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This paper studies the Sensor Management (SM) problem for optical Space Object (SO) tracking. The
tasking problem is formulated as a Markov Decision Process (MDP) and solved using Reinforcement Learning
(RL). The RL problem is solved using the actor-critic policy gradient approach. The actor provides a policy
which is random over actions and given by a parametric probability density function (pdf). The critic
evaluates the policy by calculating the estimated total reward or the value function for the problem. The
parameters of the policy action pdf are optimized using gradients with respect to the reward function. Both
the critic and the actor are modeled using deep neural networks (multi-layer neural networks).

The policy neural network takes the current state as input and outputs probabilities for each possible
action. This policy is random, and can be evaluated by sampling random actions using the probabilities
determined by the policy neural network’s outputs. The critic approximates the total reward using a neural
network. The estimated total reward is used to approximate the gradient of the policy network with respect
to the network parameters. This approach is used to find the non-myopic optimal policy for tasking optical
sensors to estimate SO orbits. The reward function is based on reducing the uncertainty for the overall
catalog to below a user specified uncertainty threshold. This work uses a 30 km total position error for the
uncertainty threshold.

This work provides the RL method with a negative reward as long as any SO has a total position error
above the uncertainty threshold. This penalizes policies that take longer to achieve the desired accuracy. A
positive reward is provided when all SOs are below the catalog uncertainty threshold. An optimal policy
is sought that takes actions to achieve the desired catalog uncertainty in minimum time. This work trains
the policy in simulation by letting it task a single sensor to “learn” from its performance. The proposed
approach for the SM problem is tested in simulation and good performance is found using the actor-critic
policy gradient method.

1 Introduction

The U.S. Air Force has maintained a catalog of Space Objects (SOs) since the dawn of the space age and
the network of sensors that provides the data for this catalog is called the Space Surveillance Network
(SSN) [1]. Over the past few decades, space technologies, and the satellites that support them, have become
indispensable for modern economies. Economic and military drivers have led to large increases in the number
of SOs and countries that have a presence in space. This growth in the number of SOs is stressing the current
capability of the SSN and creating a need for new approaches for improving Space Situational Awareness
(SSA). SSA has become a key mission area for the U.S. Air Force, which is tasked with collecting tracking
data on over 22,000 SOs, 1,100 of which are active, currently being tracked. The solution to this task
involves solving a large scale resource allocation and management problem. This paper studies the Sensor
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Management (SM) problem for SSA, where the goal is to maintain knowledge over a given set of SOs using
a limited number of sensing platforms.

The SM problem is a general challenge across many engineering applications and has been extensively
studied. Most methods for sensor scheduling are myopic and only offer optimality for short-term benefit.
Short-term or single time step optimal solutions for the SM problem have been proposed that use informa-
tion entropy, tracking covariance, fisher information, Cramer-Rao lower bound, information divergence, and
information entropy [2]. The non-myopic case, where an optimal solution is desired over large time horizons,
is more challenging. When the performance metric is measured over an extended period of time, myopic
approaches do not provide adequate solutions. Reference 2 formulates the sensor scheduling problem as a
Markov decision process (MDP) and solved it using the completely observable rollout method. This method
allowed for the inclusion of long-term performance considerations. An alternative approach is that of Ref.
3, which used a Reinforcement Learning (RL)-based sensor scan optimization scheme for multi-target track-
ing. Ref. 3 used temporal difference learning utilizing an ǫ-greedy Gibbs method for exploration. The RL
approaches offer a computationally efficient solution to dynamic programming problems and a way around
the curse of dimensionality (due to action space size explosion). This work explores RL for SM using policy
gradient method.

Sensor tasking for SSA is usually based on priorities, such as estimating atmospheric reentry, limiting
time elapsed since last observation, and particular military interest among other things. A simple method
for solving the tasking problem relies on binning objects. SOs are binned into classes based on perigee
and apogee heights, and these SM methods provide a general suggested amount of observations per day
for objects in these bins, which are referred to as Gabbard classes [4]. Using these Gabbard class based
observation per day guidelines, resources can be distributed to maintain a catalog. In practice, methods
based on object binning and heuristic rules can control uncertainty growth in the catalog, but these types of
methods are sub-optimal and not based on fundamental principles. Advanced, statistically rigorous methods
for SSA sensor tasking have been developed that provide closer to optimal tasking solutions [5–8]. These
sensor scheduling methods are myopic, only optimal for a single time step into the future. Reference 5
studied a method based on the covariance of SOs to solve the tasking problem. This work used a metric
based on the reduction in covariance in a given measurement to determine the ”best“ observations to make at
the current time step. Reference 9 also used covariance information to determine both a Fisher-Information
Matrix (FIM) based and a hybrid tasking approach that used covariance information to develop a myopic
sensor tasking strategy.

References 5 and 9 did not use multi-time step optimization and also used linearized uncertainty models,
which only account for the mean and covariance of the SO pdf. Reference [7] overcame these two limitations
by using Lyapunov exponents to account for future uncertainty growth and the Unscented Kalman Filter
(UKF) to account for higher order uncertainty. Furthermore, this work was extended to non-Gaussian
probability density functions (pdfs) by Ref. [10], which used a Gaussian sum filter to represent the pdf of
each object. Reference 11 was the first paper to study the non-myopic SM problem for SSA and was able
to show a clear improvement over myopic approaches. Reference 11 solved this problem using information
space receding horizon control and using stochastic optimization. This work was later extended to non-
Gaussian SO pdfs [8]. Reference 8 applied the AEGIS-FISST approach to this problem by developing a
tasking strategy that can include the data association process using Random Finite Sets.

Recent advancements in Deep Reinforcement Learning (DRL) [12,13] have demonstrated ground breaking
results across a number of domains. In particular, DRL has been used to successfully develop an artificial
intelligence approach that can defeat expert human GO players [13], an astonishing accomplishment. The
generality of DRL and the ground breaking results, motivates the exploration of these approaches for SSA
applications. Here the term “deep” refers to any neural network learning approach with more than one
hidden layer. Deep learning approaches mimic the function of the brain by learning nonlinear hierarchical
features from data that build in abstraction [14]. In an end-to-end fashion, DRL approaches can be used to
process data directly to “learn” a control policy from training data.

This paper develops a DRL approach [15] for the SM problem applied to SSA. RL approaches define
a value function, which represents the total reward for possible actions at the current state. For the SSA
problem, the agent is the telescope sensor and the possible actions are the decisions to make observations of
a particular satellite. This paper develops a simulation environment where a neural network can be trained
to perform a policy that will reduce the overall satellite catalog error. The reward model development is
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critical to the performance of the RL policy. This paper focuses on a reward function that rewards the
policy’s ability to maintain a given catalog accuracy. The primary model that is investigated is based on the
trace of the SO covariance matrix, where the goal is to reduce the positional uncertainty of all SOs in the
catalog to below a threshold within minimum time (or observations). This approach rewards policies that
take measurements that maximally reduce the overall catalog uncertainty over time.

Stable methods for training RL approaches based on neural networks exist, but most of these approaches
are not suitable for high dimensional systems. Reference 16 developed an effective approach for high dimen-
sional systems and this paper leverages these results and applies this approach to decision making in SSA.
The action space for the SSA problems can be high dimensional even for tasking of a single telescope. Since
the number of SOs in space is relatively high, each sensor will have a large number of possible actions that
are possible at a given time. Therefore, efficient RL approaches are required when solving the SM problem
for SSA. This paper implements the policy gradient method [16] for RL applied to SSA sensor tasking.

The organization of this paper is as follows. First, the problem statement is given for the dynamic sensor
tasking problem. Following this the state representation and dynamics for the uncertainty state of SOs is
discussed. Next, the policy gradient method is discussed. Then the simulation orbital and measurement
models and parameters are provided. Additionally, results are shown for simulated examples. Finally,
discussions and conclusions are provided. This paper discusses the theory involved behind the proposed
algorithms and results from simulation trials are shown.

2 Problem Statement

Given a discrete-time system model, we can denote the state of the system at time step k by xk. The system
dynamics provide the transition from xk to xk+1 given uk, where uk ∈ Rℓ denotes the current control
action, and this transition may be stochastic. Therefore it is meaningful to represent this transition with
a probability distribution xk+1 ∼ p(xk+1|xk,uk) and xk, xk+1 ∈ Rn denotes the current and next state,
respectively. The actions are modeled probabilistically and are generated by a policy uk ∼ π(uk|xk) where
the randomness in the policy can enable exploration of the policy space while also providing optimality for
certain classes of control problems.

An agent (telescope system) has a current state xk ∈ S (the information state of the catalog [11]) at each
discrete time step k and chooses an action uk ∈ U according to a policy π. For the policy π, a reward signal
rk is given for a transition to a new state xk+1. The general objective of RL is to maximize an expectation
over the discounted return, J(θ), given as:

J(θ) = E
[

rk + γrk+1 + γ2rk+2 + · · ·
]

(1)

where γ ∈ [0, 1) is a discount factor. Q-learning is a popular RL method which defines a Q-function that
represents the total reward or the total “cost” to go for a policy π [15]. Once the Q-function is determined,
the action with the highest value or estimated total reward is taken at each time step. Therefore, the policy
can be solved for using the Q-function. Here the agent is the telescope network and the possible actions are
making observations of a particular SO. The Q-function of a policy π is:

Qπ(xk,uk) = Eπ

[

∞
∑

i=k

γi−kri

]

(2)

Where the function estimates the total discounted reward for policy π from state xk assuming that action uk

is taken and then all following actions are sampled from policy π. Q-network method uses neural networks
parameterized by θ to represent Qπ(xk,uk; θ), but we drop the dependency notation for simplicity [15].
Q-networks are optimized by minimizing the following loss function at each iteration i:

L(θ) =

(

rk + γmax
uk+1

Qπ(xk+1,uk+1)−Qπ(xk,uk)

)2

(3)

This equation uses the Bellman optimality condition [15] to relate Qπ(xk,uk) to Qπ(xk+1,uk+1), and this
equation can be optimized using stochastic gradient descent. For the SSA problem this work develops
a simulation environment where a RL approach is trained to perform a policy that will reduce the overall
catalog uncertainty.
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Figure 1: Neural Network Architecture for the Actor and Critic Networks.

3 State Representation and Dynamics

The Markov decision process (MDP) requires that xk be a Markov state that describes the state of the
system. This assumption implies that the future states depend only on the current state and not on the
events that occurred before it (otherwise known as the Markov property). For the orbit estimation problem,
the state we need is the pdf for each satellite and if we assume that the pdfs are Gaussian, this implies that
we only need the mean and covariance for each SO. Therefore, this work uses the Gaussian assumption to
define the pdf for each SO. Given the means, µi

k, and the covariances, P i
k, for each SO the state of the MDP

can be described. The dimensionality of this state is n = N2+N , where the covariance and mean contributes
N2 and N parameters, respectively. To reduce the dimension of the state vector this work assumes that the
covariance matrix can be captured by the diagonal elements or the variance for each dimension of the SO
state vector. Under this assumption the number of state parameters is given by n = 2N and this state at
time k can be written as

xk =
[

µ1
k, · · ·µ

N
k , diag

{

P 1
k

}

, · · · , diag
{

PN
k

}]T
(4)

This state is used in solving the MDP problem using policy gradient method. The dynamics of the mean
and covariance can be solved for using the Extended Kalman Filter (EKF) equations for propagation and
update. The forecast step of in the EKF is given by

µ̇i
k = f(µi

k, t) (5)

Ṗ i
k = F (µi

k, t)P
i
k + P i

kF
T (µi

k, t) +G(t)Q(t)GT (t) (6)

where the function f(µi
k, t) is a nonlinear dynamics function. The term G(t)Q(t)GT (t) represents the process

noise which is neglected in this work. The propagation of the covariance matrix is done using the linearized
dynamics where the matrix F (µi

k, t) can be written as

F (µi
k, t) =

∂f

∂µ

∣

∣

∣

∣

µi

k

(7)
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where the covariance propagation is done linearly and the pdfs for each SO is assumed to be Gaussian.
Under the Gaussian assumption the action uk, which represents taking a measurement of a particular SO
(denoted by i) results in a change in the mean and covariance for the ith SO given by

µi
k = µi

k +Kk

[

ỹi − h(µi
k, t)

]

(8)

Kk = PkH
T
k (µi

k, t)
[

Hk(µ
i
k, t)PkH

T
k (µ

i
k, t) +Rk

]−1
(9)

Hk(µ
i
k, t) =

∂h

∂µ

∣

∣

∣

∣

µi

k

(10)

Where ỹi ∈ Rm is the observation vector provided by the sensor when making an observation of the ith SO.
The matrix Rk represents the measurement error covariance matrix. The function h(µi

k, t) is a nonlinear
observation function and the measurement update uses a linearized version of this function to update the
covariance matrix under the Gaussian assumption. The reward function used for this work is given by

r(xk) =

{

−1 if σ > σ̄

1 if σ < σ̄
(11)

where σ = maxi

[

1

2
Trace

{

√

P i
k [1 : 2, 1 : 2]

}]

(1
2
term is used for the simple planar case studied in this work)

and σ̄ is defined as the catalog accuracy threshold.

4 Policy Gradient

This work considers a parameterization of the policy by θ ∈ Rd. These parameters are learned from
trajectories sampled from a nominal policy and from a reward function rk = r(xk,uk). Then the goal of
policy learning process is to maximize the reward by finding a policy denoted by the parameters θ that
maximizes:

J(θ) = E

[

∞
∑

i=0

γkrk

]

(12)

The probability distribution for a trajectory given by a sequence of states x0:k+1 is denoted by

pθ(x0:k+1) = p(x0)

k+1
∏

i=1

p(xk+1|xk,uk)πθ(uk|xk) (13)

Then the expectation in Eq (12) can be written as

J(θ) =

∫

r(x0:k+1)pθ(x0:k+1)dx0:k+1 (14)

The policy gradient approach updates the policy parameters based on ∇θJ(θ) which requires gradients of
the probability distribution pθ(x0:k+1). The gradients can be calculated using the REINFORCE trick [16]
which uses the following relationship

∇θpθ(x0:k+1) = pθ(x0:k+1)∇θ log pθ(x0:k+1) (15)

Then with the REINFORCE trick the gradient of the expected reward with respect to the policy is given by

∇θJ(θ) =

∫

pθ(x0:k+1)∇θ log pθ(x0:k+1)r(x0:k+1)dx0:k+1 (16)

= E [∇θ log pθ(x0:k+1)r(x0:k+1)] (17)

As the expectation E{·} can be replaced by sample averages only the derivative ∇θ log pθ(x0:k+1) is needed
for the determining the gradient. Importantly, this derivative can be computed without knowledge of the
probability distribution for a trajectory Eq. (13). Using probability distribution for a trajectory Eq. (13)
the gradient is given by

∇θ log pθ(x0:k+1) = ∇θ log πθ(uk|xk) (18)
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Note the derivatives of p(xk+1|xk,uk) do not have to be computed and no model needs to be maintained
since the policy is nondeterministic. If a deterministic policy is used, computing ∇θ log pθ(x0:k+1) would
require the derivative ∇θ log p(xk+1|xk,uk) = ∇uk

log p(xk+1|xk,uk)∇θπ(uk) to compute ∇θ log pθ(x0:k+1)
and, hence, it would require a system model. The policy gradient theorem generalizes the likelihood ratio
approach to multi-step MDPs and allows the total reward r(x0:k+1) to be replaced with long-term value
Qπ(xk,uk) given the policy π. Then the policy gradient from Eq. (16) can be rewritten as:

∇θJ(θ) = E [∇θ log πθ(uk|xk)Q
π(xk,uk)] (19)

The actor-critic method uses a critic to estimate the action-value function, Q(xk,uk) ≈ Qπ(xk,uk), where
the critic’s neural network introduces a new set of parameters w ∈ Rdw . Therefore, in the actor-critic
method there are two sets of parameters that are determined, the policy parameters, θ, and the parameters
for critic value function, w. Actor-critic algorithms follow an approximate policy gradient

∇θJ(θ) ≈ Eπθ
[∇θ log πθ(uk|xk)Q

w(xk,uk)] (20)

∆θ ≈ ∇θ log πθ(uk|xk)Q
w(xk,uk) (21)

The critic is updated using the standard Temporal Difference (TD) update which is used in standard Q-
Learning approaches. The TD is calculated from xk,xk+1,uk,uk+1 and r(xk) and given by

Qw(xk,uk) = Qw(xk,uk) + α

(

r(xk) + γmax
uk+1

Qw(xk+1,uk+1)

)

(22)

The above equation can be converted into a loss function over w which can be optimized using stochastic
gradient descent. The loss function is given by

L(w) =

(

Qw(xk,uk)−

(

r(xk) + γmax
uk+1

Qw(xk+1,uk+1)

))2

(23)

The equation above is used to calculate a gradient for the parameters w which is used to update the
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Figure 2: SO Observation Actions for 3 SO Example.

parameters given training examples. Then the parameters θ and w are updated using Eq. (21) and Eq. (26),
respectively. The update rule for these parameters is given by

w+ = w− + βw∇wL(w) (24)

θ+ = θ− + βθQ
w(xk,uk)∇θ log πθ(uk|xk) (25)
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where βθ and βw are the learning rates for policy and critic parameters, respectively. Both Qw(xk,uk)
and πθ(uk|xk) are modeled as neural networks where their respective parameters are the neural networks
parameters. The network architecture used for this work to represent both Qw(xk,uk) and πθ(uk|xk) are
shown in Figure 1. From Figure 1 the number of parameter required for both networks is given by

dw = d = 200 · (1 + n) + 201 · 100 + 50 · 101 + 51 · ℓ (26)

where this equation calculates the number of parameters for the weight matrices and biases needed for the
network architecture shown in Figure 1. Note that the state parameters are given by n = 2N and the number
of action equals the number of SOs, ℓ = NSO.

5 Simulation Models for Space Object Tracking

In this section, the numerical simulation for SO tracking is discussed. To show the effectiveness of the
proposed ideas, we consider a population of near GEO SOs for our training set. The planar equations of
motion for a GEO objects assuming only 2 body forces are given by [17]

ẍ+
µx

r3
= 0 (27)

ÿ +
µy

r3
= 0 (28)

where µ is the Earth’s gravitational constant, r = ‖r‖, and the position vector is given by r = [x y]T and
are assumed to be in inertial coordinates. The satellites used for the simulation are sampled randomly using
orbital elements given by a, e, ω, and M , which are the semi-major axis, eccentricity, inclination, and mean
anomaly, respectively. Note that only four orbital elements are needed to describe an orbit in the x-y plane.
Then the initial orbital element state vector is given by oe = [a, e, i, M ]T . Random initial orbital
element state vectors are sampled from a normal distribution for a, ω, and M and uniform distribution for
e. The mean and standard deviation parameters for the normal distributions are given by µa = 42164 km,
σa = 100 km, µω = 0 Deg, σa = 90 Deg, µM = 0 Deg, and σM = 90 Deg. Here µ and σ variables denote
mean and standard deviation, respectively. The eccentricity is sampled from a uniform distribution over the
range e ∈ [0.01, 0.02]. The initial orbital elements are then converted into an initial r and v and simulated
for the policy training time window. This work uses an angle measurements and the angle observations are
denoted by ỹ = φ and m = 1. The observation model is given by

φ = atan2 (uy, ux) (29a)

where u = [ux, uy]
T denotes the position of the SO relative to the observer in inertial coordinates. The

observer location is denoted by robs and the relative position is given by u = r − robs. It is assumed the
observations are corrupted with zero-mean white noise process with variance denoted by σ2

φ = 0.0085 deg2.

6 Simulation Results

This section discusses the initial proof of concept results for using policy gradient RL applied to SO tracking.
Python and Tensorflow [18] are used as the simulation environment for this work. The policy gradient
method is applied to the SO tracking problem by simulating the satellite orbits and observation dynamics.
The observation dynamics is captured in the evolution of the mean and covariance for each SO. As the
policy takes actions and chooses to observe a particular satellite, Eq. (8) is used to update the covariance.
When measurements are made on an object the covariance is reduced and when no observation is made the
covariance grows due to the two body dynamics discussed in Section 5. The actor-critic method is then
used to estimate the state and action value function online and this function is used to calculate the policy
gradient. The policy gradient is then used to update the policy parameters.

Two simulation cases are considered in this work, one with just 3 SOs and one with 30 SOs. The first
case with 3 SOs is a lower dimensional case with just 24 states. Figures 2 and 3 shows the results for the 3
SO case. Both cases run policy gradient method on 1000 experiments (Figure 3) where the SO are given an
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initial uncertainty of 100 km in position coordinates and 0.1 km/s in velocity. Both experimental cases use
2000 time steps for data collection, where data is taken from one satellite every 30 secs. The second case
uses a large number of SO and large time gaps between measurements tracks. For the second case 10 mins of
continuous observations are simulated and a one hour gap is assumed between each 10 min window. During
the 10 min window it is assumed that the sensors can point at the next satellite within 30 secs, which is
reasonable for GEO. The time gaps here make this case a bit more realistic since in practice these gaps are
expected.

After the 1000 experiments the policy is used to generate a tasking sequence and these are given in Figure
2 for the 3 SO case. Figure 2 shows the action performed by this policy and it is seen that the policy learns
to spread out the measurements over all the SOs initially but after some period focuses mostly on two of the
three SOs. The position covariance is summarized in Figure 3, where it can be seen that the policy initially
reduces the covariance for all of the SO drastically and then maintains a steady state value after that.

0 100 200 300 400 500 600 700

10
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10
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10
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σ
(k
m
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Measurement Samples

Figure 4: Average Position Error Variance vs Measurement Samples for 30 SO Example.

Figures 4 shows the results for the 30 SO case. This case is more difficult for the policy gradient method
and from Figure 4 it can be seen that some SO covariance matrices are not reduced right away. Although
some SOs have covariance matrices that growth initially, overtime the tasking method is able to reduce their
covariance values below the σ̄ value. This highlights the fact that there are more SOs then the policy can
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maintain with one sensor.

7 Conclusions

This paper provides initial results for solving the sensor tasking and management problem for Space Situa-
tional Awareness (SSA) using the policy gradient (PG) method. This work uses the PG method to solve a
Markov decision process to determine the optimal tasking for maximizing some reward. The reward function
used for this work is based on reducing the uncertainty for the overall catalog to below a user specified
uncertainty threshold. The policy is “learned” from data using an actor-critic PG Reinforcement Learning
(RL) method. A single sensor tasking system is simulated for multiple trials using a small catalog and
the current policy. Then based on these simulations an update to the policy is calculated to maximize the
reward. Two simulation cases are studied in this work, cases with 3 and 30 SOs, respectively. The first case
was shown to have good performance using the PG method. The approach learned a policy that reduced
the uncertainty for the three SO case rapidly, and then maintained it at a steady state value. The second
case did not have as good of a performance since a larger number of SOs were considered, but overall it did
well. For future work, we will consider the multi-sensor tasking problem and analyze the cases where not
enough observations are available to observe all of the SOs. In these cases, the RL approach should make a
decision on which SO should be focused on and which errors should be allowed to grow.
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