






retraining during the normal operations performs the minor adjustment to the network so that it is adaptive to the 
gradual pattern changes in the datasets. The efficiency of the data training algorithms becomes very important 
during the operation phase. The gradient decent[4] algorithm for the forward feeding and back-propagation network 
has been implemented during the retraining phase.   

3. Operational Concept 
Fig. 2 shows how a machine-learning system works in a ground system for datasets with ATP. The data model, data 
training and monitoring represent a machine learning system for spacecraft operations. The data training and 
monitoring in the machine learning approach are autonomous. The data model in the machine learning approach is 
represented by the time dependent trend of its dataset. The data model is trained periodically with the latest datasets 
in the data archive. During the normal operations, the overall data pattern changes are not expected to be large from 
one day to the next. Thus, the data retraining process uses the existing data model as the input, and the output of the 
data training updates the data model so that it contains the latest data patterns to ensure the accuracy of its 
predictions. The data monitor receives the real time data, and compare the value of the incoming data points with the 
predicted value from the data model. In case of the potential anomalies, the monitoring module generates warning 
messages to alert engineers for further troubleshooting or to an intelligent decision making system for an automated 
response. The real time data points are also ingested into the storage in a ground system, which are used as the input 
for the data training. 

For the datasets with RTP, the data 
monitoring for a specific dataset is 
triggered by an event, such as a 
command or directive to spacecraft. 
The data model in this case is 
associated with a specific event. The 
monitoring module also monitors 
the triggering event to retrieve the 
time 𝑡! and triggers the data 
monitoring for the RTP dataset. The 
triggering events could come from 
the spacecraft telemetry, command 
schedules generated by the 
scheduling system, or the event 
messages from the command and 
control system for the commands or directives being send to the spacecraft. Thus, the real time datasets shown in 
Fig. 2 may includes telemetry from the spacecraft, the intermediate products in the payload data processing system, 
the command schedule from the scheduling system, and the event messages from the command and control system. 
A service-oriented ground system architecture is crucial for enabling SA capabilities in a mission so that a standard 
interface and service protocols can be established for a machine learning system to receive the data from different 
components or subsystems in a ground 
system.  

The machine learning approach brings the 
fundamental changes to spacecraft 
operations, which are highlighted in Table 
1. The statistical trending in the current 
approach becomes the data training for 
time dependent trend in the machine 
learning approach, which generates the 
dynamic data bound for data monitoring. 
The data monitoring becomes more 
dynamic comparing to the static limits in 
the traditional data monitoring, which is 
much more sensitive to the changes in a 
dataset above the noise level. The potential anomalies are automatically identified and characterized in the real or 
near real time. This leads to a more dynamic, proactive, and autonomous spacecraft operations. 

Figure 2 The operation concept of machine learning approach in 
spacecraft operations 

Table 1 The current and machine learning approaches in 
spacecraft operations 
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4.  Application to AHI Instrument Data Calibration Process 
The initial studies on the machine learning algorithms have been concentrated on the calibration data on 
Geostationary Environment Operational Satellite (GOES) Imager[4] and Advanced Himawari Imager (AHI), which 
are used to demonstrate how the machine learning approach works with satellite datasets. The same approach can be 
extended easily to other processes such as the spacecraft health and safety. AHI like ABI is a latest generation of 
multi-channel Imager on Japanese Geostationary Himawari Satellite, which is designed to sense the radiant and 
solar reflected energy from sampled areas of Earth. AHI has the same configuration as the Advanced Baseline 
Imager (ABI) on the next generation GOES-R series spacecraft to be launched later this year, and the machine 
learning approach will be deployed in GOES-R ground system to monitor the ABI calibration process. The input 
data for the machine learning system are the intermediate radiometric variables in the instrument calibration 
processes, which is crucial to ensure the data quality and the radiometric accuracy. The data presented here are 
generated based on AHI L1A calibration statistics with the time range from 2015/003 to 2015/005, which is in the 
AHI in-orbit test period. The challenges for both AHI and ABI are that the amount of data to be monitored is order 
of magnitude larger; the number of detectors for each channel ranges from several hundreds to more than one 
thousand for both AHI and ABI comparing to just 2 detectors for infrared channels and 8 detectors for the visible 
channel for the current GOES Imager. The existing approach with manual trending and monitoring is no longer 
possible. The machine-learning approach provides an integrated and automated trending and monitoring operations, 
and potential anomalies can be detected and characterized in real time or near real time. 

Fig. 3 shows an example of the data training output by ATLMA for the offset parameter of one of the detectors in 
the 6.9 µm channel. The offset parameter is one of the parameters used in converting the raw detector counts into the 
physical radiance used by scientific users, and the quality of this parameter can directly affect the radiometric 
accuracy. The training datasets generally cover two days in order to avoid the potential fluctuations due to the data 
noises from one day to the next. Fig. 3 shows excellent agreement between the time dependent trend and the actual 
dataset. The two orange lines in Fig. 3 represent the upper and lower limits determined by the standard deviation in 
Eq. 2, which form a very tight data bound. The tight data bound in Fig. 3 leads to the dynamic limit highly sensitive 
to the data changes above the noise level. After the time dependent trend is obtained through the data training, each 
data point in the training datasets is evaluated using Eq. 3. The data points that do not satisfy Eq. 3 could be 
potential anomalies, which are defined by two orange lines in Fig. 3. In fact, several data points in Fig. 3 are indeed 
outside data bound defined by the orange line, which could indicate a potential anomaly. The warnings of these 
potential anomalies are generated automatically to alert engineers for special attention. Machine-learning approach 
for data trending and monitoring enables engineers to look only for the datasets that may have potential problems or 
special interests instead of every datasets.  

 
Figure 3 The Offset Parameter for 6.9 µm channel. The blue dots are the actual data points, the light blue line 
corresponds to the function 𝒇(𝒕) obtained from the data training with ATLMA algorithm, and the two orange 
lines represents the upper and lower limits defined by the standard deviations from the data training. The dataset 
has the time range from 2015/003/00:00:00 to 2015/005/00:00:00. 

ATLMA is only providing good solutions for continuous datasets dominated by the low frequency components in 
Fourier expansions shown Fig 3. This is not always the case for spacecraft datasets. The neural network 
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implementation offers considerable advantages over ATLMA since it provides very good solutions for datasets that 
are both continuous and discontinuous. The study has shown that the networks with two hidden layers can be used to 
describe an arbitrary functions[7]. Fig. 4 shows the time dependent trend generated by a two-hidden layer neural 
network for the gain parameters in the 10.4 µm channel. The gain parameter is another one used in converting the 
raw detector counts into the physical radiance. The time dependent function for the gain parameter is less continuous 
comparing to that for the offset parameter shown in Fig 3, and there are sudden increases of the magnitude for gain 
parameters around 03 hour each day. The neural network solution consists of 6 nodes on the first hidden layer and 3 
nodes on the second hidden layer, which generates excellent data training outcome with very tight data bound. The 
same results[4] have also been shown for the temperature parameters in GOES N-P Imager and Sounder dataset, 
which the discontinuities were shown around the satellite midnight.  

 
Figure 4 The gain parameter for the 10.4 µm channel. The red dots are the actual data points, and the green line is 
the time dependent function 𝒇(𝒕) using the neural network algorithm. The two orange lines represent the upper 
and lower data bounds defined in Eq. 3. The dataset has the time range from 2015/003/00:00:00 to 
2015/005/00:00:00. 

The time dependent trend from the 
data training in machine learning 
approach not only enables the 
dynamic data monitoring, but also 
provides users insights into the data 
quality generated by detectors in 
each channel. This would not be 
possible without accurate time 
dependent trends. The standard 
deviation σ in a time dependent 
trend characterizes the true noise 
level of a dataset, and it can be used 
as the metric for measuring data 
quality. The higher noise level for a 

dataset generated by a detector, the 
lower data quality of the detector is. 
After the time dependent trend is 
obtained for a dataset, the plot of the 
σ value as the function of the detector ID can be generated. Fig. 5 shows an example of the σ plot for the gain 
parameter in 10.4 µm channel, in which there are 412 detectors. The σ values for most of detectors are around 1.2E-
5. There are two detectors with very significant higher σ values; in particular, the σ value for detector 271 is 1.3E-4, 
which is more than 10 times higher than the average value. The high σ value for a detector might be caused by the 
poor data training output, however, it may also be due the high noise level generated by its detector. Fig. 6 shows the 
gain parameter datasets for the detectors 270 and 271. The data for the detector 270 provides an example of low σ 

Figure 5 The σ values for the time dependent trend as the function of 
detector ID. There are 412 detectors in the 10.4 µm channel for AHI. The 
detector ID in this plot ranges from 216 to 364. 
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value in its time dependent trend, which is in excellent agreement with its time dependent function. The dataset for 
the detector 271 is much more noisy characterized by very high σ value. This shows that the σ value in the time 
dependent trend provides a good metrics for measuring the detector data quality. 

For both AHI of Himawari series and ABI for GOES-R series, the number of the detectors for each channel ranges 
from more than 300 to more than 1000. Both AHI and ABI provide a multiple detectors for a detector row in each 
channel that enables the selection of the detector with better quality. The standard deviation σ in a time dependent 
trend provides a practical and systematic way to evaluate the detector quality. After the time dependent function 
𝑓 𝑡  is obtained from the data training for each detector, its standard deviation is evaluated using Eq. 2. A statistical 
analysis can be performed for the σ values in each channel. A detector with very high σ value could indicate a low 
data quality. 

 
Figure 6 The gain parameters for the detector 270 and 271 in the 10.4 µm channel. The read and blue dots 
represent the data points for the detector 270 and 271 respectively. The two green lines correspond to their time 
dependent functions obtained from the data training in the machine-learning algorithm. The dataset has the time 
range from 2015/003/00:00:00 to 2015/005/00:00:00. 

5. Summary and Future Work 
Our initial studies present a framework for creating the SA capabilities using the machine-learning algorithms in 
spacecraft operations by establishing the representation for spacecraft datasets and developing accurate, efficient, 
and adaptive data training strategies. The results for both GOES N-P Imager and AHI calibration data show that the 
time dependent trends obtained through the data training provides excellent description of the spacecraft dataset with 
arbitrary complexity and scales. In particular, the neural network implementation with two hidden layers has shown 
to provide excellent solutions for both continuous and discontinuous datasets. The application to the AHI data shows 
that the machine-learning approach enables engineers to monitor high volume datasets and evaluate the instrument 
data quality and radiometric accuracy, which would have not been possible with the current approach in data 
trending and monitoring.  

More investigations are needed to improve the data training efficiency especially for AHI and ABI data with very 
high data volume. There have been extensive investigations in the neural network literature to improve the data 
training efficiency, such as adaptive learning algorithm[8]. The challenge is how to improve the data training 
efficiency while maintaining the accuracy of the time dependent trend at the same time. The machine learning 
approach to the RTP datasets is another important area that needs to be investigated. The ability to predict and 
monitor the state changes due spacecraft command or directive is another crucial aspect of SA capability for 
spacecraft operations. Since the RTP datasets could be both continuous and discrete, the data representation and the 
data training strategies could be very different from the one presented here. Furthermore, the extension of the current 
approach to the datasets for Polar-orbit satellites remains to be done, which the different data patterns may emerge 
that may impact the data training strategies. 

The results of time dependent trend for both GOES N-P and AHI show that the training outcomes from our data-
training algorithm are in excellent agreement with the data trend. The tight data bounds shown in AHI results are 
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highly sensitive to data changes above the noise level, which lead to more dynamic data monitoring. This offers a 
very promising advance toward SA capabilities in spacecraft operations. 

The machine learning approach presented in this paper has been implemented in an Intelligent Trending and 
Monitoring Toolkit, and it will be deployed in GOES-R ground system to monitor the instrument data calibration 
and navigation and registration processes.  

The author is grateful to Bob Iacovazzi and Fred Wu at NOAA/STAR for providing the AHI instrument calibration 
data used in this paper, to Japan Meteorological Agency (JMA) for sharing with NOAA the AHI instrument 
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to Dr. Fangfang Yu at NOAA/STAR for comments and suggestions. 
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