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1. ABSTRACT 

 
Much as aircraft are affected by the prevailing winds and weather conditions in which they fly, satellites are affected 
by the variability in density and motion of the near earth space environment.  Drastic changes in the neutral density 
of the thermosphere, caused by geomagnetic storms or other phenomena, result in perturbations of LEO satellite 
motions through drag on the satellite surfaces. This can lead to difficulties in locating important satellites, 
temporarily losing track of satellites, and errors when predicting collisions in space. As the population of satellites in 
Earth orbit grows, higher space-weather prediction accuracy is required for critical missions, such as accurate 
catalog maintenance, collision avoidance for manned and unmanned space flight, reentry prediction, satellite 
lifetime prediction, defining on-board fuel requirements, and satellite attitude dynamics. 
 
We describe ongoing work to build a comprehensive nowcast and forecast system for specifying the neutral 
atmospheric state related to orbital drag conditions.  The system outputs include neutral density, winds, temperature, 
composition, and the satellite drag derived from these parameters. This modeling tool is based on several state-of-
the-art coupled models of the thermosphere-ionosphere as well as several empirical models running in real-time and 
uses assimilative techniques to produce a thermospheric nowcast. This software will also produce 72 hour 
predictions of the global thermosphere-ionosphere system using the nowcast as the initial condition and using near 
real-time and predicted space weather data and indices as the inputs.   
 
In this paper, we will review the driving requirements for our model, summarize the model design and assimilative 
architecture, and present preliminary validation results.  Validation results will be presented in the context of 
satellite orbit errors and compared with several leading atmospheric models.  As part of the analysis, we compare 
the drag observed by a variety of satellites which were not used as part of the assimilation-dataset and whose perigee 
altitudes span a range from 200 km to 700 km. 
 

2. INTRODUCTION 
There are numerous motivations for improving the state of the art modeling of the orbital drag environment.  As the 
population of satellites in Earth orbit grows with time, higher orbital prediction accuracy is required for critical 
missions, such as accurate catalog maintenance, collision avoidance for manned and unmanned space flight, reentry 
prediction, satellite lifetime prediction, specifying on-board fuel requirements, and satellite attitude dynamics. 
Collision avoidance is complicated by many false positive alerts which are caused by large uncertainties in orbit 
prediction.  These orbit prediction errors are in turn caused largely by inaccurate atmospheric density forecasts.  
These activities are critical to the operational needs of LEO-asset management and to Space Situational Awareness 
efforts.   
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The Committee for the Assessment of NASA's Orbital Debris Programs notes that the ability to maintain a catalogue 
of space object orbits feeds into NASA and MDA debris and breakup assessment models which support critical 
needs in hazard detection and risk assessment (“Limiting Future Collision Risk to Spacecraft: An Assessment of 
NASA’s Meteoroid and Orbital Debris Programs”).  This capability for catalogue maintenance, critical to DoD and 
NASA missions, is complicated by the fact that much of the LEO space object population has orbits which are 
continuously perturbed by satellite drag.   
 
Thus, improvements in satellite-drag prediction capability are needed and motivate the development of the Dragster 
system to specify more accurate atmospheric densities and to enhance conjunction analysis accuracy.  
 
Fig. 1 illustrates the Dragster approach.  In the top left, resident space object observations are assimilated into 
Dragster (top right).  Dragster’s ensemble of atmospheric models is then used along with operational atmospheric-
forcing data to generate a set of satellite drag forecasts akin to a hurricane track prediction (lower right).  In the 
future, this information will feed into existing orbit propagation tools to improve satellite position nowcasts and 
forecasts and reduce errors in conjunction analysis versus the currently available methods.   

 
Fig. 1: Dragster concept summary. 

 
In this paper we introduce the satellite drag problem and describe ongoing efforts to construct a new assimilative 
satellite drag model called Dragster.  Dragster takes advantage of new assimilative techniques for space weather 
systems as well as an improved representation of atmospheric dynamics.  We will review preliminary validation 
results of the Dragster model and describe some of these results in terms of orbital propagation errors. 
 

3. THE SATELLITE DRAG PROBLEM 
Satellite drag varies strongly as a function of the neutral thermospheric density and the satellite ballistic coefficient. 
Aerodynamic drag acceleration (adrag) is expressed by the equation below in terms of atmospheric density (ρ), drag 
coefficient (CD), cross-sectional area (A), spacecraft mass (m) and the spacecraft velocity relative to the atmosphere 
(Vr).  
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(1) 

The drag acceleration is the aerodynamic acceleration projected in the direction of satellite velocity. Many satellites 
also experience non-negligible lift forces which can cause long-term changes in the orbital inclination as well as 
aerodynamic torques which can alter the attitude state of the satellite.   
 
The inverse ballistic coefficient is often used to describe the non-atmospheric contributions to satellite drag as 
shown below. 

m
AC

B D=
 

(2) 

In this paper, we will also use the term ballistic coefficient to refer to this term.  Thermospheric mass density is the 
most variable of the parameters in Equation 1with mass densities (ρ) at a constant altitude changing by as much as 
200-800% due to changes in geomagnetic activity levels (in other words, during solar storms) [1].  Here we have 
defined the variability as the total change of a parameter (in this case neutral atmospheric mass density, or simply 
atmospheric density) divided by the initial value of the parameter. In general, thermospheric density demonstrates 
variability with latitude, longitude and time due to variable internal forcings such as lowe-atmospheric dynamics and 
waves, and external forcings, by solar EUV flux changes and solar wind disturbances. The product of CD and A is 
the second contribution to satellite drag variability with variations for elongated satellites flying above 180 km as 
large as approximately 100%.[2,3]    Another 25%-50% change can be expected in the product of CD and A below 
180 km due to transition-flow effects [4,5].  Changes in atmospheric winds can lead to changes in Vr as well and this 
can cause changes in satellite drag which are on the order of 3% 1-σ with maximum effects on the order of 13% 
during large geomagnetic storms [6].   
 
 

4. OVERVIEW OF THE DRAGSTER MODEL 
Dragster is designed to provide satellite-drag specification for the majority of resident space objects (see altitude 
distribution below) in the region where drag is the most relevant non-conservative orbital perturbation.  This region 
is also populated with critical military, government, and commercial space assets.  Dragster will specify real-time 
and forecast densities, compositions, and winds along satellite orbits to compute accurate drag estimates.  

. 
Fig. 2. Altitude Regions of Relevance to Satellite Drag Specification. ( 1Solar Radiation Pressure)  
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Requirements for the Dragster model nowcast and 3-day forecast are given in the table below. Note that the 
requirements and goals are based on performance as compared to the leading empirical drag model, Jacchia-
Bowman 2008 (JB08), and the leading assimilative empirical model, High Accuracy Satellite Drag Model 
(HASDM) which is used operationally at the Air Force. In addition to these requirements, the Dragster software 
must also run within three hours of real time.  This means that the nowcast (and the associated 3-day forecast) is no 
more than three hours latent from the time for which it was generated.  In order to be used for drag specification, the 
model must also output self-consistent densities, winds, temperatures, and compositions along an arbitrary satellite 
orbit.   
 
The JB08 and HASDM models represent the current state of the art for satellite drag prediction.  The JB08 model is 
an empirical atmospheric density model used by the AF for satellite orbit prediction. The High Accuracy Satellite 
Drag Model (HASDM) dynamically calibrates a background density model such as JB08 by finding the least 
squares solution to the model temperature fields at both the “inflection altitude” (~120 km) and in the exosphere.  
Six hour orbit fit-spans from between 70-90 “calibration” satellites are used by HASDM to determine the spherical 
expansion of the atmospheric temperature fields.  The solved spherical harmonic coefficients and their short-term 
trends can then be incorporated into an empirical model such as JB08 along with prediction indices to run a 3 day 
forecast of atmospheric density.  
 
For all their capabilities, the uncertainties in JB08 and HASDM are still too large to satisfy the operational 
requirements of the Air Force.  In fact, the Air Force Space Command (AFSPC) requirement is neutral density 
forecasts within 5% over a 72 hour period, something which the present state of the art (HASDM and JB08) does 
not provide. 

Table 1: Top Level Dragster Requirements. 
 Requirement Goal 

Nowcast Density errors lower than JB08 more than half 
the time. JB08: 13-18% at 200-800km 

Density errors better than HASDM more than 
half the time. HASDM: 6-8% at 200-800km 

72h Forecast RMSE lower than JB08 in forecast mode RMSE lower than HASDM in forecast mode 
 
The Dragster model is based on several empirical models as well as three well-validated Global Circulation Models: 
(a) the Thermosphere Ionosphere Electrodynamics Global Circulation Model (TIE-GCM), (b) the Thermosphere 
Ionosphere Mesosphere Electrodynamics Global Circulation Model (TIME-GCM) which includes coupling into the 
mesosphere, and (c) the Coupled Thermosphere Ionosphere Plasmasphere electrodynamics  (CTIPe).  For satellite 
drag applications, the global neutral density field is obtained from the thermospheric sections of these three codes. 
The neutral atmosphere codes solve the non-linear momentum, energy, and composition equations time-dependently 
over the globe, to provide neutral dynamics, temperature, and the distribution of neutral species. The three-
dimensional distribution of neutral density is obtained from the temperature and composition, which together with 
the neutral winds provide the necessary parameters for satellite drag prediction. The self-consistent ionosphere is 
important and necessary to ensure the accurate conductivities, for characterizing high latitude Joule heating, for ion 
drag, and for realistic wind determination. 
 
TIE-GCM, TIME-GCM, and CTIPe are used in an assimilative architecture within the Dragster model.  Each model 
type is used to perform ensemble assimilation and hence the various models will sometimes be referred to as super-
ensemble members.  Dragster propagates the model ensemble members forward to predict the most probable 
trajectory of the thermospheric state and its uncertainty based on inter-model differences.  It must be kept in mind 
that unlike tropospheric weather, the thermosphere is strongly driven by external inputs and depends less on the 
current and prior states.  Therefore, future incorporation of state-of-the-art operational input forecasts will play an 
important role in reducing satellite drag errors. 
 

5. DRAGSTER SOFTWARE DESCRIPTION 
The Dragster software modules are outlined by thick boxes in Fig. 3.  Three boxes represent model drivers: (a) the 
High-Latitude Forcing Subsystem (light blue); (b) Solar Forcing Subsystem (orange), and; (c) the Lower Boundary 
Forcing Subsystem (purple). These inputs are used to drive a series of full-physics models in the Super-Ensemble 
Subsystem (dark blue).  The Super-Ensemble Subsystem generates model nowcasts and forecasts out to 72 hours 
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along with estimates of uncertainty. The output model fields are then processed by an Output Processing and 
Validation Subsystem (grey).  
 
The High-Latitude Forcing Subsystem provides information on high latitude ionospheric convection patterns, 
coupling between the magnetosphere and ionosphere, and on Joule heating.  The Solar Forcing Subsystem specifies 
UV/EUV fluxes impinging on the upper atmosphere.  The Lower Boundary Forcing Subsystem specifies the impact 
of eddy diffusion and tides on the upper atmosphere.  For each of the Forcing Subsystems, relevant data on current 
conditions can be obtained from a wide variety of measurement and model sources and can be configured by the 
user.  In addition, in order to meet the requirement of 72-hour forecasting, the Forcing Subsystems all provide 
forecasts of the forcing parameters.   
 
The Super-Ensemble Subsystem (dark blue box in the center of Fig. 3) consists of three full-physics models that are 
driven by the selected inputs described above. An ensemble of each model-type is run. The Dragster system uses a 
version of the Ensemble Kalman Filter (enKF) to provide nowcasts of various atmospheric and drag parameters 
although an Ensemble Optimal Interpolation (enOI) scheme is expected to be available in future versions. In the 
EnKF scheme, data is assimilated into every instantiation of each model type (green and blue boxes in the Super 
Ensemble Subsystem).  The assimilation data is represented by the white boxes labeled “Assimilation Drag Data”, 
and could include accelerometer data, and drag inferred from orbital observations.   
 

 
Fig. 3. A conceptual flow-diagram indicating how the three GCM models are to be driven and how the various 

software modules interact. 
 
Fig. 4 shows the Dragster EnKF algorithm flow diagram.  The algorithm begins in the upper left with the definition 
of the initial atmospheric state (X0) for every ensemble member.  The states include a selectable span of model times 
to accommodate multi-bandwidth datasets.  The software propagates all the atmospheric states to the current time 
and ingests new satellite drag data if it is available.  At this point, the ensemble is used to compute the covariance 
matrices and the Kalman gain.  Then, a solution Xa is obtained for each ensemble member and the average of these 
solutions (xa) is used to initiate a forecast of satellite drag parameters (i.e. densities) to be used for conjunction 
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analysis and orbit prediction.   This part of the process is performed iteratively until a pre-specified convergence 
criterion is met.  The iteration and wide time-range incorporated into each state cause this part of the algorithm to 
resemble a batch processor within an EnKF architecture.  This approach along with the inclusion of atmospheric 
forcings in the state vector has been found to outperform other DA methods when assimilating data into strongly 
forced systems such as the Earth’s upper atmosphere.  Dragster then performs a re-sampling of the states based on 
the current state behavior taking into account the statistical distribution of the forcing parameters.  At this point, the 
algorithm returns to the upper left hand of the flow-diagram and repeats. 
 

 
Fig. 4: Ensemble Kalman Filter architecture in the Dragster software. 

 
The assimilated state xa includes forcing parameters.  An instructive test of forcing parameter assimilation is to 
assimilate synthetic data generated using one model, into an ensemble of that same model.  Any resulting 
discrepancy is due to “process” noise associated with the data bandwidth limitations.  In the test case presented 
below, TLE’s were used as the input data.  Fig. 5 shows the results of such a test using the Naval Research 
Laboratory Mass Spectrometer and Incoherent Scatter with Exosphere 2000 model (NRLMSISE-00, sometimes 
referred to MSIS) as the background.  Here, forcing parameters include Ap (geomagnetic forcing) and F10.7 (solar 
radiation forcing).  The figure shows four time series over the course of four months in 2015.  The four time series 
include measured F10.7 flux (black), F10.7 flux estimated by Dragster (blue), the Ap planetary geomagnetic index 
(red), and the Ap estimated by Dragster (green).  Both the F10.7 proxy and Ap index are plotted on the same y-axis 
scale. Normal day to day and seasonal variation in solar activity is represented in the plot.  A geomagnetic storm in 
the middle of March is apparent as a sharp peak in the Ap index.  The forcing parameters are recovered quite well in 
this test and the validation density residuals (density errors for satellites not assimilated into the model) were in the 
1-2% range.   
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Fig. 5: Forcing parameter estimation test using synthetic data and the NRLMSISE-00 model shows the ability 

to recover atmospheric forcing using imperfect satellite drag data. 
 
Every three hours, the assimilated states (which include the forcing parameters) will be used to initiate three 72 hour 
forecasts (one for each model type). Note that to the extent that forecast indices can be provided 7 days in advance, 
Dragster could also perform a 7-day forecast.  The nowcast and forecast coming from each model-type is passed out 
of the Super Ensemble subsystem (green line in Fig. 4) as NetCDF files containing density, wind, composition, and 
temperature fields for each model at the nominal grid resolution.  The NetCDFs are passed to an Output Processing 
and Validation Subsystem (grey box at bottom of Fig. 4).   
 
In the Output Processing and Validation Subsystem, a satellite “Fly-Through” module computes the mass-density, 
neutral winds, number densities, and temperatures along any specified satellite orbit or series of orbits. These along-
orbit parameters are passed to a Ballistic Coefficient and Drag Module, which uses them to compute a physics-based 
drag coefficient and an estimate of the satellite drag force along the orbit.  In addition to implementing physics-
based gas-surface interaction behavior into the ballistic coefficient prediction, Dragster software has the capability to 
include detailed aerodynamic models for all or some of the satellites.  This allows assimilation of data from objects 
whose A/m ratios are not necessarily constant but are variable in a predictable way.  This capability means Dragster 
can ingest more data than the current atmospheric-calibration tools.  A panel model implements analytical free-
molecular flow equations on an arbitrary array of flat-panels (one side exposed to the flow).  Attitude is specified by 
defining the pointing mode for the satellite.  For many objects, this specification is done heuristically wherein the 
satellite attitude is a well-defined function of the orbital position.  The benefit of this approach is that it expands the 
database of beneficial assimilation objects but does not require additional auxiliary data (spacecraft pointing) to be 
ingested into the model.  Fig. 6 shows examples of panel models used by Dragster including the SORCE, GRACE, 
and C/NOFS satellites.  Panel models have also been generated for a number of other spacecraft used for validation 
and assimilation. 
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Fig. 6: Examples of Dragster aerodynamic panel models. 

 
The Ballistic Module also computes a fitted-ballistic coefficient and examines its multi-year history for any object if 
a long enough dataset is available.  In this way, a long-term average ballistic coefficient, and the best physics-based 
drag coefficient can be combined to provide a best estimate of satellite area-to-mass ratio to be used in the orbit 
propagation.  The modeled drag force along the satellite orbit is passed to the Validation Module, which uses the 
information to compute the effective density or energy dissipation rates for a collection of validation objects that 
were not used in the assimilation.   Energy dissipation rates and effective densities are defined in the next section.  
The validation data can include accelerometer or orbit-averaged drag measurements.  The Validation Module 
compares the measured and modeled effective densities for each object and estimates a series of metrics for the 
nowcasts and forecasts.   
 
Note that three validation methods are occurring at all times within the Dragster system.  The first is an inherent 
validation, which occurs as a result of the assimilation in the Super Ensemble Subsystem.  In this validation, 
assimilation data is compared with the assimilated model state (green box outputs) to compute drag residuals.  The 
second type of validation is the Cross Validation occurring in the Output Processing Subsystem (grey box) for 
nowcast outputs.  The third is the Forecast Validation occurring for the 72-hour forecasts.  All three validation 
metrics are made available to the Decision Module which uses them to combine the assimilated model outputs 
(NetCDF files) into a single stream of densities, winds, compositions, temperatures, or drag predictions (as desired 
by the user).  The operator chooses whether the Decision Module should apply outlier rejection, simple averaging, 
weighted-average based on the validation metrics for each model, or simply to choose one model for all times.  The 
result is the best orbit-resolved drag nowcast and 72-h prediction updated every three hours, together with 
uncertainties in the predictions. This result can be passed to an orbit propagator of the user’s choosing (external to 
Dragster).   
 

6. TEST DATA 
As mentioned in the previous section, the Dragster model can ingest both accelerometer as well as orbit-averaged 
drag data.  Additional inputs such as composition measurements (from mass spectrometers and imagers) and 
atmospheric winds will be included as input options in the future.  ASTRA has been testing the model architecture 
with satellite drag data using two-line-elements, daily-averaged densities, and accelerometer data as sources. 
Observation objects were selected according to a set of simple criteria.  Selection criteria include a known shape 
which exhibits little variation in the observed ballistic coefficient, a stable fitted ballistic coefficient, or a ballistic 
coefficient of a known shape whose orientation with respect to the free-stream changes in a known way.  These 
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criteria allow the ballistic coefficient to be estimated by both apriori means as well as by orbital observation.  The 
current goal is to maintain a catalog of 50-100 assimilation/calibration objects and 10-15 validation objects. The 
validation objects are not used in assimilation but instead serve as independent evaluations of assimilation 
performance. The Dragster object list currently includes 75 assimilation/calibration objects and 14 validation objects 
which is within our goal.  A wide range of inclinations and perigee heights allows Dragster to be sensitive to density 
changes at all latitudes and altitudes of interest. Fig. 7 illustrates a selection of some of the objects in the Dragster 
catalog. Although our current object-selection criteria have been adequate to demonstrate Dragster performance, we 
anticipate that performance will significantly improve when using the higher-quality special perturbations (SP) orbit 
fits.  This is because the SP data generally has a higher cadence and smaller errors than the publically available data 
source currently used by Dragster. 

 
Fig. 7. Examples of the test dataset for Dragster. 

 
Fig. 8 shows the locations of data from 75 satellites along with several validation satellites being assimilated into 
Dragster.  The plot on the right shows the locations of assimilation (red) and validation (blue) orbits superimposed 
on a local-time/latitude map of atmospheric density at 400km altitude (greyscale).  This coordinate system is used in 
Dragster (as it is in HASDM) because the structure of the upper atmosphere can be well-represented in a latitude 
local-time height coordinate system.  Only the parts of the orbit most effected by satellite drag are shown (where 
each satellite experiences 80% of the drag withing the assimilation epoch).  Validation orbits are shown in blue and 
correspond to data sources which are not assimilated and are only used to check (validate) the performance of 
Dragster.  The plot on the left side of Fig. 8 shows the locations of the same assimilation (red) and validation (blue) 
orbits on a local-time/altitude reference frame.  Note that shorter red and blue streaks correspond to more elliptical 
orbits which “dip” into the atmosphere in a more localized way.  These objects are affected by smaller scale features 
which are not represented in the current operational drag models.  Validation and Assimilation data in the tests 
presented here includes much of the atmosphere below 700 km.  Dragster extrapolates results beyond 700 km if 
needed and ASTRA is currently working to including satellites in higher-altitude orbits (700km to 1000 km). 

 
Fig. 8: Local time, latitude, and altitude distribution of assimilation and validation satellites. 

 
In order to generate data for Dragster assimilation/calibration/validation objects, Dragster converts the orbital 
elements of the satellites in its dataset into energy dissipation rates (EDR) and effective atmospheric neutral 
densities.  EDR’s are the general drag assimilation metric for Dragster.  This is because they can be easily extended 
to multiple satellite-drag data sources.  This data is used as a stand-in for eventual high-task orbital tracking data 
processed using a special perturbations approach. The TLE dataset is not as accurate as the special perturbation 
approach and has a significantly lower bandwidth (2-4 day cadence).  However it is freely available and has very 
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similar spatial sampling properties to operational datasets making it ideal for worst-case testing of our approach.  
The observed energy dissipation rate between times ti and tk is generated using the following relationship. 

( )
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ik ∆
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= − 3/2obs 3 µ
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where μ is the Earth’s gravitational parameter, Δn is the change in the mean motion orbital parameter, 
( ) ( )ik tntnn −=∆  (4) 

 
nA is the average mean mean-motion orbital parameter, 
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and Δt is the length of time elapsed 
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The effective density ascribed to this observation is  
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where Vsc is the spacecraft velocity and F is the wind factor.  
 
An additional source of validation data used were densities derived along the orbit of the GRACE satellite from on-
board accelerometer measurements.  The two identical GRACE-A and GRACE-B satellites were launched into an 
approximately 500 km near-circular orbit with an inclination of 89.5° on March 2002.  The two GRACE satellites 
fly in a leader-follower formation and are nominally separated by 200 km.  Note that in the analysis of GRACE 
densities, only the GRACE-A satellite is used.  The GRACE accelerometer-derived densities were calibrated to 
TLE-derived densities for the GRACE satellite.  To do this, an accelerometer x-axis bias factor was computed daily 
during each contiguous timespan of data (days of year 7-133, 173-280, and 342-365).  Next a linear fit was 
performed to the daily bias factors in each contiguous data segment.  These linear fits were used to calibrate the 
accelerometer data.  Note that this GRACE dataset provides 256 days of data in 2015 due to spacecraft maneuvers 
during two times of the year.   Specifically, there are two swaps of the A and B GRACE satellites between the 
forward/rear flying position, which removes a significant amount of useable data for the year. The first swap is in 
May-June, while the second one is around November.   
 
Furthermore, neutral densities measured by the CHAMP satellite accelerometer are used to evaluate the efficiency 
with which physics-based background models reproduce space weather related enhancements in neutral density and 
satellite drag during geomagnetic storms.  Version 2.3 of the CHAMP density database [7, 
http://impact.lanl.gov/data/ver2.3/champ/DataReleaseReport.pdf] was used.  The CHAMP satellite was launched on 
July 2000 into a 450 km orbit, with an inclination of 87.3°.  It reentered in September 2010.   
 

7. PRELIMINARY VALIDATION RESULTS 
For the preliminary evaluation, drag observations from the orbit data of 75 satellites was assimilated into Dragster 
using NRLMSISE-00 as the background model.  The assimilation spans from January 2015 through December 
2015.  A 36 hour assimilation window was used with effective-densities spanning the 1.5 day time period advanced 
forward in time in 0.5 day steps.  Dragster solar and geomagnetic forcing parameters as well as density corrections 
were being estimated using a 90-member ensemble.  The spatial resolution for the density corrections was a 15°x15° 
latitude-longitude grid.  Fig. 9 below shows the results of the densities from Dragster (gold), HASDM (green), MSIS 
(red), and JB08 (blue) models for the duration of 2015 compared with TLE-derived densities for the GRACE 
satellite (~400km altitude).  Note that the assimilative Dragster results match very well with the densities 
experienced by this validation satellite (GRACE was not assimilated into Dragster nor was it assimilated into 
HASDM).  Reproducing the variability seen below depends on accurately representing the seasonal variability in the 
atmosphere, local-time and latitude structure, response to solar and geomagnetic activity, and implementing an 
adequate representation of the satellite ballistic coefficients.  It is important to note that while HASDM appears to 
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have the largest error, most of this offset is due to a bias between the model and our dataset.  A more subtle look at 
validation errors will follow later in this section. 

 
Fig. 9: One-year time series of observed and modeled densities using the source satellite 

 
Fig. 10 illustrates the modeling results over four shorter timespans (20 to 50 minutes) throughout the evaluation 
year. The black line in the figure represents GRACE accelerometer measurements of atmospheric density, the other 
solid lines represent the assimilative models (HASDM in magenta and Dragster in blue) while the dotted lines 
represent the empirical models.  Arrows in each panel indicate spatial structures modeled by Dragster and detected 
by the GRACE accelerometers which are not resolved by any of the other models.   

  

  
Fig. 10: Data-model comparison showing small scale neutral density features emergent in the Dragster model. 

Even though these smaller-scale features are sometimes offset in magnitude from the GRACE observations, this is 
an issue which can be addressed by including a higher-cadence dataset in Dragster.  This result confirms that 
Dragster can take advantage of localization to produce a more complete picture of the satellite drag environment. 
 
Fig. 11 illustrates further analysis of model errors using the full validation dataset of 14 satellites.  Standard 
deviation errors for each of validation satellites were computed throughout the 2015 evaluation period.  The standard 
deviations for each validation satellite are divided by the standard deviation obtained using the JB08 model for that 
same satellite and plotted as a function of the satellite perigee altitude.  In other words, if the relative standard 
deviation is unity (indicated by the horizontal dotted line) then the standard deviation for that model-satellite pair is 
equivalent to that of the JB08 atmospheric model.  Values above the dotted line indicate model performance which 
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is worse than JB08 and values below the dotted line indicate performance which is better.  The red triangles 
correspond to the background model used in this evaluation (NRLMSISE-00).  The cyan diamonds with inset stars 
indicate HASDM errors (HASDM data was only available for four of the validation objects).  The green diamonds 
indicate Dragster performance.  Note that absolute JB08 errors are approximately 7% near 200km and increase to 
18% near 700km altitudes.  Note also that Dragster reduces the background model error for each object except for 
the satellite near 200km.  Fig. 10 verifies that Dragster errors are lower than JB08 and are either better than or 
equivalent to HASDM satisfying the requirements set out in Table 1.  Table 2 shows performance metrics for the 
validation objects for which HASDM densities were available.  The validation metrics include standard deviation, 
bias, and prediction efficiency as defined by Shim et al. [8].  The values in the table demonstrate that Dragster 
outperforms the other three models in almost every category when TLE validation data is used for validation. 
 
It is also instructive to validate the models against non-TLE data.  To this end, we performed a spectral analysis of 
the density errors along the orbit of the GRACE satellite over the course of 2015 for each of the models.  The 
GRACE accelerometer-derived densities were used as truth in the error computation.  A Fast Fourier Transform 
(FFT) was performed on the dataset to compute the noise power spectral density (PSD) for each model. Next the 
noise PSD was integrated from a low-pass cutoff out to 180 days to demonstrate how the elimination of high-
frequency noise affects the overall errors for each model.  Fig. 12 shows the results of the FFT (left panel) and the 
integrated or total noise (right panel) on a logarithmic scale as a function of period.  Vertical dotted lines indicate 
time scales of interest from 1-orbit to 1 month.  The PSD plot shows that HASDM (red solid line) has the best 
performance (lowest noise levels) in the first half of the spectral region overlapped by the bandwidth of its 
operational input data (indicated by a red arrow in the figure).  A blue arrow indicates the bandwidth of the TLE 
dataset assimilated by Dragster (blue solid line) and we observe that Dragster has superior performance within that 
bandwidth.  We also see that in the 1-12 hour range, where neither model’s input data has sufficient spectral content, 
the error of both HASDM and Dragster is similar to the performance of their background models (JB08 and MSIS 
respectively).  In other words, there is no improvement in either Dragster or HASDM over their respective 
background models in this part of the spectrum.  We expect further improvements in Dragster at these timescales 
when using first-principles background models such as TIE-GCM due to their better representation of smaller scale 
features.  Below the time-scales of 1 hour, the performance for all models is equivalent although this performance is 
also expected to improve when using a first-principles background model.  The integrated noise figures in the right 
hand panel of Fig. 12 show that as the low-pass filter cutoff is increases, the error for each model falls.   
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Fig. 11: Standard deviation errors for all validation objects 

relative to JB08 standard deviations. Values above the 
dotted line indicate performance worse than JB08 while 
values below the dotted line indicate performance better 

than JB08. 

Table 2: 2015 validation metrics for select 
satellites. 

Satellite 
NORAD 

ID 
Name 

(Altitude) 

M
od

el
2  

Standard 
Deviation Bias Prediction 

Efficiency 

#27651 
SORCE 
(591 km) 

M 
J 
H 
D 

28% 
20% 
25% 
15% 

32% 
-7% 
41% 
-7% 

0.27 
0.53 
0.06 
0.68 

#40314 
Spinsat 

(390 km) 

M 
J 
H 
D 

18% 
11% 
11% 
8% 

15% 
-12% 
17% 
-11% 

0.30 
0.39 
0.33 
0.46 

#39267 
DANDE 
(338 km) 

M 
J 
H 
D 

24% 
14% 
17% 
10% 

38% 
10% 
42% 
2% 

0.31 
0.72 
0.10 
0.82 

#27391 
GRACE-A 
(393 km) 

M 
J 
H 
D 

19% 
11% 
9% 
7% 

31% 
-0% 
33% 
0% 

-0.08 
0.63 
-0.15 
0.76 

2 M-MSIS   J-JB08   H-HASDM   D-Dragster 

 
The integrated Dragster performance is best above the 1-3 day mark where the bandwidth of its TLE dataset begins.  
In this context, the results obtained with TLE-based validation data are limited to the right hand side of Fig. 12 due 
to the bandwidth of those measurements. Again, we expect that performance enhancement to extend to higher 
frequencies (periods lower than 1-3 days) when we transition Dragster from TLE data to the SP input data.   
 

  
Fig. 12: GRACE accelerometer data used to compute the spectral noise density (left) of various atmospheric 

models.  The integrated error is represented as a function of a low-pass filter cutoff (right). 
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8. VALIDATION OF ENHANCED GEOMAGNETIC STORM REPRESENTATION USING FIRST-

PRINCIPLES MODELS 
Geomagnetic storms present times of large atmospheric model error and therefore, large satellite drag and orbit 
prediction uncertainty. In fact, a large geomagnetic storm in March of 1991 led to severe orbit prediction errors and 
caused JSpOC to “lose” track of a couple hundred objects in its catalog.  This storm was a major motivation behind 
work to improve atmospheric models and to transition HASDM into operational use at the DoD.  Many geomagnetic 
storms since that time continue to motivate improvements in the representation of the atmospheric response for the 
purposes of satellite drag and orbit prediction.  One such improvement has been shown to successfully reproduce the 
atmospheric response during storms by assimilatively specifying the geomagnetic energy input into the atmosphere.  
This assimilative technique is called AMIE, is integrated into Dragster to drive the TIME-GCM background model, 
and is run at ASTRA in realtime.  Fig. 13 shows modeled and measured densities along the CHAMP satellite track 
during the 8/24/2005 geomagnetic storm.  Each panel shows a comparison between measured (blue) and modeled 
(red) densities along the satellite track. The wavy lines show diurnal variation of atmospheric density in each orbit.  
Low densities at the beginning of the time period are characteristic of geomagnetically quiet times while the factor 
of 2-3 increased densities later in the time period are caused by the geomagnetic storm.  Note that this will 
correspond to a factor of 2-3 increase in satellite drag and contribute to significant changes in the orbit.  
NRLMSISE-00 and JB08 are both empirical models that do not assimilate any data.  JB08 does a poor job due to the 
Dst input index not capturing the energy input of this storm event and also due to the low spatial resolution of this 
model.  MSIS does show a slight increased density during the storm but still missed the location of the high latitude 
density peaks.  TIME-GCM is a physics based model and it clearly shows storm-enhanced densities, though it 
overestimates them significantly due to an overestimate in storm energy by the Weimer high latitude convection 
model.  The best match to the data is provided by the Dragster model with AMIE assimilative high-latitude 
specification (bottom right). This shows that the assimilative runs vastly improve storm response modeling and the 
associated satellite drag specification. 

 

 
Fig. 13. Time-series of model and measured densities along the CHAMP satellite track. 

 
 
 
 

9. MODELING RESULTS IN TERMS OF SATELLITE ORBIT ERRORS 
 
We will now use modeled and measured (GRACE) densities to evaluate the drag force modeling on the GRACE 
satellite in an approximately 400 km circular orbit.  The equations of motion for both the “truth” or GRACE-density 
case and the atmospheric-model cases were integrated using a Runge-Kutta 4-5 variable stepsize integrator.  The 
area-to-mass ratio of the representative satellite was taken to be 0.0027 m2/kg and the drag coefficient was 
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arbitrarily fixed at 3.2.  The assumed ballistic coefficient is therefore 0.0088 m2/kg and will be referred to as B*.  
The drag coefficient is really not fixed along the orbit however it was desired in this case to separate the drag 
coefficient errors from those caused only by model densities.  To further achieve this aim, a “fitted ballistic 
coefficient” (Bfit) was computed during each propagation timespan.  The ballistic fitted coefficient for an epoch 
beginning with time ti and ending at tk was computed as follows: 
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At each orbit propagation epoch, the ballistic coefficient computed in the previous epoch is used.  In this way, the 
process of forecasting an orbit is emulated.  To some extent, this removes some of the low-frequency noise and bias 
seen for certain models in Fig. 9.   
 
Propagation epoch spans of 12hr, 24h, 72hr (3 days), and 168hr (7 days) were used.  Only gravitational forces 
(including J2) and satellite drag were considered in the equations of motion.  Three atmospheric models will be 
compared with the GRACE drag measurements: 

• NRLMSIS-00 (MSIS) empirical model (no assimilation) 
• Dragster with an MSIS model background assimilating TLE-derived drag products with a 1-σ error of 

approximately 5% and cadence of 2-4 day.  The number of assimilation objects is 75.  GRACE data is not 
assimilated into Dragster. 

• HASDM with Jacchia-like model background assimilating SP orbit products from AF high-task tracking 
data having a 1-σ error of approximately 1-2% and cadence between 6 hours and 3 days.  The number of 
assimilation objects is 80-90.  GRACE data is not assimilated into HASDM. 

 
Fig. 14 shows a time series of model errors in the early part of 2015 using a 72 hr timespan for orbit propagation.  
Note that the use of both HASDM and Dragster (assimilative models) result in errors smaller than the orbit 
propagation performed using the empirical (non-assimilative) MSIS model.  A good example of the differences in 
performance resulting from the use of various atmospheric models is seen just before Day of Year 80 when a 
geomagnetic storm associated with Ap values in excess of 100 caused sharp increases in the atmospheric density and 
in satellite drag.  During the storm, 72 hour in track errors exceed 20km when using the MSIS model.  However, the 
in-track errors when using Dragster during this time are 10km.  The best performance in this case is achieved by 
HASDM with approximately 7km in-track errors incurred.  It is important to note that the HASDM model in this 
test used SP orbit solutions which are of much higher cadence and have lower errors than the TLE data ingested into 
Dragster.  We expect Dragster errors to decrease significantly when using such a dataset. 

 
Fig. 14: Time series of 72-hour in-track errors for the GRACE satellite near 400 km altitude.  The larger errors 

just before Day of Year 80 occur during a strong geomagnetic storm. 
 
 
The in-track orbit errors from all orbit simulations are summarized in Fig. 15.  The figure is composed of four 
panels, each corresponding to a different orbit propagation timespan (from 12hr in panel (a) to 7 days in panel (d)).  
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Each panel contains three box plots, one for each atmospheric model used in the orbit propagation.  Box plot 
whiskers indicate the standard deviation (1-σ) around the mean.  The red lines indicate the median of the error 
distribution while the red crosses are the mean of each error distribution.  The extent of each blue box indicates the 
span of errors between the 25th and 75th percentiles of the distribution.  Note that the x-axis in each panel (a-d) has a 
different scale.  As is expected the orbit errors grow with increasing propagation time.  The 1- σ errors are indicated 
in each panel and are approximately 300m for the 12 hour case and 20,000m – 40,000m for the 7-day case. 
 
The relative advantage afforded by using assimilative atmospheric models increases with the integration timespan.  
This can be partly explained by the noise PSD profiles in the left panel of Fig. 12.  The atmospheric model noise 
PSD indicates that orbit propagation with the Dragster model should have good performance in the region around 3 
days (72 hrs) or more.  This spectral region corresponds with panels (c) and (d) in Fig. 15 which confirm that the use 
of Dragster results in significantly reduced in-track errors over the empirical model (MSIS).  The standard deviation 
for the in-track error distribution from a 7-day propagation using Dragster is less than half that when using the 
empirical model and approximately equivalent to the propagation using HASDM.   It is also important to note that 
the previous-epoch fitted ballistic coefficient computation removes significant amounts of the bias at the periods 
above the propagation timespan.  The fitted-ballistic coefficient procedure therefore approximates a high-pass filter 
allowing signal through at periods below the propagation time span.  Because we see that the atmospheric model 
noise levels drop quickly towards lower periods (left side of the PSD in Fig. 12), applying a fitted ballistic 
coefficient to orbit propagation with short integration timespans should make the choice of model less important to 
the final outcome.  Panels (a) and (b) of Fig. 15 indicate that this is indeed the case and that when propagating an 
orbit over 12 hr and 24 hr timespans respectively, the differences due to the various atmospheric models are much 
less pronounced.   
 
A consistent feature of all in-track error distributions in Fig. 15 is a slight positive offset of their mean and median 
values from zero and is still under investigation. 
 
Fig. 15 indicates that the orbit propagation performance (in-track errors) for Dragster and HASDM is approximately 
equivalent with HASDM resulting I slightly smaller in-track errors.  Recall again that Dragster is driven only by 
TLE’s in this test while HASDM has high cadence observations of satellite orbits.  The number of 
assimilation/calibration objects ingested into both Dragster and HASDM is approximately equivalent but the 
HASDM operational dataset is much more accurate.  We expect that future tests using SP orbit data for all Dragster 
assimilation objects would result in better performance relative to HASDM.  Note also that the Dragster and 
HASDM standard deviations shown in Table 2 for the GRACE validation satellite were also quite similar (7% vs. 
9%) so that similar orbit-propagation statistics are to be expected. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 
Fig. 15: GRACE satellite orbit propagation statistics for in-track errors using atmospheric densities from three 

models compared with a propagation using densities measured by the GRACE accelerometers. Each box and 
whisker corresponds to either (1) Dragster assimilating TLE-based data from 75 satellites, (2) HASDM assimilating 

SP orbits from high task tracking of 80-90 satellites, or (3) empirical MSIS model w/o assimilation. 
 
 
 

10. CONCLUSIONS 
A new state-of-the-art assimilative model of the atmosphere called Dragster is being developed at ASTRA in 
conjunction with its government and academic partners to improve satellite drag specification and forecast.  The 
model incorporates many of the lessons learned from recent research in atmospheric dynamics and assimilation.  In 
particular, the model development takes advantage of the AFOSR-supported Multi-University Research Initiative 
“Neutral Atmosphere Density Interdisciplinary Research” (NADIR) program.  NADIR has laid the groundwork for 
the development of a first-principles assimilative operational model by deepening our understanding of the basic 
physical processes that drive the density and winds in the upper atmosphere.  
 
The purpose of the Dragster development is to improve over operational drag-specification below 2000km altitudes 
in real-time and perform three-day or greater satellite drag forecasts.  This altitude range has the advantage of 
capturing the majority of resident space objects that are affected by changes in the upper atmosphere.  The Dragster 
project’s success is evaluated by comparing its performance to empirical atmospheric models as well as the 
HASDM assimilative model.  As we have shown in this paper, Dragster density nowcast performance is already 
better than that of empirical models even though tests were only run with empirical model background.  
Atmospheric density specification is equivalent to or better than HASDM according to TLE validation analysis.  
However we point out that these performance gains are limited by the bandwidth of the TLE test dataset.  An 
analysis of orbit propagation performance for the GRACE satellite indicates that in-track orbit errors are equivalent 
to HASDM near 400km altitudes and improve over the use of NRLMSIS-00 for 3-day and 7-day orbit propagation 
timespans. 
 
Future Dragster test and evaluation efforts will focus on testing with non-TLE (lower noise) assimilation data and 
including the first-principles models in the EnKF. 
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