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Abstract— There are many methods that will solve high-
dimensional regression problems, and choosing an appropriate
method can be challenging. For some problems, accuracy
holds precedence over speed whereas in other instances speed
is required for a large number of problem sets. In this paper
we study the performance of several methods that solve the
multiframe blind deconvolution problem by comparing speed
and accuracy of each algorithm, highlighting the merits of each
algorithm.
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1. INTRODUCTION

Multi-frame blind deconvolution (MFBD) [1] is a problem
in which the true image and blurring function are estimated
from their convolution using multiple variably blurred images
of the same object. One application of MFBD is the recovery
of images of space objects observed from the ground through
atmospheric turbulence. Over several short-exposure frames,
a stable satellite will change minimally and the frame-to-
frame differences can be attributed to changing point-spread
functions (PSFs). A more in depth look at the history and
advantages of MFBD have been described previously [2].
The main objective of this paper is to examine the suitabil-
ity of different algorithms in solving the MFBD maximum
likelihood optimization problem

arg min
o,p≥0

∑

i, j

(o ∗ pi − di )
2
j

(o ∗ pi) j + σ 2
, (1)

whereo is the object estimate,pi is the i th PSF estimate,
di is thei th frame of noisy measured data, andσ 2 is the read
noise variance in each pixel. The notation(di) j (for example)
denotes thej th pixel of thei th data frame.

Numerous methods exist that could be applied to problems
such as (1), and it is not often clear which is the best to
use for a given problem. This paper examines several of
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these algorithms, comparing the speed and results of the
reconstructions of simulated space object imagery.

2. PACKAGES EXAMINED

The algorithms tested below are drawn from a number
of publicly-available software packages: L-BFGS-B [3],
NLopt [4], NLCG [5], Poblano [6], and ASP [7]. Some of the
packages offer multiple algorithms, and in some cases there is
overlap from one package to another, but there are differences
in implementation that make for interesting comparisons. All
the algorithms under consideration are iterative nonlinear,
gradient-based local optimization methods. The only real
outlier is ASP, which is discussed in more detail below.

For all the algorithms examined, except the Active-Set Basis
Pursuit (ASP) [7], [8] package, the positivity constraint on
the estimated image and PSF pixels is enforced within the
gradient calculation, where the gradient function is provided
by the MFBD algorithm. This constraint is enforced by one
of two schemes. The first is to reformulate the estimation
problem so that the estimated quantities are

√
o and

√
pi . The

second is a penalized scheme where we adjust the gradient to
push negative values in the positive direction. For the ASP
package, providing a gradient function was not an option and
we instead relied on the algorithm enforcing this positivity
constraint itself. Some algorithms also allowed the imposi-
tion of bound constraints and those options were tested.

Packages and Methods

This is a brief list of the packages and methods along with
acronyms:

1. LBFGSB: Limited-memory BFGS with bound constraints
package
2. NLopt: Nonlinear optimization package [4]
(a) Limited-memory BFGS (LBFGS)
(b) Truncated Newton method (TNM)
(c) Conservative convex separable approximation (CCSA)
(d) Method of moving asymptotes (MMA)
(e) Shifted limited-memory variable-metric (SLMVM)

3. Poblano MATLAB toolbox [6]
(a) Limited-memory BFGS (LBFGS)
(b) Truncated Newton method (TNM)
(c) Nonlinear conjugate gradient (NCG)

4. NLCG: Nonlinear conjugate gradient package [5]
5. ASP: Active set package [7], [8]

LBFGSB

LBFGSB [3] implements limited-memory BFGS with op-
tional bound constraints. This code is FORTRAN converted
to C and compiled into a MATLAB mex file.
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NLopt

NLopt [4] is a compilation of different algorithms, written
in multiple languages, by different authors, and uses a MAT-
LAB wrapper as the upper level interface.

Poblano

Poblano [6] is written entirely in MATLAB and this version
contains optional inputs, such as the search direction method,
conjugate gradient stopping tolerance, and other tolerance
values. Only minimal differences were observed when chang-
ing these options.

NLCG

NLCG [5] is a collection of nonlinear conjugate gradient
algorithms. This package is implemented in MATLAB.

ASP

The ASP [7] package contains several methods that will solve
least squares problems, none of which can address nonlinear
problems such as (1). Instead, the problem is linearized by
alternately fixingo and{pi}. In addition, anL1 regularization
term is added, yielding the new minimization problem

arg min
o





∑

i, j

(o ∗ pi − di )
2
j

di j + σ 2
+ λ

∑

j

|o j |



 (2)

and likewise for{pi }. The ASP package is written entirely in
MATLAB.

3. ALGORITHMS EXAMINED

Truncated Newton

The truncated Newton method [9], [10], [11] uses a conjugate
gradient algorithm to approximately solve the Newton equa-
tions to obtain a new search direction. Then it performs a line
search to the next solution. This method is less expensive
computationally than solving the Newton equations exactly
and has been shown to yield accurate results in large prob-
lems. Generally, this method does not require the Hessian
matrix explicitly, which reduces storage requirements. The
methods examined here use finite differencing to approximate
the Hessian.

Each package considered contains various options to tweak
the algorithm’s behavior. In our own experiments the options
appeared to have minimal impact on the reconstruction, and
the results from the default options are presented in this paper.
In addition, each package performs a line search based on
the Moré-Thuente method [12]. This is to guarantee global
convergence, meaning convergence to some local minimum
is guaranteed, rather than the global minimum.

The NLopt truncated Newton algorithm is written in C,
which has been translated from FORTRAN using f2c with
minor changes. It contains several variations of the truncated
Newton method, allowing for search direction restarting and
preconditioning. The variant examined here is the basic
algorithm with no restarting and no preconditioning. In pre-
liminary test cases, only minimal differences were observed
when changing these options.

Limited-memory BFGS

Limited-memory Broyden-Fletcher-Goldfarb-Shanno [13] is
an unconstrained quasi-Newton method. As the name sug-

gests, it is a variant of the BFGS algorithm that employs
a low-rank approximation of the Hessian (the full Hessian
for the blind deconvolution problem would be unmanageably
large).

The NLopt version was written in FORTRAN and converted
to C using f2c with minor modifications. It heuristically
determines the number of previous LBFGS corrections to
be kept in history. NLopt will also attempt to heuristically
choose the step length based on bounds, tolerances and other
information.

The Poblano version uses a two-loop recursion [14] to ap-
proximate Hessian-gradient products and the Moré-Thuente
line search. One of the LBFGS-specific options is the number
of previous iterations to keep in history. Changing this value
over a reasonable range appeared to have minimal effects on
the reconstruction.

The L-BFGS-B [15], [16] version of LBFGS is a constrained
quasi-Newton method and can enforce bound constraints
when minimizing (1). When allowing it to enforce positivity
itself vs. using the MFBD scheme, no improvement was
observed. No upper bound was set in the examined data of
this paper.

Conservative Convex Separable Approximation

NLopt is the only package examined that implements this
method [17] and identifies its particular variant as CCSAQ
due to its approximations focusing on simple quadratic terms.
This algorithm is written in C with a MATLAB wrapper.
A benefit to this method is that it can be applied to large
problems in which the Hessians are dense. The algorithm
calculates the next iterate using an approximation to the
original objective and constraint functions. CCSAQ performs
this approximation with simple quadratic terms. If certain
bound conditions are satisfied at the candidate iterate, then it
is taken as the next iterate solution. Otherwise it is rejected
and the next iterate is recalculated with an increased penalty
term on the quadratic approximation.

Method of Moving Asymptotes

NLopt is the only package examined that implements this
method [17]. This algorithm is written in C with a MATLAB
wrapper and is based on the CCSA method. This is a more
modern version of MMA that is globally convergent and
faster than the original MMA algorithm. The algorithm
calculates the next iterate using an approximation to the
original objective and constraint functions. MMA performs
this approximation with the gradient of the objective function
and a quadratic penalty term. If certain bound conditions are
satisfied at the candidate iterate, then it is taken as the next
iterate solution. Otherwise it is rejected and the next iterate is
recalculated with an increased penalty term.

Shifted Limited-Memory Variable-Metric

NLopt is the only package examined that implements this
method. It is based on a FORTRAN implementation con-
verted to C with f2c. Variable metric methods [11], [18] are
a class of quasi-Newton methods. In this implementation the
Hessian can be updated using a rank-1 formula or a rank-2
formula, and both are examined in this paper. Both maintain
symmetry in the Hessian but the rank-2 will also maintain
positive definiteness. This algorithm is similar to the LBFGS
method, which implements a rank-2 update. The “shifted”
portion refers to how the Hessian is defined, which is different
from LBFGS, and involves an additional term.
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Nonlinear Conjugate Gradient

Nonlinear conjugate gradient (NCG) algorithms tend to fol-
low the general format of:

• Evaluate gradient∇ f (xn) of objective function at the cur-
rent positionxn
• Obtain a new search directionsn = −∇ f (xn) + βsn−1,
whereβ depends on the flavor of NCG
• Perform a line search:αn = arg minα f (xn + βsn)
• Update position:xn+1 = xn + αnsn

There are several variations of NCG depending on the choice
of β and the line search algorithm.

NLCG provides numerous flavors and we examine the fol-
lowing: Fletcher-Reeves [19], Polak-Ribiere-Polyak [20],
steepest descent [14], Polak-Ribiere-Polyak constrained by
Fletcher-Reeves, Hager-Zhang [21], and Dai-Yuan [22]. It
can also perform the Hestenes-Stiefel method [23], but this
variation quits very early and is not included in this study.
All these variants utilize a line search method that requires the
strong Wolfe condition [24], [25] for convergence purposes,
except the Dai-Yuan variant, which allows for a weak Wolfe
line search as well as strong. However, the weak Wolfe
variant is not examined in this paper.

Poblano provides the Fletcher-Reeves, Polak-Ribiere-Polyak,
Hestenes-Stiefel, and steepest descent variations. This pack-
age contains an optional conjugate direction restart strategy
based on the number of iterations or the orthogonality of
gradients across iterations. Adjusting this feature has had
minimal effects on the final reconstruction and the results
presented in this paper do not use this restart option.

ASP

ASP solves regularized nonnegative least-squares problems
by solving the dual basis pursuit problem [8]. An active
set method designates each element in the current iterate as
“active” or “inactive” based on a set of constraints. Generally
elements are set to “inactive” when the algorithm determines
an element is an optimal value, and works on the “active”
elements. This approach reduces the dimensionality of the
problem. This package has its own positivity scheme and
does not use the two examined with the other packages. It
also requires the PSF and image to be estimated separately,
so we experiment with the total function evaluations used to
generate the image as well as the total number of evaluations
between calculating the image and PSF. In addition there
are several tolerance and other algorithm options. Most had
minimal effects on the data when adjusted. One option is
included in the data. The “homotopy” option is examined
because in edge cases the default options would fail to enforce
positivity, but with the “homotopy” option the positivity
constraint remained enforced.

4. RESULTS

The input data used in these experiments is a CAD model
of a satellite convolved with simulated atmospheric PSFs.
The stopping criterion for all experiments is the number
of function evaluations. Each algorithm was run for 100,
200, 300, 400, and 500 function evaluations, or as close
as possible as some algorithms can require several function
evaluations to complete an iteration. We recorded the final
value of the objective function (1) and the time it took for
each set of evaluations. These data are plotted against the
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Figure 1. The two positivity schemes require approximately
the same amount of time.

100 150 200 250 300 350 400 450 500 550

fn evals

20

40

60

80

100

120

140

160

tim
e 

(s
)

NLCG Algorithm Time

Csqrt
Cpen
Fsqrt
Fpen
Psqrt
Ppen
SDsqrt
SDpen
Ysqrt
Ypen
Zsqrt
Zpen

Figure 2. F is Fletcher-Reeves. P is Polak-Ribiere-Polyak.
C is P constrained by F. SD is steepest descent. Y is

Dai-Yuan. Z is Hager-Zhang.

number of function evaluations and compared to each other.
In the legends of the plots, “sqrt” refers to the square root
positivity scheme and “pen” refers to the penalized positivity
scheme. Also shown here are selected reconstructions from
each algorithm/package.

Time Results

Figures 1–5 are plots of the number of function evaluations
vs. the time in seconds to complete. The plots are organized
by package.

In terms of execution time per function evaluation, we see
that the NLCG, NLopt, and Poblano packages tend to be
the fastest. Note that this is really just a measure of how
much time each algorithm requires internally; the conver-
gence rate has not been taken into consideration in these
plots. Comparing Poblano and NLopt, we see that although
NLopt is using compiled C code, it does not have a speed
increase over Poblano which is written entirely in MATLAB.
We also see that between the two positivity schemes there
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Figure 3. The penalized positivity scheme generally takes
more time than the square root positivity scheme
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Figure 4. TN is Truncated Newton. NCGPR is
Polak-Ribiere-Polyak. NCGFR is Fletcher-Reeves. NCGHS

is Hestenes-Stiefel. NCGSD is steepest descent.

is no consistent difference in speed, and the times taken to
process are generally the same.

Objective Function Results

Figures 6–10 are plots of the number of function evaluations
vs the objective function value after that many evaluations.
The plots are organized by package.

From the Figures 6–10 we see that the penalized positivity
scheme and the square root scheme make almost no differ-
ence in the resulting objective function value, and in the
case of Poblano, none at all. We see that ASP results in
very large objective function values, that sometimes increase,
which tells us that is package is not suitable for this particular
application. The other packages fall into a smaller range close
to each other, and the smallest objective function values are a
result of the LBFGS and LBFGSB algorithms which can be
observed in Figure 11. Figure 11 combines the resulting ob-
jective function values for varying packages and algorithms.
Not all tested methods are plotted as the resulting plot is too
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Figure 5. “h0” refers to the homotopy option turned off.
“h1” refers to the homotopy option turned on. “lam” refers

to the regularization parameterλ used. “it” refers to the
number of iterations the function evaluations were split over.
“I” refers to only image function evaluations counted. “IK”

refers to both image and kernel function evaluations counted.
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Figure 6. The two penalization schemes yield
approximately the same objective function value.

difficult to read. Since several variations of algorithms have
been tested, the depicted plots are those that resulted in lower
objective function values.

Reconstructions

Figures 12–13 are the observation and pristine image, while
Figures 14–21 are selected reconstructions. The selected
reconstructions do not include all reconstructions, but are
intended to give a sampling of the different algorithms and
packages.

The reconstructions shown contain a mix of the two positivity
constraints. Just as the plots of the objective functions show
near-identical values, there is little difference in the two
reconstructions when comparing the same algorithms with
different positivity enforcement schemes. When put side by
side virtually no distinction can be made. The presented
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Figure 7. F is Fletcher-Reeves. P is Polak-Ribiere-Polyak.
C is P constrained by F. SD is steepest descent. Y is

Dai-Yuan. Z is Hager-Zhang.
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Figure 8. The positivity scheme only appears to have minor
effects, the most noticable being on the truncated Newton

method

estimates are also those at the 500 function evaluation level
since those all appeared to be more detailed and not yet over
processed.

Subjective assessment of the reconstructed images is consis-
tent with the trends observed in the objective function values,
with the quasi-Newton methods delivering the best perfor-
mance. The LBFGSB reconstruction shown in Figure 19
contains more satellite detail than any other method tested.
The NLopt implementations of LBFGS and SLMVM (see
Figure 17) are only marginally worse. The Poblano LBFGS
(Figure 18) is not as detailed.

Methods that are able to recover some image detail but
not as much as the above methods are: NLCG Polak-
Ribiere-Polyak constrained by Fletcher-Reeves, NLCG
Polak-Ribiere-Polyak, NLCG Hager-Zhang, Poblano Polak-
Ribiere-Polyak, Poblano Hestenes-Stiefel, Poblano LBFGS,
and NLOPT truncated Newton.
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Figure 9. TN is Truncated Newton. NCGPR is
Polak-Ribiere-Polyak. NCGFR is Fletcher-Reeves. NCGHS

is Hestenes-Stiefel. NCGSD is steepest descent.
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Figure 10. “h0” refers to the homotopy option turned off.
“h1” refers to the homotopy option turned on. “lam” refers

to the regularization parameterλ used. “it” refers to the
number of iterations the function evaluations were split over.
“I” refers to only image function evaluations counted. “IK”

refers to both image and kernel function evaluations counted.

Methods that reconstructed with little to no improvement to
the average of the input image frames are: NLCG Fletcher-
Reeves, NLCG steepest descent, NLCG Dai-Yuan, Poblano
Fletcher-Reeves, Poblano truncated Newton, and Poblano
steepest descent.

Methods that resulted in reconstructions that were visibly
worse than the average of observations are: NLOPT MMA,
NLOPT CCSAQ, and ASP.

5. FUTURE WORK

To make a “fair” comparison between the optimization meth-
ods in this paper, we stopped each algorithm after a fixed
number of function evaluations. However, this does not take
into account that some of the algorithms (e.g. nonlinear
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Figure 11. A variety of objective function value results
from different packages and algorithms. Each method

utilizes the square root scheme for positivity constraint.

Figure 12. This is one of 30 frames in our observation.

conjugate gradient) can be efficiently parallelized, while oth-
ers (e.g. LBFGS) cannot due to communication costs. In
Figures 22–26 we show that with more evaluations the NLCG
package can produce reconstructions similar to LBFGSB. In
future work, we will expand our comparison to include a
degree of parallelization.

6. CONCLUSIONS

This paper compares the effectivenes of numerous algorithms
and packages for the purpose of minimizing the MFBD
objective function (1). The algorithms with the lowest result-
ing objective function are LBFGSB and LBFGS, followed
closely by the NCG methods Hager-Zhang, Polak-Ribiere-
Polyak, and Polak-Ribiere-Polyak constrained by Fletcher-

Figure 13. This is the pristine image used to generate our
observations.

Figure 14. This reconstruction enforces the “homotopy”
option. The other ASP reconstructions look similar to this,

so we can see that ASP is not suited to this particular
application.
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Figure 15. CCSA leads to a similar reconstruction as
MMA. Although both yield low objective function values
the resulting reconstruction is not close to the true image.

Figure 16. The NCG methods from Poblano and NLCG
look very similar, but there are small differences. This
reconstruction contains more satellite details than other

Poblano NCG reconstructions.

Figure 17. Var2 refers to the rank 2 update. The resulting
rank 1 estimate is nearly indistinguishable from the rank 2.

This method is similar to BFGS methods and results in
similar reconstructions. The NLOPT LBFGS method also

appears similar to this.

Figure 18. BFGS based reconstruction contained the most
details in all our estimates, and this is the most detailed from
Poblano. However, it does not contain as many details as the

other BFGS based methods.
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Figure 19. This reconstruction appears to have the most
details and sharpest edges.

Figure 20. This is the Polak-Ribiere-Polyak constrained by
Fletcher-Reeves reconstruction. It is visually similar to the

Dai-Yuan and Hager-Zhang reconstructions. The other
NLCG and NCG results do not have as much detail.

Figure 21. The NLOPT truncated Newton method resulted
in a reconstruction with more satellite details than the

Poblano version.

Figure 22. This is the Polak-Ribiere-Polyak constrained by
Fletcher-Reeves case. After 1100 function evaluations this
method appears almost as detailed as LBFGSB case at 500

function evaluations.
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Figure 23. This is the Polak-Ribiere-Polyak constrained by
Fletcher-Reeves case. After 2200 function evaluations this
method appears to be more detailed than the LBFGSB case

at 500 function evaluations.

Figure 24. This is the Polak-Ribiere-Polyak constrained by
Fletcher-Reeves case. There is some increase in detail here

but overprocessing may soon be a concern with more
function evaluations.
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Figure 25. F is Fletcher-Reeves. P is Polak-Ribiere-Polyak.
C is P constrained by F. SD is steepest descent. Y is

Dai-Yuan. Z is Hager-Zhang
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Figure 26. F is Fletcher-Reeves. P is Polak-Ribiere-Polyak.
C is P constrained by F. SD is steepest descent. Y is

Dai-Yuan. Z is Hager-Zhang. Increased function evaluations
follows a linear increase in time.

Reeves.

The most subjectively appealing reconstructions from simu-
lated test data were obtained by LBFGSB, NLOPT LBFGS
and NLOPT SLMVM, although given enough evaluations,
the NLCG package yields similar performance. Since the
package is also easily parallelizable compared to the other
methods, it would interesting to see its performance com-
pared to other methods that are not easily parallelizable such
as LBFGSB.
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