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ABSTRACT 

 
In this paper, we present an end-to-end approach that employs machine learning techniques and Ontology-based 
Bayesian Networks (BN) to characterize the behavior of resident space objects. State-of-the-Art machine learning 
architectures (e.g. Extreme Learning Machines, Convolutional Deep Networks) are trained on physical models to learn 
the Resident Space Object (RSO) features in the vectorized energy and momentum states and parameters. The mapping 
from measurements to vectorized energy and momentum states and parameters enables behavior characterization via 
clustering in the features space and subsequent RSO classification. Additionally, Space Object Behavioral Ontologies 
(SOBO) are employed to define and capture the domain knowledge-base (KB) and BNs are constructed from the 
SOBO in a semi-automatic fashion to execute probabilistic reasoning over conclusions drawn from trained classifiers 
and/or directly from processed data. Such an approach enables integrating machine learning classifiers and 
probabilistic reasoning to support higher-level decision making for space domain awareness applications. The 
innovation here is to use these methods (which have enjoyed great success in other domains) in synergy so that it 
enables a “from data to discovery” paradigm by facilitating the linkage and fusion of large and disparate sources of 
information via a Big Data Science and Analytics framework. 
 

1. INTRODUCTION 
 
Over the past few years, Space Domain Awareness (SDA), which is concerned with acquiring and maintaining 
knowledge of Resident Space Objects (RSOs) orbiting Earth, has become a critical component of any space-based 
operation. This is mostly due to the hazards to operational satellites caused by the growing number of RSOs including 
orbital debris. Whereas The U.S. Space Object Catalog currently lists approximately 15,000 trackable objects, the 
total population is thought to exceed 20,000 objects larger than 10 cm [1]. Importantly, due to emerging capabilities 
of potential adversaries, threats to operational satellites are also increasing and need to be properly addressed. In order 
to protect valuable space assets, it is necessary to observe, understand, and predict the behavior of objects in orbit 
around the Earth. However, characterizing the behavior of RSOs requires a thorough understanding of the functional 
relationship between sensor measurements and object energy and state parameters. Such functional relationships are 
generally representative of the physical processes underlying the interaction between the RSO and its environment. 
Such processes can be modeled using a set of coupled dynamically linked models representing the evolution in time 
of the RSO energy and state parameters (e.g. angular momentum, propulsive, absorbed, reflected and emitted energy). 
There is generally no closed-form, explicit representation of the relationship between measurements and RSO energy 
parameters which represents a major challenge. Moreover, in the context of RSO behavior characterization, even 
assuming that the energy and state parameters were determined, the following questions must be answered, i.e. 1) 
given the knowledge of energy and state parameters for a set of RSOs, how can we identify patterns and identify 
physically-driven emerging behaviors? 2) How can we employ knowledge of energy and state parameters to 
effectively classify the RSO and provide robust inference on its behavior? Nevertheless, the behavior and classification 
of RSOs is intimately connected to the problem of assessing and evaluating threat warnings which include predicting 
intent, opportunity and capability of RSOs. The latter is possible only in presence of a robust understanding of how 
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objects behave in space. More specifically, SDA requires sophisticated knowledge-engineering methodologies to 
support high-level decision-making (e.g. determine collision threat between RSOs or prevent adverse RSOs to deny 
and contest access to regions of the domain space). However, building and maintaining consistent knowledge-base 
systems for such a complex SDA application domain is generally a very difficult problem. In principle, knowledge 
has to be either elicited from SDA domain experts and captured in the ontological formalism or directly learned from 
data. In this regard, constructing a Space Object Behavior Ontology (SOBO [2]) represents an ideal solution to build 
a knowledge model in which the SDA domain knowledge is captured and then subsequently employed to build the 
knowledge-base. In SOBO, the domain knowledge is acquired via experts and explicitly captured by declaring the 
classes and instances and relationship between them. However, current logic-based ontology reasoners (e.g. ELK 
reasoner [3]) generally perform deterministic reasoning which is unsuitable for the SDA domain where uncertainty 
must be accounted for. 
 

 
Fig. 1. Machine Learning and Ontology-based Bayesian Networks for Space Object Decision Support System: End-

to-End Approach. 
 
In this paper, we present an end-to-end approach capable of integrating machine learning regression methods and 
classifiers, as well as probabilistic reasoning to support higher-level decision making for space situational awareness 
applications. First, we develop an approach aiming at understanding and characterizing the functional relationship 
between sensor measurements and RSOs behavior by using a data-driven, physics-based approach. Here, simulations 
of coupled physical models and RSO measurements can be employed to train a set of learning machines in a supervised 
and unsupervised fashion to 1) characterize the functional relationship between sensor measurements and RSO energy 
and state parameters, 2) Analyze patterns in the energy and state parameters space to identify emerging behavior for 
RSOs and 3) Classify the RSOs as a function of their corresponding energy and state parameters (as well as directly 
from measurements). We will employ physical models and a set of state-of-the-art machine learning techniques 
including Extreme-Learning Machines [4] and Convolutional Neural Networks [5] to train a set of neural networks 
for both regression (i.e. identify the functional relationship between sensor measurements and RSO energy and state 
parameters), clustering (i.e. identify patterns in data and models) and classification (i.e. classify RSO using energy 
and state parameters and/or directly from data). Additionally, we will develop a link between the classification 
approach and a SOBO knowledge-base via the development of an Ontology-based Bayesian Network (BN) that can 
support SSA-based decision-making via probabilistic networks. The latter represents the backbone of a Space Object 
Decision Support System (SODSS) that is capable of inferring intent, opportunity and capability of RSOs against user-
defined and/or inferred ontological knowledge and use it to predict threats in a timely and effective fashion. Fig. 1 
shows a schematic of the comprehensive approach. 
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2. RSO ENERGY AND STATE PARAMETERS CHARACTERIZATION VIA MACHINE LEARNING 
 
In this section, we address the first link of the proposed end-to-end approach, i.e. developing physics-based machine 
learning algorithms for real-time inference of RSO energy and state parameters. More specifically, we propose a 
model-based, data-driven approach where the unknown functional relationship between sensors measurements and 
RSO energy parameters and states is learned in a principled way using a set of coupled physical models that simulates 
the physics of space objects as function of their intrinsic properties. Such models are employed to train a new class of 
machine learning algorithms called Extreme Learning Machines (ELM, [4], [6]). Such algorithms exhibit an extremely 
fast learning rate for both regression and classification problems and provide the one of the best generalization 
capabilities. Importantly, the set of coupled physical models are exercised to generate the training set such that ELM 
can be trained in a supervised fashion. Supervised training of ELM is extremely fast and computationally efficient. 
Indeed, it was recently shown that learning the functional relationship between optical images and space object 
position around small bodies to be less than one (1) second for a training set containing about 2000 data points [7]. 
ELMs have the ability to learn in batch mode (learn the full training set) or sequential mode (learn in intervals or as 
data becomes available, [8]).  Sequential learning may enable a direct coupling between physics and ELMs as data 
generated by the model can be employed to directly update the learned functional relationship between sensor 
measurements and space object energy parameters/states for fast and efficient inference. 
Advantages of the proposed approach include 1) Extremely fast training phase, 2) Ability for fast updates as additional 
data becomes available (sequential learning), 3) Model-based approach enables the generation of training data on-
demand, and 4) Fast results when deployed for near real-time (NRT)  inference of energy parameters and states from 
measurements. An example of the proposed approach is illustrated next. 
 
 
 
2.1 ELM-based Inference of Orbital Energy and Angular Momentum: A Case Study 
Generally, the analytical relationship between ground-based measurements (e.g. angles) and the orbital parameters is 
unknown. However, physical models can be employed to generate data sets that represent samples of such a 
relationship. Here, we demonstrate how both orbital parameters (e.g. semi-major axis and eccentricity vector) and/or 
orbital energy and angular momentum can be directly inferred from angular measurements. For this specific case 
study, we consider a simplified 2-D orbital motion model where spacecraft can move in the equatorial plane. More 
specifically we consider a set of planar space objects either in GEO or LEO moving under the influence of the 
Newtonian field. The equations of motions describing the motion of each objects are: 

𝑥̈𝑥 = − 𝜇𝜇𝜇𝜇
‖𝒓𝒓‖𝟑𝟑

      (1) 

𝑦̈𝑦 = − 𝜇𝜇𝜇𝜇
‖𝒓𝒓‖𝟑𝟑

      (2) 
 
 
Where µ is the Earth’s gravitational constant, 𝒓𝒓 = [𝑥𝑥,𝑦𝑦]𝑻𝑻 is the position vector assumed to be with respect to the Earth 
Centered Inertial (ECI) frame. The observation model is given by 
 

𝜃𝜃 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2�𝑢𝑢𝑥𝑥,𝑢𝑢𝑦𝑦�     (3) 
 
Where the vector 𝒖𝒖 = 𝒓𝒓 −  𝒓𝒓𝑜𝑜𝑜𝑜𝑜𝑜 = �𝑢𝑢𝑥𝑥,𝑢𝑢𝑦𝑦�

𝑇𝑇
represents the position of the RSO relative to the observing station 𝒓𝒓𝑜𝑜𝑜𝑜𝑜𝑜 

in the ECI frame.  
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Fig. 2. Trajectories of the 1000 near-GEO objects in relative motion with respect to Earth. 

 
A set of 1000 near-GEO (Fig. 2) and a set of 1000 GTO orbits have been simulated, for a total of 2000 training orbits. 
For each orbit, a set of 100 measurements have been considered. Each individual orbit is observed for 2.263 days with 
angular measurements taken approximately every 30 minutes. Both the semi latus rectum 𝑆𝑆𝑆𝑆𝑆𝑆 and eccentricity vector 
𝒆𝒆 = �𝑒𝑒𝑥𝑥, 𝑒𝑒𝑦𝑦�

𝑇𝑇
 as well as orbital energy Ε and angular momentum ℎ have been recorded to build the overall training 

set {𝑿𝑿,𝑻𝑻}, where 𝑿𝑿 is a 100 × 2000 matrix and 𝑻𝑻 is a 3 × 2000 output (2 × 2000 for energy and angular momentum 
prediction). Measurements have been corrupted with a Gaussian noise at zero mean and variance denoted by 𝜎𝜎𝜃𝜃2 =
0.0085 𝑑𝑑𝑑𝑑𝑑𝑑2. Two Single Layer Forward Networks (SLFN) have been designed for (𝑆𝑆𝑆𝑆𝑆𝑆, 𝒆𝒆) and(Ε, ℎ) prediction. 
Both SLFNs exhibit 3000 hidden neurons and 100 inputs (i.e. 100 measurements per orbit). According to the ELM 
theory, the hidden weights are sampled from a random (uniform) distribution, whereas the linear weights are computed 
by solving a regularized least square problem 𝑚𝑚𝑚𝑚𝑚𝑚𝛽𝛽�𝐻𝐻𝛽̂𝛽 − 𝑻𝑻� + 𝛼𝛼�𝛽̂𝛽�, where the regularization parameter is chosen 
to be 𝛼𝛼 = 10−5. Eighty percent of the 2000 orbits (i.e.1600) have been used for direct training and 20% (i.e. 400) have 
been used for the validation task. For each of the SLFNs, the training time is less than 1 sec on an Intel Core i7-
4900MQ with CPU @2.8GHz and16GB of RAM. Fig. 3 shows the performance of the SLFN for (𝑆𝑆𝑆𝑆𝑆𝑆, 𝒆𝒆) training 
and validation (near-GEO case). Fig.4 shows the performance of the SLFN for (Ε, ℎ) training and validation (both 
GTO and near-GEO). From both figures it is apparent that the SLFNs do very well on the training set but exhibit 
reduced performance on the validation set, yet within acceptable bounds. These results show that ELMs can learn the 
mapping between angle measurements and orbital/energy parameters. Performance can be potentially improved by 
increasing the number of training points via simulation of the physical model. Additional results and discussion can 
be found in [9]. 

 
Fig. 3. Training a SLFN using ELM theories for (𝑆𝑆𝑆𝑆𝑆𝑆, 𝒆𝒆) prediction of GTOs (left: 𝒆𝒆(1), center: 𝒆𝒆(2), right: 𝑆𝑆𝑆𝑆𝑆𝑆). 
The SLFN learned the training set (blue line) and it is able to accurately generalize on the validation set (green line).    
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Fig. 4. Training a SLFN using ELM theories for (Ε, ℎ) prediction of combined near-GEOs and GTOs (left: Ε, right: 
ℎ). The SLFN learned the training set (blue line) and it is able to accurately generalize on the validation set (green 

line).   
 

3. RSO BEHAVIOR ANALYSIS VIA CLUSTERING AND CLASSIFICATION 
 
Model-derived data can help us to understand RSOs behavior in the energy and state parameters space. Indeed, a 
cluster analysis can be functional to identify patterns and similarities between objects that share similar behavior. 
Generally, clusters can be observed and analyzed in the energy and parameter space, i.e. once the mapping from 
measurements to energy and parameter space occurs, determining clusters and sub-clusters can help discover patterns 
of behavior using physical parameters. Such parameters may help analysts develop their intuition. Indeed, the analysis 
can be better understood in the physical parameter space. Fig. 5 shows the clustering of the 2000 orbits (i.e. near-GEO 
and GTOs) in the (𝑆𝑆𝑆𝑆𝑆𝑆, 𝒆𝒆)- space (3D). Here, we observe a clear distinction between two major clusters representing 
the two categories of orbits. Importantly, a similar behavior can be observed in Fig.6 where clustering of the orbits in 
the (Ε, ℎ)-space (2D) is visualized for analysis. In both cases, the RSOs clustering clearly separate near-GEO and 
GTOs. The latter may directly and visually help identify the two classes of behaviors.  
 

 
Fig. 5. Clustering of near-GEOs and GTO RSOs in the (𝑆𝑆𝑆𝑆𝑆𝑆, 𝒆𝒆) space. The two clusters are clearly separated and 

identify the distinctive orbital behavior of the two classes. 
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Fig. 6. Clustering of near-GEOs and GTO RSOs in the (Ε, ℎ) space. Again, the two clusters are clearly separated 

and identify the distinctive orbital behavior of the two classes. 
 

 
 
Note that the simple physics employed to represent the orbital dynamics (i.e. Newtonian forces only) and the 
distinctive physical difference between GTOs and near-GEOs RSOs contribute to the marked cluster separation. 
However, things may become more complicated if additional effects are modelled (e.g. aerodynamic drag, solar 
radiation pressure, gravitational harmonics). In such a case, multiple clusters and sub-clusters may emerge, requiring 
a more rigorous cluster analysis to identify new or unknown patterns. In this regard, there are many machine learning 
techniques that can be employed to perform a cluster analysis for pattern discovery (e.g. Fuzzy C-means [10], Self-
Organizing Maps [11], Autoencoders [12]). Here, the goal is to employ such techniques to effectively perform clusters 
and sub-clusters analysis to group classes of objects in the energy and state parameters space. Importantly, such a step 
is critical to inform the supervised classification phase in a more structured and systematic manner. In the proposed 
approach, labeling of objects may occur after a thorough clustering analysis reveals how the classes of RSOs are 
distributed in the parameters space. Such analysis may inform the construction of deep networks that can be trained 
in a supervised fashion for final classification. Indeed, the next step is to define, train, and test physics-based deep 
network architectures for RSO classification using multi-temporal, multi-sensors data stream (Fig. 7). 
Recent advancements in deep learning [5] have demonstrated ground breaking results across a number of domains. 
Here the term deep refers to any neural network learning approach with more than one hidden layer. Deep learning 
approaches mimic the function of the brain by learning nonlinear hierarchical features from data that build in 
abstraction [13]. In an end-to-end fashion a deep learning approach can be employed to classify RSOs from 
observational data. One important class of deep networks are the Convolutional Neural Networks (CNN). CNNs have 
achieved astonishing performance on general image processing tasks such as object classification [14], scene 
classification [15], and video classification [16]. It is well known that the key enabling factor for the success of CNN 
architecture is the development of techniques for large scale networks, up to tens of millions of parameters, and 
massive labeled datasets. Based on such recent success exhibited by the deep architectures, one can employ a physics-
based approach to classify RSO with defined behavior informed by the clustering analysis.  
 
3.1 RSO Classification via Convolutional Deep Networks: A Case Study  
We present a case study, where CNNs (with max-pooling and dropout) [13] are employed for supervised classification 
of RSO observational data. Although the deep learning approach used here is trained with simulated data, once trained 
these models can be applied to real-data classification examples. As opposed to the traditional approaches discussed 
earlier, this work produces a new way of processing RSO observations where quick determinations of RSO classes 
are made possible directly from observational data. This case serves as a demonstration of the power of the proposed 
approach. 
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The dynamical system investigated here is the rotational dynamics of RSOs. The physical attributes of the RSOs, such 
as shape and mass distribution, are also included in the classification process. The challenging aspect of the application 
of CNNs to physical dynamical systems is the generation of labeled training data. As discussed earlier, we use physics-
based models to simulate observations by sampling randomly from a distribution of physical attributes and dynamic 
states. Light curve (intensity flux over time) measurements are used as inputs, and classes of the RSOs are used as 
outputs for training the CNN approach. The CNN then learns convolutional kernels that look for characteristic features 
in the data. As opposed to manually specified features, the features are adaptively learned given the training data. The 
training data set consists of light curve measurement vectors as inputs and class vectors as outputs. The input light 
curve and output class vector are denoted by 𝒙𝒙 ∈ ℝ1×𝑚𝑚 and  𝒚𝒚 ∈ ℝ1×𝑛𝑛𝑐𝑐, respectively, where 𝑚𝑚 and 𝑛𝑛𝑐𝑐 denote the 
number of light curve measurements and number of classes, respectively. Then a deep neural network with 
convolutional layers and a fully connected output layer is trained to map from measurement vector, 𝒙𝒙 to classes 𝒚𝒚, 
using a set of training examples. 

 
Fig. 7. Physics-based Deep Networks for RSOs classification. The Multi-physics models are employed to generate a 
training set. Deep Networks can be informed by the unsupervised clustering of RSOs which may help to identify the 

right number of classes. 
 
Python and Tensorflow are used as the simulation environment for this work. The training of the CNN classification 
approach is computationally expensive, but it is expected that once trained on a larger dataset, this approach can 
outperform traditional methods while providing a computationally efficient classification model. The CNN used in 
the present work uses a four-layer structure, the layers are given by three convolution layers followed by a fully 
connected layer. The first three layers use a 32, 12, and 6-unit size kernel, respectively. Both max-pooling (1 × 4 
pooling kernel) and dropout are applied after each convolutional layer. The dropout rates used for this work are 0.7 
and 0.5 for the convolutional and fully connected layers respectively. For this study we only consider shape classes 
with one control class, but other classes can be added in the same CNN or with independent CNNs for each class. The 
classes considered are rocket bodies, controlled payload, uncontrolled payload, and debris. 
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Fig. 8. CNN architecture (left) and Cross-Entropy Error (Right) 

 
Fig. 8 shows the CNN classification kernel features estimated during the training stage. From Fig. 9a,b and c, it can 
be seen that the CNN approach learns light curve features that are relevant to the classification of the class considered. 
The first filter has the shape of a derivative type operator with large emphasis on the center location. The CNN learns 
that for this dataset the best low level operation is this derivative type operator. The higher layers (layer 2 and 3) have 
complex kernel shapes (as seen by Fig. 9b and Fig. 9c) that don't lend themselves to clear interpretations. Some noise 
is seen in the learned kernels but this effect can possibly be reduced with a larger training set and longer training 
durations, this will be looked at for future work. These filters also learn for this particular selection of classes (5 class); 
it may be possible to learn more general features if more classes are considered and for future work larger number of 
classes will be considered. The CNN approach reached an overall accuracy of 99.6% correct classification on the set 
of 5000 samples. Fig.8 (right) shows the cross-entropy loss as a function of gradient descent iteration. From this figure, 
it can be seen that for the CNN architecture used, the loss value has converged to a steady state value. Additional 
discussion of the case study can be found in [18]. 
 
 

 
Fig. 9. CNN Classification Results 
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4. RSO BEHAVIORAL INFERENCE: SPACE-OBJECT ONTOLOGY-BASED BAYESIAN NETWORKS 
 
Although machine learning techniques are demonstrated to be powerful in classifying and potentially identifying 
RSOs behaviors, decision support systems for SDA must enclose structured knowledge that 1) can be incorporated by 
humans and 2) capable of processing both hard and soft information as well as potential results coming from machine 
learning classifiers. Ontologies are computing methodologies that can be employed to represent knowledge in a 
specified domain. The knowledge captured in by a specific ontology can be employed to reason over data in a coherent 
fashion. Here, we are interested in showing how Space-Object Behavioral Ontologies (SOBO [2]) can be directly 
translated in a BN to provide direct inference over the SDA domain for reasoning under uncertainty. More specifically, 
we address the problem of how to design and implement Bayesian Networks using a sharable SOBO to support the 
deployment of a Space Objects Decision Support System (SODSS). The overall goal demonstrate a process to semi-
automatically construct BNs from ontologies and demonstrate that a SOBO-based Bayesian Network (SOBO-BN) is 
potentially effective in providing decision support in a variety of SDA applications. 
 
4.1 Space Object Behavior Ontology-Based Bayesian Networks 
Probabilistic networks, here referred as Bayesian Networks (BN) are graphical structures devised to represent 
probabilistic relationships between a large numbers of variables as well as for doing probabilistic inference between 
them [19]. According to the Bayesian interpretation of probability, such probability of an event X represents the degree 
of personal belief the event itself. In such a framework, data are employed to update, i.e. strengthen or weaken, the 
belief or assumption encoded in the probabilistic networks [20]. Bayesian networks can form the backbone of a 
decision support system for SDA [21]. Constructing BN suitable for SDA domain applications requires the following 
articulated steps: 1) identification of variables that are relevant to the SDA application problem (also known as nodes), 
2) Identification of the relationships between the variables (also known as links) and 3) definition/creation of the CPT, 
which are generally employed to express how the potential states of the parent nodes affect the posterior probability 
of the node under consideration. Constructing a BN for SODSS may require specialized methodologies. One approach 
is to the automatically construct the network (concepts and links) via data elicitation [22], [23]. However, such 
approaches suffer from the bias problem because such BNs are generally constructed from a limited amount of 
available data which may be insufficient for practical application [24]. Another approach would be to elicit human 
expert knowledge to define the concepts involved in the problem domain and their conditional dependence. In this 
regard, ontologies are a potential solution to support the construction of BNs [25]. SOBO ontologies define the terms 
comprising the vocabulary of the SDA domain and include properties and relationships to extend such vocabulary [2]. 
SOBO classes, properties and individuals can be employed to capture and represent the SDA domain knowledge. As 
BNs employ nodes and links to represent knowledge in a probabilistic fashion, one can use the semantics of the 
ontologies classes, individuals and properties to generate a BNs that performs probabilistic reasoning on the SSA 
domain. Here, we show how to integrate the SOBO ontology with a knowledge-base for a semi-automatic construction 
of BNs. Importantly, the field of ontology-based construction of BNs is relatively new. Many possible approaches 
have been recently proposed [26], [27], [28], [29], including pursuing developing a specialized Bayesian ontology 
language (PR-OWL [30]) to directly model the uncertainties in the ontology. We apply a methodology that can directly 
translate the SOBO into a BN [31]. The latter does not rely on learning BNs from the data but leverages on the effort 
required to construct a well-defined SOBO from domain experts. Although, BNs have been proposed and implemented 
as decision support for SSA (e.g. non-cooperative GEO satellite monitoring [21]), the construction of an ontology–
based BN capable of fusing hard and soft data for SSA decision support has never been proposed and implemented. 
We leverage our expertise in devising decision support system for space exploration [32], [33], [34], [35] and available 
methods for ontology-based BN [31] to construct state-of-the-art SOBO-BN that automatically reasons on hard and 
soft data in a probabilistic fashion. 
 
4.2 Constructing SOBO-BN for SODSS: Satellite Collision Threat Evaluation 
The semi-automatic construction of a prototype SOBO-BN for SODSS, will fundamentally require three steps, i.e. 1) 
determine the portion of the SOBO architecture relevant to the SSA decision problem 2) extend the SOBO to include 
values and weights classes (required to construct CPTs); and 3) Construct the BN graphical structure and CPTs. To 
illustrate the proposed methodology, we describe a simplified working example where the SOBO-BN is constructed 
to provide a probabilistic assessment of the collision threats between active satellites and debris.   
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Fig. 10. A) &B) simplified SOBO for collision threats as captured in protégé management system; C) Example of 

properties assertions for satellite 1993-036BLQ as captured in the ontology; D) Schematic relationships between the 
ontology classes/individuals and the probability subclasses (Values and Weights) for CPTs constructions. 

 
Fig. 10 shows a sample ontology that defines a simplified “satellite collision threat” problem as captured in the 
ontology management system (Protégé 4.1). Here, the superclass “object” has two classes: “satellite” and “debris” 
which are connected via the relationship “is a”. Additionally, subclasses such as “active satellite”, “inactive satellite” 
and “fragment” share the same relationship with the correspondent superclass. Individuals are defined as part of 
subclasses and specific properties captured in the ontology. Given the simplified SOBO, the semi-autonomous 
generation of SOBO-BN require extending the ontology to include classes that can be employed to compute the CPTs.  
More specifically, an additional class called “Probabilities” was added as well as two additional sub-classes that 
provide values and weights to the instances (See Fig. 10D). The “Values” subclass consists of specific chances of an 
instance itself being a threat based on some criteria. The purpose  of  the weights class is to calculate the threat 
probabilities of the instances’ super-classes (or the parent classes). The latter specifies which instance for that 
particular class is more or less of a threat. Generally, the weights are chosen based on the amount of instances the 
classes have, and based on the risk assessment completed from the classes’ properties (which were decided on the 
same way as the “values” class). 
 

 
Fig. 11: Sample SOBO-BN derived from the simplified SOBO. CPT for the “Active Satellite Threat” node is 

reported. The CPT has been computed according to the methodology described in the text. 
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Since all of the required information to create a Bayesian Network was included in the extended SOBO, it is 
subsequently possible to auto-generate a Bayesian network by using a specialized plugin in the Netica software 
(NorSys Inc.). In both cases, the ontology serves as the knowledge model employed to store all of the needed classes, 
properties, and relationships. More specifically, to create the SOBO-BN, the nodes were first created for the Bayesian 
Network based on the classes from the ontology (Fig. 11). In this application, the classes range from specific instances, 
to the threat level of the instances’ superclasses ("Active Satellites" and "Debris"), and to the final child “Collision.” 
The proposed set-up calculates the collision probability of the objects in space, and allows the user to see if the 
satellites or debris classes have an impact probability. Besides the classes, properties were also imported from the 
extended SOBO. If the properties were not involved in calculating the collision risks, they were excluded from the 
quantitative aspect of the Bayesian network and included in the description of its respective class. Importantly, the 
properties “Value” and “Weight” were used as inputs to the Bayesian Network. “Values” was used as an observation 
input for each instance, while “Weight” was used for the children nodes’ CPTs which were computed according to 
the following formula [31]: 
 

𝑃𝑃(𝑁𝑁|𝑋𝑋1,⋯ ,𝑋𝑋𝑛𝑛) = �𝑆𝑆𝑋𝑋1
ℎ𝑋𝑋1

∗ 𝑤𝑤𝑋𝑋1� + ⋯+ �𝑆𝑆𝑋𝑋𝑛𝑛
ℎ𝑋𝑋𝑛𝑛

∗ 𝑤𝑤𝑋𝑋𝑛𝑛� ∗ 𝐶𝐶�𝑆𝑆𝑋𝑋1 ,⋯ , 𝑆𝑆𝑋𝑋𝑛𝑛�   (4) 

 
Where 𝑤𝑤𝑋𝑋1is the weight of the parent node 𝑋𝑋1affecting the conditional dependence of children node 𝑁𝑁. Importantly, 
ℎ𝑋𝑋1describes the highest possible numerical state of the parent node 𝑋𝑋1. 
Once all of the CPTs were calculated, the result was a Bayesian network that calculated the risk for a collision. Based 
on the instances, values, and weights given the Bayesian network, it computed a collision risk of 28.8% (see Fig. 11), 
while showing the "Debris Threat" as having a risk of 44.4% due to their high speed and small size. Their impact on 
active satellites is reduced though, because the active satellites are provided with shields and maneuverability, which 
are reflected in their values and weights. 
 
4.3 Inter-Agency Space Debris Coordination Committee (IADC) SOBO-BN: Preliminary Results 

 
Recently, the Inter-Agency Space Debris Coordination Committee (IADC) has issued space debris mitigation 
guidelines [36]. The latter include a key recommendation that before mission’s end, any spacecraft should move far 
enough from GEO so as not to be an operational hazard to other objects in active missions. Generally, it can be 
extremely difficult to determine if an operator or the spacecraft itself is in compliance with this guideline, as it requires 
prediction of future actions based upon many data types. The University of Arizona’s Space Object Behavioral 
Sciences (SOBS) is committed to study the objects in space with the goal of assessing the current and future behavior 
and evaluate the impact on safety of the any object in space. To further this objective, SOBS researchers and scientists 
are developing an ontology-based system to support both integration, use and sharing of data for SDA applications, 
including integration and development of decision support systems. To demonstrate how to develop and implement a 
SOBO system (i.e. an application ontology), the IADC guideline for GEO end-of-life disposal was selected as use 
case [2]. More specifically, to show a SOBO proof of concept, the team has focused on post-mission disposal of RSO 
in GEO.  
 
The methodology described on the collision threat example can be directly applied to semi-automatically construct 
both graphical structure and CPT of a SOBO-BN that can effectively infer if an observed object has met (or predicting 
it will meet) the IADC guideline. Fig.12 shows how a portion of the prototyped ontology can be directly transformed 
in BN. In this case, input nodes (gray nodes, e.g. orbit/attitude/historical datum) capture information from hard data 
(e.g. probability of the object to be controlled/uncontrolled) and soft data (e.g. probability of the system to be in an 
anomalous state due to web-based information posted by an operator). Such input information is propagated by the 
network to probabilistically infer if the object is within the IADC GEO Graveyard compliance. Challenges will include 
the definition of the values and weight classes that are required to construct the CPTs. Importantly, such parameters 
can be directly tuned as additional knowledge is acquired and captured in the ontology. 
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Fig.12. Preliminary SOBO and SOBO-based BN for the IADC guideline use case [2]. The SOBO (left) is translated 
in a graphical structure BN is a semi-automatic fashion that preserves the semantic of the ontology. The SOBO-BN 
is fed with pre-processed hard and soft data to the input nodes (e.g. attitude datum, orbital datum, historical datum) 

in a probabilistic form. The SOBO-BN probabilistically infer if the satellite is IADC GEO compliant. 
 
 

5. CONCLUSIONS 
 
We have detailed an end-to-end approach that combines machine learning techniques and Ontology-based Bayesian 
Networks for the development and implementation of a decision support systems to help characterize, predict and 
understand the behavior of resident space objects. The many components and techniques needed to implement such 
an approach and their advantages are highlighted. For example, state-of-the-art machine learning architectures (e.g. 
Extreme Learning Machines, Convolutional Deep Networks) that can be trained on physically-based models, are 
demonstrated to be effective in learning the RSO features in the vectorized energy and momentum states and 
parameters. The mapping from measurements (e.g. angles) to vectorized energy and momentum states and parameters 
enables behavior characterization via clustering in the features space and subsequent RSO classification. CNNs are 
showcased as a premiere technique that can directly learn to classify objects directly from measurements. Class and 
sub-class selection of RSOs (i.e. training set generation for classification) is naturally informed by a clustering analysis 
in the desired physical feature space (e.g. orbital energy and momentum). Importantly, such a data-driven approach 
must be integrated with methodologies that can explicitly represent space object domain knowledge. Indeed, SOBO 
ontologies are employed to define and capture the domain knowledge-base and BNs are constructed from the SOBO 
in a semi-automatic fashion to execute probabilistic reasoning over conclusions drawn from trained classifiers and/or 
directly from processed data.  Such an approach enables integrating machine learning classifiers and probabilistic 
reasoning to support higher-level decision making for space domain awareness applications. Importantly, constructing 
a space object reusable and sharable ontology is a key ingredient for the successful development and deployment of a 
SODSS. Our team has been working on building proof-of-concept SOBO ontologies (i.e. use cases) and integrating 
them with BNs for reasoning under uncertainty. Future work includes integrating SOBO and BNs with hard and soft-
data and demonstrate effectiveness in decision support under a variety of use cases for RSOs behavior characterization 
and prediction.   
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