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ABSTRACT

Advances in space technologies continue to reduce the cost of placing satellites in orbit. With
more entities operating space vehicles, the number of orbiting vehicles and debris has reached
unprecedented levels and the number continues to grow. Sensor operators responsible for main-
taining the space catalog and providing space situational awareness face an increasingly complex
and demanding scheduling requirements. Despite these trends, a lack of advanced tools contin-
ues to prevent sensor planners and operators from fully utilizing space surveillance resources.
One key challenge involves optimally selecting sensors from a network of varying capabilities for
missions with differing requirements. Another open challenge, the primary focus of our work, is
building robust schedules that effectively plan for uncertainties associated with weather, ad hoc
collections, and other target uncertainties. Existing tools and techniques are not amenable to
rigorous analysis of schedule optimality and do not adequately address the presented challenges.

Building on prior research, we have developed stochastic mixed-integer linear optimization
models to address uncertainty due to weather’s effect on collection quality. By making use of the
open source Pyomo optimization modeling software, we have posed and solved sensor network
scheduling models addressing both forms of uncertainty. We present herein models that allow
for concurrent scheduling of collections with the same sensor configuration and for proactively
scheduling against uncertain ad hoc collections. The suitability of stochastic mixed-integer linear
optimization for building sensor network schedules under different run-time constraints will be
discussed.

1. INTRODUCTION

Scheduling is an important part of the utilization and safe operation of remote sensing assets. Automated
algorithms for the scheduling of sensors span many different applications including planning of Earth observ-
ing satellite collections [1, 2], routing of unmanned aerial systems under fuel constraints [3], and simulated
operations of ground [4] and space-based sensors for space situational awareness. Algorithms designed using
domain-specific scheduling heuristics are common across these different application spaces. The pervasive
use of heuristics in these respective sensing domains has been in part due to the computational complex-
ity and resultant runtimes required to produce feasible sensor schedules. These heuristics often convolve
the scheduling model with the solution technique, requiring changes to both to accommodate updates to
either the model or solution technique. Sensor development across satellites and ground telescopes contin-
ues to extend the capabilities of already very flexible sensors. The challenge of quickly producing optimal
or near-optimal sensor schedules is further complicated when considering differing definitions of schedule
optimality. Priority and orbit error covariance are naturally used as optimality criteria in many scheduling
algorithms. Proper relative weighting of these criteria, amongst others such as timeliness of information
or update and needed type of target characterization, necessitate a rigorous model definition separate from
solution technique.
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Inherent to the scheduling of sensors, perhaps even more so for space situational awareness, is the notion
of schedule uncertainty. Certainly, one of the primary goals of the Space Surveillance Network (SSN) is
to reduce orbital parameter errors. In this paper, we present a model that proactively schedules against
uncertainty to produce a schedule with higher expected utility over scenarios of differing likelihood. For
example, cloud cover at ground sensor sites may prevent or at least negatively effect the utility of scheduled
collections at those sites. By making use of weather forecasts and historical weather data, multiple weather
scenarios can be considered and depending on the likelihood of each, collections affected by cloud cover can
be moved to sensors less sensitive to clouds or sensors without coincident weather conditions. Similarly,
uncertainties in the timing of a target resident space object (RSO) passage through the sensor field-of-regard
may negatively impact the utility of a scheduled collection and the sensor and constellation schedule as a
whole. Schedule utility is reduced when a collection does not produce significant improvements in orbit
uncertainty or object characterization. Despite pervasive uncertainty in the scheduling of remote sensor
collections, existing literature, e.g. [5], does not present tractable and extensible models and algorithms to
proactively reduce the impact of uncertainty on sensor schedules.

In this paper, we present a model for reducing the impact of ad hoc collections. This model makes use of a
stochastic mixed-integer linear program [6] to proactively schedule against probability-weighted scenarios of
different collection start times and durations. These scenarios differ across ad hoc collection start times and
durations, yet aim to schedule a common set of collection windows whose timing and durations are known
a priori. A model developed in [7] demonstrates the advantage of proactively scheduling against weather
scenarios over deterministic models that assume a specific future weather outcome. We also build upon prior
research to formalize a model that allows collections of the same configuration to run concurrently. We defer
to [8] for collection window property and category definitions. Note that in the following we have adopted
collection window instead of activity to describe time periods scheduled on sensors. In general, it is assumed
that Category 4 collections, the category reserved for ad hoc collections, are of the highest priority and
in general must be scheduled as soon as information establishes sufficient certainty of occurrence, barring
conflicts with sensor safety constraints.

In Section 2, we present some preliminaries on the stochastic model. Section 2.1 presents the deterministic
model that allows for concurrent scheduling of collections with same configuration. Section 2.2 presents
details and definitions of the stochastic model. Section 3 discusses the model and directions for future
research. Finally, Section 4 presents some concluding remarks.

2. A STOCHASTIC COVERAGE MODEL FOR AD HOC COLLECTIONS

In the following, a formulation is developed for a stochastic mixed-integer constellation scheduling problem.
The problem is comprised of two decision stages. First, a deterministic model allowing for concurrent
scheduling of collections is described. This model, representing the first stage of the stochastic mixed-integer
program (SMIP), aims to schedule Category 1, 2, and 3 collection windows. In the second stage, scenario
distributions capturing the variability in Category 4 collection window start times and durations are used to
create a schedule that maximizes expected information gain and is resilient to ad hoc changes. In a two stage
decision making setting, the first stage decision has to be made here-and-now without full information of
future events. Second stage decisions are made later when the future is revealed. To formalize this decision
making process, let x be the first stage decision variable vector and let y(ξ) be the second stage (recourse)
decision vector for outcome (scenario) ξ. Then a generic two-stage SMIP can be given as follows:

max f(x) + E[g(x, ξ̃)] (1)

s.t. Ax ≤ b
x ∈ X,

where the set X ⊆ Rn1 imposes integer or binary restrictions on all or some components of x, f(x) is
the first stage objective function, E is the mathematical expectation operator and E[g(x, ξ̃)] is the expected
recourse function. The vector ξ̃ is a multivariate random variable defined on a probability space (Ξ,F ,P)
and represents the second stage uncertainty. So for a given outcome ξ ∈ Ξ of ξ̃, the recourse function g(x, ξ)
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is given by the following second stage problem:

g(x, ξ) = max h(y(ξ)) (2)

s.t. W (ξ)y(ξ) ≤ r(ξ)− T (ξ)x

y(ξ) ∈ Y

In problem (2), Y ⊆ Rn2 imposes integer or binary restrictions on all or some components of y(ξ), h(y(ξ))
is the second stage objective function, W (ξ) ∈ Rm2×n2 is the (rational) recourse matrix, T (ξ) ∈ Rm2×n1 is
the technology matrix, and r(ξ) ∈ Rm2 is the right hand side vector. A scenario ξ defines the realization of
the stochastic problem data {W (ξ), T (ξ), r(ξ)}. If W (ξ) = W for all ξ ∈ Ξ, the problem is said to have fixed
recourse. Otherwise, the problem is said to have random recourse. Similarly, if r(ξ) = r for all ξ ∈ Ξ, and
T (ξ) = T for all ξ ∈ Ξ, the problem is said to have fixed right hand side vector and fixed technology matrix,
respectively. For more information about stochastic mixed-integer programming, see [6].

2.1. STAGE ONE: DETERMINISTIC MODEL

Let δikt be a binary decision variable where δikt = 1 if sensor i has scheduled collection window k starting
at timestep t. We assume that the set of collection windows are organized into the categories given in [8].
Category 1 collection windows must be scheduled, but Category 2 and 3 collection windows may be deferred
due to scheduling limitations imposed by scheduled Category 1 or Category 4 collection windows or other
collection windows of higher priority or quality. We let K1 ⊆ K be the indices of the Category 1 collection
windows. For convenience, we define the binary decision variable ωk to represent whether or not collection
window k has been scheduled at any time step, on any sensor:

ωk =
∑
i∈I

∑
t∈T

δikt,∀k ∈ K. (3)

The following constraint ensures that all Category 1 collection windows are scheduled:

ωk = 1,∀k ∈ K1. (4)

We also introduce a set of binary indicator variables φits to signify that at least one collection with config-
uration s ∈ S is starting or active at timestep t on sensor i. As before, if a sensor is scheduled to begin
observing a collection window at time t̄, then it will continue collection for the next dk − 1 timesteps, where
dk is the duration required to complete collection window k. Let C(k, t̄) be the set of feasible time steps
where a collection window other than k could have been started prior to time step t̄ and for which scheduling
another sensor observation would conflict with starting a new sensor observation beginning at time step t̄.
Thus

C(k, t̄) = max(ek, t̄− dk + 1), . . . ,min(lk, t̄− 1). (5)

The constraint to allow for concurrent collections of a single configuration over sensor i’s scheduling horizon
is ∑

k∈K

δikt̄ ≤ (1 +M)
∑
k̄∈K\k

∑
t∈C(k,t̄)

φits,∀t̄ ∈ T , i ∈ I, s ∈ S, (6)

where M is in general chosen to equal to number of a priori (as opposed to ad hoc) collection windows to
be scheduled. With some preprocessing, this number can be chosen depending on the number of collection
windows that can be scheduled at constraint index {i, t, s} to provide a tighter constraint bound. When
combined with the following constraint ∑

s∈S
φit̄s ≤ 1,∀i ∈ I, t̄ ∈ T , (7)

these constraints prohibit scheduling a collection window k at time t̄ if another collection window with a
different configuration was scheduled “recently”, at some time t ∈ C(k, t̄). When collections of the same
configuration run concurrently sensors with fields-of-view large enough relative to collection requirements
have the opportunity to schedule more collection windows and therefore raise overall schedule utility.
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The first-stage objective function remains the same as described in our previous work with the mixed-
integer linear program, changing slightly to accommodate concurrently scheduled collection windows. Let
δ = {δikt}∀i∈I,k∈K,t∈T and the objective function be defined as

f(δ) =
∑
i∈I

∑
k∈K

∑
t∈T

δiktpkdkqikt
σ

. (8)

where σ is normalizing constant used for convenience and defined in our previous model. Then, the first-stage
binary program is:

max f(δ)

s.t. ωk =
∑
i∈I

∑
t∈T δikt ∀k ∈ K,

ωk = 1 ∀k ∈ K1,∑
k∈K δikt̄ ≤ (1 +M)

∑
k̄∈K\k

∑
t∈C(k,t̄) φits ∀t̄ ∈ T , i ∈ I, s ∈ S,

ωk ∈ {0, 1} ∀k ∈ K,
δikt ∈ {0, 1} ∀i ∈ I, k ∈ K, t ∈ T ,
φits ∈ {0, 1} ∀i ∈ I, t ∈ T , s ∈ S.

(9)

This model allows for alternate definitions of qikt according to sensor, time, and collection window so that
a scheduling strategy depending on sensor platform (e.g., airborne and ground) and overarching mission
(e.g., maintenance of the space catalog and maximum value of collected reconnaissance information) can be
optimized. Figure 1 shows an example two-sensor schedule produced using the model described in (9). A
legend depicting the colors of each sensor configuration is shown in the upper right. Configurations one and
two are reserved to correspond to Category 1 and 2 collection windows. The other configurations depend on
sensor type and capability. For both plots, time is given on the horizontal axis. In the top plot, scheduled
collections of each of two sensors are depicted on distinct timelines. Collection windows are displayed as
rectangles with height corresponding to priority, width corresponding to duration, and color corresponding to
configuration. The opacity of the rectangles allow for clear indication of concurrently scheduled collections.
The bottom plot depicts collection windows that were not scheduled. As in the top plot, rectangles are
used to describe the priority, duration, and configuration of collection windows, had they been scheduled.
Dotted lines are used to denote the earliest and latest potential start time of the unscheduled collection
windows. Numbers to the right of each collection window indicate which sensor(s) the collection window can
be scheduled on.

2.2. STAGE TWO

The second stage of the SMIP aims to optimize the schedule in light of a known distribution P of Category 4
(ad hoc) collection windows. As previously defined, all Category 4 collection windows have priority equal to
one. From a remote sensing applications standpoint, Category 4 collection windows are modeled to describe
important events that have uncertain time windows and durations that fall within a forecasted range. An
example of such a collection window is an observation of a newly identified piece of space debris or collections
of a wildfire crossing a boundary of interest such as a state line or a fence near critical infrastructure. When
and how long it takes the wildfire to cross the boundary can be forecasted, but is uncertain.

Each scenario ξ represents an instance of a set of Category 4 collection windows and their time window
and duration realizations, i.e., for each ξ ∈ Ξ we have the realization of the data {(eξk, l

ξ
k), dξk, q

ξ
ikt}. An

important nuance to the second stage model is that it is assumed Category 4 collection windows cannot
preempt Category 1 collection windows. The second stage carefully considers which collection windows
would be interrupted by analyzing each Category 4 scenario and computing the resulting changes to the
stage one objective function. An important assumption in the following model is that Category 4 collections
require a specific configuration and accordingly, no concurrent collections are allowed when a Category 4
collection is scheduled.
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Fig. 1: Example sensor schedule allowing concurrent collections of a single configuration.

2.2.1 DEFINITIONS

Let Kξ4 ⊆ K be the set of scenario dependent Category 4 collection windows. Let Kpξ4 be the set of scenario
dependent collection window pairs (each pair including exactly one Category 4 collection window) that could

possibly conflict. Let ∆ξ
ikt be a binary decision variable where ∆ξ

ikt = 1 if sensor i is scheduled to observe

collection window k starting at time period t under scenario ξ, where i ∈ I, t ∈ T and k ∈ Kξ4. The variable

Ωξk represents whether or not a specific Category 4 collection window is scheduled under scenario ξ:

Ωξk =
∑
i∈I

∑
t∈T

∆ξ
ikt,∀k ∈ K

ξ
4 (10)

Let yξikkzt be a binary variable defined over the collection window pair k, kz ∈ Kpξ4 under scenario ξ. The

decision variable yξikkzt is equal to one when collection windows k and kz conflict when scheduled at time t on

sensor i under scenario ξ. Let γξikt be a binary variable defined over i ∈ I, t ∈ T and k ∈ Kξ4 under scenario
ξ that equals one if the corresponding Category 4 collection window will interrupt at least one overlapping
collection window scheduled in the first stage. Let Γξikt be a binary variable indexed over i ∈ I, k ∈ K \ Kξ4
and t ∈ T that is equal to one if a Category 1, 2 or 3 collection window will be interrupted by a Category 4
collection window under scenario ξ.

As before, collections concurrent with Category 4 collection windows are prevented from occurring on
each sensor i: ∑

k∈K4

∆ξ
ikt̄ ≤ 1−

∑
k∈K4

∑
t∈C(k,t̄)

∆ξ
ikt̄,∀t̄ ∈ T , i ∈ I. (11)

All Category 4 collection windows are forced to be scheduled:

Ωξk = 1,∀k ∈ Kξ4. (12)

Using the following three constraints, yξikkzt is defined as:

yξikkzt + (1−∆ξ
ikjt

) ≥ δikzt ∀i ∈ I, k, kz ∈ K
pξ
4 , t ∈ T , (13)
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which sets yξikkzt to one when either a Category 1, 2 or 3 collection window in the first stage is scheduled
and a Category 4 collection window in the second stage overlaps. Notice that we put δikzt on the right hand
side because it is determined in the first stage and is known at this time;

(1− yξikkzt) + ∆ξ
ikt ≥ 1 ∀i ∈ I, k, kz ∈ Kpξ4 , t ∈ T , (14)

which prohibits yξikkzt from being one if the Category 4 collection window is not overlapping; and

(1− yξikkzt) ≥ 1− δikzt∀i ∈ I, k, kz ∈ K
pξ
4 , t ∈ T , (15)

which prohibits yξikkzt from being one if the Category 1, 2 or 3 collection window is not scheduled. In order

to define γξikt, the next two constraints are used:

γξikt +
∑
kz∈K1

∑
t∈T

yξikkzt ≥ 1 ∀i ∈ I, k, kz ∈ Kpξ4 , t ∈ T , (16)

which enforces γξikt = 1 every time there is no actual conflict with a Category 1 collection window and if
kz ∈ K1,

(1− γξikt) + (1− yξikkzt) ≥ 1 ∀i ∈ I, k, kz ∈ Kpξ4 , t ∈ T , (17)

which prohibits a Category 4 collection window from interrupting a Category 1 collection window. Finally,
to define Γξikzt we strictly enforce an if and only if relationship between interrupted collection windows and
Category 4 collection windows scheduled in the second stage:

Γξikzt + (1− yξikkzt) + (1− γξikt) ≥ 1 , (18)

(1− Γξikzt) +
∑
k∈Kξ4

∑
t∈T

yξikkzt ≥ 1 , (19)

(1− Γξikzt) +
∑
k∈Kξ4

∑
t∈T

γξikt ≥ 1 ∀i ∈ I, k, kz,∈ Kpξ4 , t ∈ T . (20)

2.2.2 SECOND STAGE MODEL

The objective function for stage two is computed first by taking the additional value of scheduled Category
4 collection windows that interrupt all other collection windows and then subtracting value of interrupted
Category 2 and 3 collection windows. Again, the value is computed prioritizing long duration, high priority
collection windows, and high quality observations. Let γ(ξ), and Γ(ξ) be the second stage decision variable

vectors whose components are the γξikt’s and Γξikt’s, respectively. Then the second stage objective function,
h(γ(ξ),Γ(ξ)), can be given as follows:

h(γ(ξ),Γ(ξ)) =
∑
i∈I

∑
k∈Kξ4

∑
t∈T

(γξikt)(pk)(dk)(qikt)

σ′
−
∑
i∈I

∑
k∈K\Kξ4

∑
t∈T

(Γξikt)(pk)(dk)(qikt)

σ′
.

Again, σ′ denotes a normalization constant so that an objective function value of 100 will denote a
set of sensor schedules in which all collection windows are scheduled, modified to incorporate the value of
scheduling Category 4 collection windows. Using the constraints defined above, together with the objective
function in Equation (8), then for given first stage decisions δ and scenario ξ ∈ Ξ the second stage recourse
binary program is given as follows:
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g(δ, ξ) = max h(γ(ξ),Γ(ξ))

s.t.
∑
i∈I

∑
t∈T ∆ξ

ikt − Ωξk = 0 ∀k ∈ Kξ4,∑
k∈Kξ4

∆ξ
ikt̄ ≤ 1−

∑
k∈Kξ4

∑
t∈C(k,t̄) ∆ξ

ikt̄ ∀t̄ ∈ T , i ∈ I

Ωξk = 1 ∀k ∈ Kξ4,
yξikkzt + (1−∆ξ

ikt) ≥ δikzt ∀i ∈ I, k, kz,∈ Kpξ4 , t ∈ T ,
(1− yξikkzt) + ∆ξ

ikjtj
≥ 1 ∀i, kj , kz, tj , tz ∈ Kpξ4 ,

(1− yξikjtjkztz ) ≥ 1− δikztz ∀i, kj , kz, tj , tz ∈ Kpξ4 ,

γξikt +
∑
kz∈K1

∑
tz∈T y

ξ
iktkztz

≥ 1 ∀i, k, kz, t, tz ∈ Kpξ4 ,

(1− γξikt) + (1− yξiktkztz ) ≥ 1 ∀i, k, t, kz, tz ∈ Kpξ4 ,

Γξikztz + (1− yξiktkztz ) + (1− γξikt) ≥ 1 ∀i, k, t, kz, tz ∈ Kpξ4 ,

(1− Γξikzt) +
∑
k∈Kξ4

∑
t∈T y

ξ
ikkzt

≥ 1 ∀i, kz, tz ∈ Kpξ4 ,

(1− Γξikzt) +
∑
k∈Kξ4

∑
t∈T γ

ξ
ikt ≥ 1 ∀i, kz, tz ∈ Kpξ4 ,

Ωξk ∈ {0, 1} ∀k ∈ Kξ4
∆ξ
ikt ∈ {0, 1} ∀k ∈ Kξ4, i ∈ I, t ∈ T

yξikkzt ∈ {0, 1} ∀i, kj , kz, tj , tz ∈ Kpξ4 ,

γξikt ∈ {0, 1} ∀i ∈ I, k ∈ Kξ4, t ∈ T
Γξikt ∈ {0, 1} ∀i ∈ I, k ∈ K, t ∈ T

(21)

The end result of the model and constraints in Equation (21) is a single schedule that maximizes the expected
information gain across all potential scenarios. While the first stage ensures that a feasible schedule is
constructed, the second stage computes schedule performance once an ad hoc collection scenario is realized.
The second stage assumes a fixed first-stage schedule. More specifically, once an ad hoc collection scenario is
realized, two things occur. Conflicting Category 2 or 3 collections, i.e. overlapping in time, are removed from
the schedule. Schedule performance is updated to account for the addition of a Category 4 collection and the
subtraction of overlapping collections. At the same time, Category 4 collections are prevented from being
scheduled when a Category 1 collection is scheduled. To prevent infeasible scenarios, a priori information
about Category 1 collections is used in the scenario generation step to prevent conflicting scenarios.

3. DISCUSSION

Work investigating the suitability of the proposed model continues. Preliminary results for a related SMIP
suggest that exact branch-and-bound solution methods scheduling 24-hours of two- and three-sensor con-
stellations can produce optimal or near-optimal schedules within operational timeframes (i.e., on the order
of minutes and generally less than 20 minutes.) In these experiments, tens and hundreds of scenarios have
been considered and schedules consistently outperform those generated without proactively scheduling for
uncertainty. Ongoing research continues to focus on careful definition of ad hoc collection scenarios through
mining of historical event data and conversations with sensor operators and planners to incorporate subject
matter expertise. To expedite exploration of model constraint and objective changes as well as to elicit
planner feedback, an existing prototype schedule visualization application remains under development.

Future work will investigate SMIP heuristics to reduce the time required to produce near-optimal sched-
ules proactive to uncertainty. This work will be critical for producing schedules that maximize information
gained for larger constellations of sensors. The proposed models push much of the complexity of generating
collection windows and establishing the quality of individual collections into pre-processing steps. Model
extensions are being investigated that will reduce this complexity by allowing collections to be accomplished
using multiple configurations. The perceived reduction in complexity may come at the cost of additional
preprocessing steps and modeling requirements.
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4. CONCLUSION

We have presented a model for reducing the impact of ad hoc collections on sensor and constellations schedule
utility. Related models utilizing stochastic mixed-integer linear programs and associated solution techniques
have consistently produced schedules that gain significantly more information than deterministic models and
algorithms. This model also allows collections of the same configuration to run concurrently, a higher-fidelity
model for many sensors. Future work will include acquiring realistic scenario data to perform experiments
investigating performance of the presented model over current, deterministic techniques.
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