Fourier transforms should be scaled
appropriately.
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