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ABSTRACT

Orbital debris tracking poses many challenges, most fundamentally the need to track a large number of objects from
a limited number of sensors. The use of information theoretic sensor allocation provides a means to efficiently col-
lect data on the multitarget system. An additional need of the community is the ability to specify target priorities,
driven both by user needs and environmental factors such as collision warnings. This research develops a method to
incorporate target priorities in the sensor tasking reward function, allowing for several applications in different tasking
modes such as catalog maintenance, calibration, and collision monitoring. A set of numerical studies is included to
demonstrate the functionality of the method.

1. INTRODUCTION

With the proliferation of objects occupying near-Earth space over the past several decades, the allocation of limited
sensor resources to maintain knowledge of the orbital debris environment has become increasingly important. Recent
advances in information theoretic sensor tasking allow formulation of sensor allocation schemes in terms of infor-
mation gain functionals computed from the multiobject state and hypothesized measurements [1,2]. These reward
functions quantify the difference between the prior and posterior probability density functions (PDFs), and therefore
account for the reduction in uncertainty for each object as a result of computing a measurement update. However,
as currently formulated, they do not account for individual target priorities, which is a key requirement for the space
situational awareness (SSA) problem.

The need for improved tracking of high priority targets may be driven by user requirements, or may arise from
the state of the debris environment itself. For instance, if a collision is predicted between two objects, it is naturally
important to schedule additional observations to refine the estimates and predicted probability of collision. Target
priorities also provide a straightforward way to implement different sensor tasking modes. For example, a sensor in
calibration mode may be tasked to observe only certain objects while ignoring others. Similarly, sensors dedicated to
collecting data for object characterization may have a different set of object priorities from those tasked with general
catalog maintenance.

This research employs a sensor allocation scheme driven by an information theoretic reward function [1,|11]],
augmented by a tactical importance function (TIF) to specify target priorities [3[]. The TIF has been developed in
conjunction with Finite Set Statistics (FISST)-based multitarget filters, and offers a mathematically sound approach to
the sensor tasking problem including individual target priorities.

2. BACKGROUND

2.1. CPHD FILTER

The simplest FISST-derived estimator is the Probability Hypothesis Density (PHD) filter, which predicts and corrects
the first moment of the multitarget PDF, known as the intensity function or PHD. As a first moment approximation, the
PHD filter truncates information in the PDF related to target number, and is known to suffer from high variability in the
estimated number of targets, particularly in cases where detections of objects are missed due to imperfect sensors [4]].
To address this issue, the Cardinalized PHD (CPHD) filter propagates and updates a cardinality distribution in addition
to the PHD function [5,/6]. The cardinality is a discrete probability distribution over the possible number of targets.
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Incorporating the cardinality recursion produces a more computationally complex filter, but also provides a more stable
estimate of the number of objects at each time.

The CPHD filter is based fundamentally on the assumption that the multitarget random finite set (RFS) can be ap-
proximated as an independent and identically distributed (i.i.d.) cluster process. The CPHD recursion further assumes
that targets evolve and generate measurements independently of one another, that the processes of target survival and
birth are independent, and that the measurement and clutter RFSs are independent, with clutter approximated as an
ii.d. process. The full CPHD recursion is generally intractable, but may be simplified by approximating the PHD
using a Gaussian Mixture Model (GMM) to yield a closed-form solution. Following the development of Vo et al. 5],
the PHD at time ¢}, is approximated as a weighted sum of .J;, Gaussian PDFs,
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where 7 () represents the PHD of new, or birth, targets and can be approximated by a GMM as in Eq. (I, pr i (
represents the cardinality of target birth and CJZ» ﬁ is the binomial coefficient. The probability of target survwal
ps, is assumed to be independent of the target state.

The update equations for the cardinality distribution and PHD are coupled,
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where Z}, is the measurement set, the angle bracket (a, b) is used to denote the inner product of a and b, and additional
terms are given as follows:
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where my, is the number of measurements, p,(-) is the cardinality of clutter, x(-) is the PHD of clutter, o;(-) are
the elementary symmetric functions, and z,i] ) and Pz(i) are the predicted mean and covariance of component j in the
measurement space. The probability of detection, pp, is assumed to be independent of the target state; however, this

assumption will be revisited in the following section.
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At time ¢y, the number of targets can be estimated using the PHD or the estimated cardinality distribution.
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The PHD update Eq. (@) contains two terms, the first of which accounts for the possibility of missed detections. In
this case, the filter reweights the a priori PHD function. In the GMM approximation, the a priori component means
and covariances are kept and are not updated by any measurement, and the updated component weights are computed
from

w) — (W3 [wrgk—1, Z], Drjr—1)

(4)
1—pp)wy,_ (10
’ <q}2[wk|k71azk],pk\k,1>( ) Elk—1

This term produces J;,—; GMM components whose weights are scaled by a factor including (1 — pp). The second
term of Eq. (@) accounts for detected objects, and computes a measurement update for each GMM component using
each measurement, thereby producing Jy ;1 - my components. The updated weights for these components are scaled

by a factor including pp and the individual likelihood of measurement to component association p,(2; z,(j ), Pz(i)).
The net result of the measurement update step is the creation of Jy;,_1 - (my + 1) components, many of which will
have small weights and not contribute significantly to the GMM approximated PHD.

To keep the problem computationally tractable, components are removed or merged based on user-defined thresh-
olds [7]]. In this research, a component is removed if its weight is below a threshold T". Subsequently, if the Maha-
lanobis distance between two components ¢ and j is less than a threshold U, the merged component weight, mean, and
covariance are computed from
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The individual component means, covariances, and predicted measurements in Eqgs. (2)-(8)) are computed using the
scaled unscented transform [[8,9]. In addition to the GMM components of the PHD, the filter maintains a list of object
identifiers from the public Two-Line Element (TLE) catalog. Anytime a new component is added to the GMM as a
result of the measurement update, the identifier of the original component is added to the list as well. The approach
does not ensure a rigorous treatment of unique track labels incorporated in the multitarget state [3]], but in the case that
no target birth or death is considered, it does provide a practical means to reconstruct the time history of components
and compute the average state errors for each object as described in Section

In this paper, the cardinality is initialized using a binomial distribution [4],
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where J is the number of terms in the cardinality distribution and ¢ is the individual probability of existence for

each object. If the true number of objects is IV and the distribution is initialized with the value ¢ = N/.J, then

argmax po(n) = N and the estimated number of targets computed from Eq. is N, = N.

2.1.1. Probability of Detection Calculation

Computing the correct probability of detection plays an important role in maintaining custody of objects in the filter.
The previous section applies a constant pp for all components, but this is clearly problematic for objects that are
outside the sensor field of view (FOV) at a particular measurement time. In the case that objects are known to be
outside the FOV and cannot be detected, assigning the same pp as for objects in the FOV will quickly cause GMM
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components to be downweighted and knowledge of the object to be lost. Meaningful values of pp need to be assigned
for each object, properly accounting for their potential positions with respect to the FOV.

A simple approach to determining p(J ) for an individual component is to use the predicted measurement and an
indicator function [10]. The probability of detection can be modeled as a product of two terms, a constant pp sensor
that accounts for the sensor’s imperfect ability to detect objects in the FOV, and a state-dependent term
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where z(7) is the predicted measurement for component j computed using the unscented transform. Assuming the two

processes are independent, the overall pg) = DD sensor pS:,)FOV

This approach addresses the issue, but may not be sufficient in cases where the object is near the edge of the field
of view. A solution to this issue is to split GMM components near the edge of the FOV into several new components
prior to computing the probability of detection [11]. This allows the means of some components to lie inside the FOV
and others outside, thereby accounting for the possibility of a missed detection while still maintaining a high pp in the
FOV. A simple test for splitting is to integrate the component PDF and check against a threshold, for example:

0.05 < / py(z; 2, PY)dz < 0.95 (17)
FOV

where z;; ) and Pz(z) are the predicted mean and covariance in the measurement space computed using the unscented
transform If the integral is between the inequalities, the component is taken to be partially in the FOV and split

according to a pre-determined library [12]. Having determined a value of pp for each component, minor changes

()

must be applied in the measurement update equations above. In Eqs. {@) and (8), the appropriate p;)’ must be used for

each component, more easily seen in Eq. (TT) for the missed detection case. In Eq. (7), the pgj) term must be moved

inside the summation, and finally the modification to Eq (6] is most easily simplified by writing out the inner product
for the GMM approximation.

<
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2.2. DEVELOPMENT OF INFORMATION GAIN EQUATIONS
2.2.1. Rényi divergence

This section examines the use of Rényi a-divergence as applied to the SSA sensor allocation problem. The general
form of the Rényi divergence is given by [1]],

R(u) =

— 1og/f1(X;u)afO(X)1*adX (19)

where w is the sensor control vector, and fo(-) and f;(-) denote the prior and posterior multitarget PDFs, respectively.
For the CPHD filter, the GMM approximation of the intensity function yields the following solution [11].
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where the subscripts 0 and 1 refer to the prior and posterior distributions respectively, and the value o = 0.5 has been
used as it provides the best discrimination between PDFs [1}/13]]. In the case of the PHD filter, the multitarget PDF is
modeled as a Poisson process, and the corresponding Rényi divergence can be derived from Eq. by substituting a

—AAn
Poisson cardinality distribution p(n) = and noting that in the PHD filter the Poisson mean number of targets
A=N.
1/2
Jo J1 Jo J1
RP(’U,) ~ Z w; + Z wj; — 2/ Z Z wiijmpg(as; m; ;, Pi7j> dx (22)
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While the final equation is simpler, note that both the PHD and CPHD Gaussian mixture forms of Rényi divergence
require numerical integration.

2.2.2. Hedging

The previous section makes use of a simplified notation that requires some further discussion. The information func-
tional R(w) is also a function of the prior and posterior multitarget PDFs in the measurement space. When computing
the functional, the prior PDF f,(X) is propagated to the desired time ;. A candidate posterior PDF is generated
from the CPHD update equations using a measurement set Z, which is dependent on the sensor control vector w.
The information functional is therefore denoted as R(wu, fo(X), Z;(u)). The desire is to select a sensor control vector
that maximizes the information gain; however, the realized measurement set Zj (u) is unknown until this selection is
made. The unknown measurement set can be eliminated from the information functional by taking the expected value
with respect to the measurement set Z(u), a process known as hedging [3].

R(u, fo(X)) = E[R(u, fo(X), Z)(u))] (23)

The expected value can be computed using multiple representative samples of measurement sets Z (u) based on
the given clutter intensity, probability of detection, and measurement likelihood. A simpler approach, used in this
work and elsewhere in the literature [1,/2}|14], is to compute Eq. using a single sample in which Z(u) is taken
to be the predicted ideal measurement set (PIMS) [[15]]. In this case, a single measurement set is computed assuming
no clutter or measurement noise and applying pp = 1 for all objects in the FOV, as determined from the component
means. The PIMS measurement set is therefore

7w = |J =) (24)
=) eFov

Use of the PIMS measurement set is an approximation to the expected value [3]], such that the expected information
gain is given by
R(u, fo(X)) = E[R(u, fo(X), Zi(w))] = R(u, fo(X), Z{™) (25)

The approximation is applied by simulating a measurement at the mean of each of the Npoy highest weighted com-
ponents. For example, if the FOV contains 10 components representing 3 estimated objects, then 3 measurements are
simulated and located at the 3 largest weighted component means. The use of the highest weighted components is
consistent with the approach used for state extraction in Section [3|and in the literature [5]]. The updated cardinality
and PHD are computed using Eqs. @)-(), and the Rényi divergence is computed numerically using Monte Carlo
Integration.

2.2.3. Incorporating Target Priorities

In order to identify targets of importance (TOIs) within the context of FISST, Mahler has defined the tactical im-
portance function, 7(x) € [0,1] [3,/4]. Following the development of the Posterior Expected Number of Targets of
Interest (PENTTI) tasking reward function [|16L[17]], this research seeks to incorporate the TIF in the previously defined
information gain equations for the PHD and CPHD filters.

Beginning with the PHD function, the TOI-biased PHD and expected number of targets can be defined from Eqgs.
25.225-25.226 of Reference 3t

viol(@) = 7(@) - v(@), Nrot = / (@) - v(@)dw (26)
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In terms of the Gaussian mixture approximation, the equations are assumed to take a form similar to the state
dependent probability of detection, in which each GMM component has a specified TIF value 7;. The approximate
forms of the TOI-biased PHD and expected number of targets are then given by:

J
vror(x ZT]wjpg(a: m;, P;), Nroi = ZTjwj 27
Jj=1 j=1
For the CPHD filter, it is also necessary to form the cardinality distribution, which in this research is assumed to
follow a multi-Bernoulli distribution. The standard and TOI-biased cardinality distributions are given by

J
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where o, (+) are the elementary symmetrlc functions, and the maximum value g; = 0.999 is used for any case ¢; > 1
where g; is the weight or product of the weight and TIF as appropriate.

With these equations, it is possible to substitute in either the PHD or CPHD form of the Rényi divergence to get
the TOI-biased version of the information functional. Sensor tasking decisions are therefore a matter of evaluating
potential pointing assignments, simulating measurements per the PIMS approximation, and computing the expected
measurement update and value of the reward function. Targets of interest can be specified by assigning values 7; ~ 1
while all non-TOlIs are assigned smaller TIF values. This paper maintains values of the TIF for each component
through the filter prediction and correction step, i.e., the values are component-specific and do not change over time.
As will be demonstrated in subsequent testing, adjusting the relative TIF values of TOIs and non-TOIs drives sensor
tasking to collect more measurements and improve state estimates of higher priority targets.

2.2.4. Analysis of Methods

In order to examine the behavior of the proposed information gain functionals, the single target problem is considered,
for which an analytic solution of the Rényi divergence is available. Assuming an object represented by a single
Gaussian component and noting that under the PIMS approximation no adjustment is made to the mean, mgy = my,
the preceding divergence functions for TOIs reduce to

pi(n) 1/2 po(n) 1/2 P n/4
R ~ —2lo —_— —_— woTow1 7)™ —_ 30
C,TO1 g;}( NE ) ( Ny ) (woTow1 1) (|P0+P1|> (30)
4Py 1| \'/*
Rpror = woto +w1T1 — 2y/woTow1T1 | 75— 31
|Po + P

where the subscripts 0 and 1 denote the prior and posterior distributions respectively, and P ; is the covariance of the
product of the PDFs computed from Eq. (2I). The cardinality and estimated number of targets are computed from
Egs. and (29).

pk(n) = [(1 — Tkwk) Tkwk] s Nk = TWg (32)
If it is further assumed that no update is made to the weights or TIF such that wy = w1 = w and 79 = 7, = 7, the
equations reduce to:

4Py, \V*
RC,TOI ~ —2 log (]. — T'U}) + Tw m (33)
4Poa| \*
~ 2 11— —————— 34
Rpror Tw[ <PO—|—P1| (34)

Note that for each formula, the minimum value of zero is found when P; = F,. Alternately, the expected information
gain is zero if either w or 7 is zero. As a final note, if a Poisson cardinality is substituted in place of the multi-Bernoulli
distribution, using a mean value A = 7w, the CPHD equation reduces to the PHD form.
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3. NUMERICAL SIMULATION

3.1. LINEAR MOTION EXAMPLE

To examine the behavior and relative performance of the proposed information gain functionals, a simple tasking
scenario is considered in which the sensor must select one out of two objects to observe at each time, see Fig. [I] The
objects are separated such that the initial Mahalanobis distance is 10, therefore only one object is considered to be in
the field of view at each time and the single target information gain equations are applied. At each time, the sensor
selects one of the two objects to observe and computes a bearing measurement and corresponding covariance update
using the Conventional Kalman Filter update [18]]. The selection is based on maximizing the expected information
gain for the single object observed, as computed using the CPHD form of the TOI-biased Rényi divergence.

20 T T T

Object 1
15} e RN
’ AY
[ V—_———
10} | R R R Y
\ I
A ’
5 AN . v ’
5 a
g oo
= Object 2 Sensor
75 , , - = ~ .
’ AY
1 \l —_—
-10F | L R D R RN [
\ I
A ’
=15} \\ .~ ’ ’
t=0 t=20
20 —20 “10 0 10 20
X Position
Fig. 1. Linear Motion Test Case
The objects are modeled as moving with constant velocity, with state vector given by = = [z y @ g]7.

Over the course of 20 time steps, the objects move past a sensor, which computes bearing measurements o« =

tan—! (%) . The covariance is propagated using a state transition matrix, and the hypothetical measurement update
is computed assuming a measurement noise covariance Rj, = 1 deg?.

Both objects are initialized with the same starting covariance and at all times are the same distance from the sensor,
with corresponding equal magnitude measurement «.. In the case that both objects have the same priority, the desired
sensor management behavior is to alternately select each object, thereby producing an equal number of measurements
for each and driving the final uncertainties to similar values. In the case that one object is designated as a TOI, it is
expected to have more measurements scheduled and a reduced uncertainty as compared to the non-TOL

Several cases are considered for different values of the TIF for each object. In all cases, the priority of Object 1 is
set as 71 = 1. The value for Object 2 is adjusted, from 75 = 1 down to 7o = 0. The results of the first simulation are
provided in Figure 2(a)] in which Object 2 is given the same priority as Object 1. The top plot provides the trace of
the covariance for each object. Below that are values of the expected information gain, and finally, the identity of the
object scheduled for observation at each time. From the plots, it is clear that the sensor alternates between observing
the two objects, and the covariance updates follow similar trends, reaching the same value at the final time. On the
right, Figure provides results for a case where 7o = 0.5. While it is clear the expected information gain for
Object 2 has been reduced as a result of its lower priority, the difference is not enough to significantly affect tasking.
Other than one scan near the end where Object 1 is scheduled twice in a row, the reward function still drives tasking
to alternate between the two objects, and produces a similar covariance reduction for both.

Figure [3| provides results for cases in which 75 is reduced further to cause the sensor to favor scheduling Object
1. On the left, setting 7, = 0.1 is observed to produce many more measurements for Object 1, and a corresponding
growth in the covariance for Object 2. Around the halfway point, the covariance for Object 1 has converged to a small
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Fig. 3. Linear Motion Model Results

value, and the expected information gain is low, allowing for occasional measurements of Object 2 to be scheduled.
Finally, on the right, the priority for Object 2 is set to zero, producing a corresponding value of zero for the expected
information gain. All measurements are scheduled for Object 1, with the expected divergence between the covariance

values of the two objects.

3.2. ORBITAL DEBRIS SCENARIO

3.2.1.

To verify the performance of the priority driven tasking in an orbital debris scenario, a large scale simulation is
included, in which tracking is scheduled for a total of 1118 objects in near-geosynchronous orbits over the course of
24 hours using five GEODSS-like sensors. The objects are selected from the public TLE catalog for the date February
27,2013, and constrained by the following criteria:

Test Case Description

0<e<03 0°<i<70° 09<n, <Ll |—b
sidereal day

Approximately 10% of the catalog, 112 objects, are randomly selected and designated as TOIs. The test is structured
similarly to the linear model, in which the priorities of non-TOlIs are reduced to drive additional measurements and
improved state estimation for the high priority targets. The same set of TOIs are used in each case.
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The ground stations are modeled using the parameters provided in Table [I] [19]. The measurements used are
topocentric right ascension and declination,

a=tan"! (y — ySi) §=sin~! (Z — ZSi)
T — Ty p

where all values are given in the Earth-Centered Inertial (ECI) frame, p = /(v — 24)2 + (y — ysi)2 + (z — 25)2 is
the range, and the si subscript denotes a ground station coordinate. Values for measurement noise and the sensor FOV
are provided in Table [2| [20]. The offset in hours from GMT is provided for the date February 27, 2013 used as the
initial epoch in the simulation; each sensor is modeled as active for 12 hours per night, from local 6PM to 6AM.

(35)

Table 1. GEODSS Sensor Parameters [|19]

Site Latitude [deg] | Longitude [deg] | Altitude [m] | Az Limits [deg] | El Limits [deg]
Socorro, NM 33.82 -106.66 1510.2 [0,360] [20,90]
Maui, HI 20.71 -156.26 3058.2 [0,360] [20,90]
Diego Garcia -7.41 72.45 -61.2 [0,360] [20,90]
Lisbon, Portugal 38.74 -9.14 77.0 [0,360] [20,90]
Alice Springs, Australia -23.70 133.87 583.0 [0,360] [20,90]

Table 2. GEODSS Sensor Parameters [20]]

Site FOV Size [«, 0] | Noise [, d] | GMT Offset [hours]
Socorro, NM [1.61°,1.23°] [2”,2' -7
Maui, HI [1.61°,1.23°] [2",2"] -10
Diego Garcia [1.61°,1.23°] (2" 2"] +6
Lisbon, Portugal [1.61°,1.23°] [2”,2" 0
Alice Springs, Australia | [1.61°,1.23°] 2,2 +9.5

Figured]provides a visual representation of each ground station and its full field of regard. The five ground stations
are capable of global coverage of the GEO belt with a 20° elevation mask applied. Note that due to their latitude, the
Socorro and Lisbon FORs extend over the north pole, and that there are large overlaps in the coverage from all sensors.
Object locations at the epoch time are also plotted, from which it is clear that most objects are located near the equator.

Table 3. Initial State Uncertainties

Parameter | Value
Oq 1.0 km
Oe 10~4
i 0.01°
(eXe) 0.01°
Oy 0.01°
oM 0.01°

The filter is initialized with a PHD function of 1118 components with the initial uncertainty for each specified
in orbital elements in Table [3] The mean estimated state of each object is randomly perturbed from the truth using
these values, then both the mean and covariance are converted to Cartesian ECI coordinates using the unscented
transform [9]]. The objects are propagated assuming two-body dynamics, with perturbing forces modeled by a 2x2
spherical harmonics gravity field based on the EGM2008 model [21], solar radiation pressure (SRP), and luni-solar
perturbations using the JPL design ephemeris 430 [22l23]]. The SRP force is modeled assuming all objects are spherical
with area-to-mass ratio 0.05 kg/m? and reflectivity C,. = 1.5. No unmodeled accelerations are included in the filter.
The covariance is assumed Gaussian and propagated using the unscented transform. A simple process noise model is
used, in which a diagonal process noise covariance matrix @ = Qo At is added to the predicted covariance at each
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time. The matrix @ uses standard deviations of 10~% km and 107 km/s for each of the positions and velocities in
ECI, and At is the time interval.

No target birth or death is considered, and the simulation does not model the sensor slew rate or settling time,
local weather conditions, or lighting conditions of the objects being observed. The filter does model a 0.95 probability
of detection for objects in the field of view and assumes a Poisson clutter model with a mean rate of 20 returns each
epoch uniformly distributed in the FOV. The filter uses merging and pruning thresholds U = 9 and T = 1075 and a
maximum of 3000 GMM components to maintain the Gaussian mixture approximation.

3.2.2. Results and Discussion

As in the linear model, the first case considers the use of the same TIF values for both TOIs and non-TOlIs, setting
7; = 1. The 3D position error is computed for each object, by taking the maximum weighted component mean for
each as the estimate and computing the Euclidean distance to the true value. Individual object errors are plotted in
Figure [5(a)| as gray lines, along with the average over all 1118 objects in black, and averages for TOIs and non-TOlIs
in blue and red respectively. In the case where objects are all given the same priority, the average position errors for
TOIs and non-TOIs do not show much distinction, as expected. On the right, Figure [5(b)| provides the results for the
case where the non-TOI priority has been reduced significantly, to a value of 0.01. This choice is made instead of
setting Thon = 0 to ensure non-TOIs still yield some information gain and produce valid sensor tasks in the case that no
TOIs are visible to a given sensor at some point in time. The figure does show a sharp difference between the average
position errors for TOIs and non-TOls, discussed in further detail below.

Figure 6] provides a breakdown of the average position errors for TOIs and non-TOlIs for all cases considered. On
the left, the figure shows the best TOI errors are achieved for the case 7,0, = 0.01, and the final average position
errors have converged to several hundred meters, approximately the level of the prescribed measurement noise. The
Taon = 0.1 case similarly achieves excellent average position errors for TOIs by the final time. Both the 7,0, = 0.5
and T,on = 1 cases perform reasonably well, but have not converged at the final time as errors are still decreasing. On
the right, the average non-TOI errors demonstrate that for the low TIF value, the system ignores them significantly
as compared to the equal priorities case. The equal priorities case produces roughly the same position errors for both
TOIs and non-TOIs as expected. Another noteworthy point from this figure is that the 7,,, = 0.1 case tracks both the
best case TOI and non-TOI errors pretty well, offering an effective way to improve TOI tracking without sacrificing
other objects all together.

Copyright © 2016 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) — www.amostech.com



® Average
70| ® TOI

® Average

® Non

Position Errors [km]
Position Errors [km]

0 6 12 18 24
Time [hours] Time [hours]

(a) Position Errors mhon = 1 (b) Position Errors mon = 0.01

Fig. 5. Orbital Debris Position Errors

— =1

14+ — =0.5 |]

Average TOI Position Error [km]
Average Non-TOI Position Error [km]

0 5‘ lb 15 Zb 25 0 5 lb 15 Zb 25
Time [hours] Time [hours]
(a) TOI Position Errors (b) Non-TOI Position Errors
Fig. 6. Orbital Debris TOI and Non-TOI Errors

Table 4. Results Summary

Non-TOI Objects TOIs Number of Percent Sensor
Priority Detected Detected Meas (TOI) Time TOIs
T=1 1103/1118 | 111/112 | 6261 (616) 17.2

7=0.5 | 1098/1118 | 109/112 | 6553 (852) 23.9

7=0.1 | 1094/1118 | 111/112 | 7053 (1684) 46.8

7 =0.01 | 1045/1118 | 112/112 | 7166 (2946) 80.6

Table [ provides a final summary of the results for each case, listing the total number of objects detected, number
of TOIs detected, total number of measurements, and those for TOIs, and the percentage of sensor time spent tracking
TOIs. The last two columns are different in that the number of measurements includes the effects of missed detections,
and also cases where multiple objects are detected in a single scan. By contrast, the sensor time values indicate the
percentage of sensor scans that are scheduled to observe at least one TOI, regardless of whether it is detected, or
whether other objects are present in the field of view. As clear in the table, decreasing non-TOI priorities produces a
corresponding increase in the amount of sensor time tracking TOIs. In addition, the 7,,,, = 0.01 case is the only one
to observe all TOIs at least once during the course of the simulation. The equal probabilities case produces the most
detected objects overall. Interestingly, decreasing non-TOI priorities produces higher numbers of measurements, even
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for non-TOIs. The likely explanation is that these cases favor observing multiple targets together, since single low
priority objects would be less likely than multiple low priority objects to yield an expected information gain higher
than scans with at least one TOI present.

4. CONCLUSIONS AND FUTURE WORK

This paper presented the theory and application of an information theoretic tasking scheme incorporating target pri-
orities in the reward function. Through simulated test cases, the method was demonstrated to produce additional
measurements and improved state estimates for higher priority targets. Many future applications are possible for this
work, from implementing different sensor tasking modes designed to focus on certain objects, to automating tracking
necessary to refine estimates of conjuncting objects and their associated probability of collision.
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