
 
 

OrbitOutlook: Autonomous Verification and Validation of  
Non-Traditional Data for Improved Space Situational Awareness 

 
Lt. Col. Jeremy Raley 

Defense Advanced Research Projects Agency (DARPA) 
Ryan M. Weisman 

Air Force Research Laboratory (AFRL) 
C. Channing Chow II 

Integrity Applications Incorporated – Pacific Defense Solutions 
Michael Czajkowski 

Lockheed Martin Corporation, Advanced Technology Laboratory 
Kristin Sotzen 

Johns Hopkins University, Applied Physics Laboratory 
 
 

CONFERENCE PAPER 
 

As the space object population has rapidly grown, the data volume required to produce reliable orbital estimates 
has far surpassed the pace of the traditional government sensor acquisition process. Fortunately, over the last few 
years, the commercial, academic, and amateur communities have stepped up to build cost-effective sensor networks 
leveraging commercial off-the-shelf (COTS) and existing hardware. Certifying and calibrating this multitude of 
diverse sensors using the traditional manual process is not feasible. Over the last three years, the Defense Advanced 
Research Projects Agency (DARPA) has been investing in concepts to develop a highly autonomous process to 
parametrically assess the quality of data originating from non-traditional sensors and to fuse this information with 
that obtained from certified sensors. Successful simulations and the development of automatic calibration 
algorithms have set the stage for an active demonstration effort using a global network of sensors including 
commercial, academic, amateur, and government sources. This paper will discuss progress to date and 
demonstrations scheduled for completion through spring 2017. 

 

1. INTRODUCTION 
Space is littered with debris…and the problem is only getting worse. As the number of artificial objects in Earth 
orbit increases, the probability of collisions between these objects also increases – in the case of space debris, this 
effect is known as the Kessler Syndrome [1]. Currently, more than 500,000 pieces of manmade debris – including 
spent rocket stages, defunct satellites, and other fragments (e.g., flecks of paint, nuts/bolts, particulates from solid 
rocket motors) – currently hurtle around the Earth at roughly 17,000 miles per hour [2]. The National Aeronautics 
and Space Administration (NASA) estimates approximately 18,000 objects greater than 10 cm with 77-percent of 
them categorized as either debris or rocket bodies1 while the European Space Agency estimates there are around 
23,000 objects (5 cm to 10 cm in low Earth orbit and 30 cm to 1 m at geosynchronous orbit) with 94-percent of the 
population being debris, decommissioned satellites, or rocket bodies2. The varying population size estimates 
coupled with continued investment in space-supported infrastructures (e.g., communication satellites, navigation 
constellations) creates a situation where it is imperative to better understand the space population and how it is 
evolving. 

                                                           
1 http://orbitaldebris.jsc.nasa.gov/FAQ.html 
2 http://www.esa.int/Our_Activities/Operations/Space_Debris/About_space_debris 
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Figure 1. Artist's depiction of the OrbitOutlook (O2) concept. 

At these hypersonic speeds, even the smallest piece of debris can do irreparable damage to expensive satellites. To 
further complicate matters, with every collision the potential of chain reactions of collisions compounds. If left 
unchecked, the accumulation of the resulting orbital flotsam and jetsam could eventually render entire regions of 
space unusable for centuries. Mitigating/preventing debris is thus paramount. 

The first step to debris mitigation and prevention is to gather information on the locations and behaviors of all 
resident space objects (RSOs), both active and inactive. Without the luxury of telemetry for the debris population, 
this characteristic knowledge is only achievable through persistent monitoring of Earth’s local neighborhood via 
remote sensing. Because the ground-to-geosynchronous-orbit volume is approximately 250,000 times greater than 
all of Earth’s oceans combined, this operation presents a tremendous challenge. To get the vast amounts of 
observational data required to span such an enormous volume of space, the pragmatic answer is to solicit the 
contributions of a large group of observers.  

The historical steward of this space monitoring responsibility is the U.S. Air Force, which operates the U.S. Space 
Surveillance Network (SSN): a worldwide network of 29 space surveillance sensors, consisting of both radar and 
optical telescopes, whose collective function is to detect, track, identify, and catalog artificial Earth-orbiting objects. 
Recently, the rise of the commercial space community has introduced a multitude of new, cost-effective sensors of 
various sensing modalities. Although usually not as powerful or accurate as the government-owned and -operated 
sensors, this influx of additional “eyes and ears on the sky” provides a valuable resource to address the observation 
scarcity issue.  

Admittedly, there are several main challenges to this vision. The first is that legacy operational requirements from 
the SSN – such as accepting data from only certified, high-accuracy sensors – inhibits the inclusion and fusion of 
non-traditional data. Second, data from these non-traditional sensors is produced ad hoc on different time schedules 
and from different parts of the sky; they sense in different modalities and their outputs can be in disparate, non-
standard formats. Third, the quality of the observations must be vetted before they are used to improve, rather than 
degrade, data exploitation routines (e.g., orbital estimates). 

If the U.S. government’s space community leverages what the civilian sectors have to offer, the traditional paradigm 
of relying on a handful of highly accurate measurements can be traded for, or at least bolstered with, accepting a 
multitude of lower-fidelity measurements, often from beneficially diverse locations. Providing a way for all these 
networks to quickly acquire and process large amounts of multi-fidelity, multi-modal data from non-traditional 
sources – including commercial, academic, amateur, and international partners – would enable everyone who 
monitors space debris to better understand the quickly evolving space environment and evaluate when satellites are 
at risk [3]. DARPA’s OrbitOutlook (O2) program is working toward this very capability to improve overall space 
safety and space situational awareness (SSA) in general; it is a quantified approach to ingesting, hosting, and 
validating various “data-as-a-service” providers whose data may come from new or legacy instruments and systems 
and expressed in different coordinate frames and formats. 

The program’s progress has been shared at various points (e.g., recently during the 2014 Space Symposium [4]) and 
the program is now about to enter its final demonstration phase. The purpose of this paper is to provide an overview 
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of OrbitOutlook, describe our infrastructure for integrating space data from disparate sources, and detail our data 
quality assessment algorithms, including plans for verifying and validating the results from the demonstration and 
experimentation phases of O2 beginning in fall 2016 and ending in spring 2017. We conclude with a summary of the 
current status of the program and statements on future work. 

 

2. SYSTEM OVERVIEW 

The OrbitOutlook system attempts to address three questions that motivate three distinct levels of operation: 

Level A: Observation Collection and Reduction  
What data can be gleaned from site/sensor observations? 

Level B: Data Validation  
What is the quality of the data? 

Level C: Data Exploitation 
What information can be distilled/mined from the data? 

While not strictly part of the O2 system, the follow-on of this system can be summarized on another level: 

Level D: Decision Support 
What intelligence/actions can be drawn from O2-generated information? 

 
 

Figure 2. Top-Level Summary of OrbitOutlook System 
 
Fig. 2 shows a top-level summary of O2 in context with a hypothetical downstream attachment to the system. The 
upper boxes give an idea of the typical inputs for each level, and the lower boxes list a sample of the corresponding 
outputs. The blue arrows roughly indicate data flow and especially the connections and feedback from each step. 

With the concept and structure of O2 outlined, attention is turned to the physical entities that comprise the system. 
The O2 program has three segments: Level A, the data providers, Level B,  the data processing algorithms, and 
Level C, a centralized database. The data providers supply the observations of space activity – effectively satisfying 
Level A. The data processing algorithms seek to verify and validate incoming and historical data and produce 
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analysis products derived from such data (e.g., measurement outliers, noise, biases, and RSO orbits and attitudes) – 
this segment accomplishes both Level B and Level C. For the final piece, the database stores and organizes all 
parameters produced and serves as the communications hub for O2. Further details on each of the three segments are 
addressed separately in the following sections. 

3. INCREASE THE NUMBER OF THE OBSERVERS 

Gathering observations of space objects is no small feat. When trying to monitor space objects, sensors have to deal 
with many factors, such as weather, obstructions, and line-of-sight geometries, and hardware limitations (e.g., 
signal-to-noise ratio, power, tracking capability) to name a few. And then there is the matter of the number of 
sensors versus the number of space objects to monitor. 

Since the dawn of the Space Age, the United States has maintained a catalog of more than 39,000 artificial space 
objects orbiting Earth [2]. This number records the objects that are larger than about 10 cm in diameter. There are an 
estimated several hundred thousand smaller pieces that are not catalogued. Fig. 3 illustrates the low-Earth orbital 
regime – where most of the debris population resides – with the current trackable space object population plotted for 
a given time (albeit, with the scale of the space objects’s size exaggerated for clarity). Though only showing a 
portion of Earth’s local neighborhood, this depiction gives an idea of the staggering number of objects required to be 
monitored. 

 

 
Figure 3. Space objects in Earth's local neighborhood (courtesy of ESA). 

 
Currently, the U.S. Air Force Space Command (AFSPC) controls a mixture of 29 dedicated and collateral sensors 
for the purposes of collecting data for the SSN, with only a small handful of non-government auxiliary sensors 
contributing sporadic observations (see Fig. 4 for SSN locations from U.S. Strategic Command). Over the last few 
years, the growing commercial space community has developed its own cost-effective networks incorporating 
hundreds of different sensors. These networks and the SSN cannot easily or quickly share data with each other, 
however, because such sharing requires manual fusion of data in different formats. Additionally, the SSN can accept 
data collected only from certified, high-accuracy sensors. 

Providing a way for all these networks to quickly acquire and process large amounts of high-quality data from 
diverse sources—including civil, commercial, academic, and international partners—would enable everyone 
monitoring space debris to better understand the quickly evolving space environment and evaluate when satellites 
are at risk. 

 

 

© European Space Agency 
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Figure 4. U.S. Air Force Space Surveillance Network (SSN) locations1. 

 
The solution DARPA is pursuing through OrbitOutlook has been to invite selected SSA networks to provide data. In 
June 2016, the program completed integration of live data feeds from seven SSA data providers that together have 
more than 100 sensors around the world—the largest and most diverse network of space situational awareness 
networks ever assembled. 

This approach directly addresses three issues: (1) In the simplest sense, it has the potential to vastly increase the 
number and diversity of measurements available to the Space Surveillance Network, (2) it is modular and scalable 
and is far less expensive in terms of placement, construction, and operations than building new government-
commissioned assets, and (3) it can alleviate valuable, high-accuracy, military-grade resources for other mission 
critical tasks. 

As of this writing, these data providers are: 

• Electro-optical (EO) sensors 
o Raven (government-owned, Integrity Applications Incorporated-

Pacific Defense Solutions (IAI-PDS)-operated) 
o ExoAnalytics (private) 
o StellarView (data broker for academic consortium, Lockheed Martin 

Corporation (LMCO)/University of Arizona (U of A)-managed) 
o SpaceView (data broker for industry consortium, GEOST-managed) 
o LILO (private, GEOST-operated) 
o Flagstaff Medusa (private COTS cameras) 
o HEAT (government-owned, Valepro-operated) 

• Radio-frequency (RF) sensors, both active and passive 
o Rincon (private) 
o EchoView (SRI-operated) 

Each of these data providers is responsible for supplying the O2 technology demonstration system with observations 
of RSOs local to their collection modes. Here, each provider reduces raw instrument data to only the important 
metrics (accompanied by any number of metadata and/or configuration parameters) and supplies that data to the 
database. This concept of operations fully captures O2’s Level A. 

To effectively communicate data from disparate parties, a common lexicon and syntax is required. For this express 
purpose, IAI-PDS and LMCO are developing a living ontology that attempts to relate or categorize parametrizable 
facets of space operations for SSA. The ontology is realized by informing a data model that is, in turn, implemented 
on a customized central database. 

                                                           
1 https://www.stratcom.mil/factsheets/11/Space_Control_and_Space_Surveillance/ 
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4. ORGANIZE AND STORE THE DATA 

Some sensors take images and others receive signals; for O2’s purposes, both are considered raw data. After these 
images/signals are processed to glean only the meaningful bits of information (i.e., often called data reduction), the 
extracted metrics1 are referred to as simply data. It is this reduced set of data that is requested of the data providers. 
By applying this guidance across all O2 participants, we have standardized what we will accept from the 
community; the next step is to determine how we will organize and store it. 

The storage mechanism is a graph database called the OrbitOutlook Data Archive (OODA) [5]. 

LMCO is charged with the design and development of the database. OODA has at its center the world model (WM). 
The world model is a distributed data store built to quickly query big-data quantities of information spread out 
across multiple processing nodes and data centers. The world model applies a multi-index approach where each 
index is a distinct view on the data. This strategy allows analysts and analytics/algorithms the flexibility to access 
information through queries with a variety of terms that may be of interest to them. Our indices include a structured 
global-graph view of knowledge, a keyword search of data content, and an object characteristic range search. In 
addition, the world model applies a federated approach by connecting to existing databases and integrating them into 
one single interface as a “one stop” shopping place to access SSA information. 

Together with LMCO, IAI-PDS has created an extensible data dictionary with which to use as the common lexicon 
to communicate all space operations data. The novelty of this parameter set is that it incorporates the union of all 
contributing data models and formats (e.g., two-line elements (TLE), B3, and Electro-Optical Space Situational 
Awareness (EOSSA)), rather than tailoring to any particular legacy service. By generalizing the data dictionary into 
distinct spaces (e.g., configuration space, measurement space, phase/state space, indications and warnings space), a 
common representation of SSA concepts (i.e., an ontology) is achieved for both non-traditional and traditional 
processing of data. Fig. 5 shows a sample branch of the ontological structure that represents the class “space object.” 

 
Figure 5. Sample ontological representation of a Space Object. 

 
Analytic algorithms can use OODA to take observational data and build information from it. They can store these 
products back into the world model, allowing analysts to gain situational awareness with this information. Analysts 
in turn would help decision makers use this knowledge to address a wide range of SSA problems. Our data model’s 
most commonly used terms are: track, sensor information, time sample, observable, measurable, metadata, 
expectation, report card, space object, and catalog.  

                                                           
1 Here, “metrics” is used in its generic form to mean any quantity that can be measured or computed. 
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We implement the data model in such a way that data providers, algorithm developers, and human-machine 
interface (HMI) tools written in Java, C++, and Python can seamlessly integrate and interact with one another. To 
accomplish this functionality, we supply a set of application program interfaces (APIs) wrapped up into an 
OrbitOutlook software development kit. In addition to this, the O2 team also built a world-model interaction layer 
through the Matlab shell to allow analysts to explore the content of SSA data in the context of other Matlab-based 
analytics. 

It is also critically important to the O2 program for there to be a set of dedicated resources necessary to quickly 
integrate new algorithms and data provider solutions to bring in and process data. We have created an OrbitOutlook 
data center (OODC) comprised of seven nodes, physically located in Cherry Hill, NJ, to meet this need. The OODC 
hosts an instance of the OODA processes including a world model that can fully scale to storing approximately 15 
TB of data. The OODC and the OODA world model were designed to take advantage of scaling up (adding more 
resources to existing nodes) and scaling out (adding more nodes) as determined by program needs. Using the OODC 
along with algorithms and data providers, we have addressed dozens of integration challenges in preparation for our 
demonstration events. The OODC will also serve as the processing platform for the demonstrations themselves and 
allow for post-run analytics to verify the program’s claims. 

 

5. VALIDATE AND EXPLOIT THE DATA 

Data processing, in the context of OrbitOutlook, comprises two fundamental steps: data validation and data 
exploitation. Part of the solution path is to utilize predictive filtering, data assimilation, and data-decimation 
algorithms that can continuously adapt to available information to provide confidence in the generated solution, 
establish credibility of the sensor, and consistency of the sensor observations. The path requires efforts in nonlinear 
dynamical modeling, uncertainty characterization, outlier monitoring, and confidence estimation that are fully 
integrated to prevent any information truncation during analysis hand-off. Along with other necessary overhead 
components and underlying messaging framework, the collection is summarized as the OrbitOutlook data 
processing algorithms (O2DPA). IAI-PDS is tasked with the design, development, testing, and integration of this 
piece. 

For government operations, the typical process for assessing a space surveillance sensor is to analyze a 
representative data set and determine whether or not the quality of the data is acceptable. Once a sensor is 
accredited, the sensor and its software and operations are strictly controlled. Any changes would require re-
accreditation. The O2DPA validation piece instead seeks to assess the quality of the data. The general notion is that 
the data is never initially trusted and so must go through this process regardless of past performance. In other words, 
OrbitOutlook does not perform sensor certification. 

The following O2DPA process of data exploitation seeks to deduce and/or infer information from the supplied data. 
For example, this step is where orbits are determined or where the sizes of the RSOs are estimated. All inputs and 
outputs of these processes are stored in the database using the underlying data dictionary. 

Traditionally, these processes of validation and exploitation are performed by analysts and trained operators. Before 
getting to O2, even with the smaller number of sensing resources of the current SSN, the data volume is already too 
much to be efficiently processed by humans. So, automated solutions are necessary for ingesting and processing the 
data to ensure that space operations stay temporally relevant. 

The O2DPA system designed two data processing units (DPUs) to address this issue of automation. The DPUs are 
distinguished based on the type of data they are meant to process.1 Here, the two data types are generally classified 
into either astrometric or radiometric data. Astrometric data is data that is of or pertaining to the kinematics of the 
object (e.g., right ascension and declination). Radiometric data is data that is of or pertaining to the spectral 
characteristics of the object (e.g., brightness magnitude).  

                                                           
1 The choice of DPU separation is not unique. The distinction made by O2 is merely one selected to fit the current operational 
needs of the system. 
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Each DPU is a separate dedicated research effort. The astrometric DPU is called Parametric Assessment of Data-
integrity and Model Estimation (PADME), while the radiometric DPU is called Validation And Data Exploitation of 
Radiometry (VADER). The two processes are described separately in the following sections. 

 

PADME 

PADME operates on astrometric data such as range, Doppler, right ascension, declination, time difference of arrival 
(TDOA), and frequency difference of arrival (FDOA), from both EO and RF sensing modalities. The first step 
analyzes an astrometric track1 for outliers in a quality assurance component called PADME-QA. This process is 
accomplished using orbit fits (e.g., polynomial) to the observations and checking for individual points that are 
statistically out of family. This determination is only possible if the observations are submitted in tracks instead of as 
single observations. The more observations in a track, the better the outlier detection algorithm will perform. Since 
the outlier detection process is not perfect, outliers are not actually deleted or rejected, but merely scored with a 
weight and recorded in the database. Downstream processes can choose whether or not to accept PADME’s 
judgement.  

After outlier processing has completed, the noise characteristics of the track are evaluated. Noise is the measure of 
variation in the sample. We characterize this quantity by taking the residuals, 𝑦𝑦𝑖𝑖 , for each observation, as the 
observed measurements minus those computed from the orbit fit. Then the normalized unbiased estimate of the 
standard deviation, 𝜎𝜎, is computed assuming a normal distribution: 
 

𝜎𝜎 = �
1

𝑝𝑝(𝑚𝑚 − 𝑛𝑛) − 0.5
�𝑦𝑦𝑖𝑖𝑇𝑇𝑊𝑊𝑖𝑖𝑦𝑦𝑖𝑖

𝑚𝑚

𝑖𝑖=1

 

 
Here, 𝑝𝑝 is the number of measurements per observation, 𝑚𝑚 is the number of observations, and 𝑛𝑛 is the number of 
parameters being estimated. For a linear fit, 𝑛𝑛 is 2 (the slope and the intercept). For a quadratic fit, 𝑛𝑛 is 3. The 0.5 
offset is added as a rule of thumb to produce an unbiased estimation of standard deviation for a normal distribution. 
𝜎𝜎 can be used to indicate variability if the expected measurement noise covariance matrices, 𝑊𝑊𝑖𝑖, are correct using 
the confidence interval, 𝐶𝐶, which is 
 

𝐶𝐶𝑙𝑙𝑙𝑙𝑤𝑤𝑒𝑒𝑒𝑒 = �
𝜎𝜎2[𝑝𝑝(𝑚𝑚 − 3)]

𝜒𝜒2[1 − 𝛼𝛼
2 𝑝𝑝(𝑚𝑚− 3)]

 

 
where 𝛼𝛼 is 0.05 for 95-percent confidence and the 𝜒𝜒2 function gives the lower critical value of the 𝜒𝜒2 distribution. If 
𝐶𝐶𝑙𝑙𝑙𝑙𝑤𝑤𝑒𝑒𝑒𝑒  is greater than 1.0, there is a 95-percent chance the observations have more uncertainty than expected and the 
measurement noise covariance is set using 𝜎𝜎 as the standard deviation. 

In this way, abnormal noise or outlier characteristics are identified in PADME-QA as long as there are sufficient 
observations per track. Fig. 6 shows a set of sample outputs from a PADME-QA analysis of TDOA and FDOA data 
types. The TDOA/FDOA tracks come from 24-hour observations of the Anik F1-R satellite, using a pair of Rincon 
passive-RF antennae, one located in Denver, CO, and the other in Tucson, AZ. The top row shows the computed 
measurements (green) overlaid on top of the recorded measurements (blue), the differences of which lead to the 
residuals for each data type in the next row. The third row, whose ordinate is entitled “z-score,” displays a metric 
that gauges the degree of deviation of each residual from the total distribution of residuals – the dotted red line is a 
configurable threshold that is set for outlier detection. The fourth row shows the normalized histogram of the 
residuals, representing the probability distribution. In this example, the TDOA/FDOA measurements taken from this 
long-baseline pair of dishes exhibits relatively low noise corruption and contains only a single outlier. 

                                                           
1 A collection of observations made by a single sensing unit (which can include a collection of sensors acting as one; e.g., long-
baseline arrays of antennae) of a single target, over a contiguous period of time. 
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Figure 6. Sample TDOA/FDOA quality assessment outputs. 

 
The next step in PADME checks that the satellite ID given by the data provider for each track is reasonably correct 
using the ID verification component, PADME-VER. If the ID is confirmed using the orbits available (e.g., TLEs 
from SpaceTrack1 or PADME-produced orbit estimates) then the calibration component, PADME-CAL, performs 
bias estimation. PADME-CAL uses observations of calibration satellites to estimate measurement biases as well as a 
timing bias and drift for the sensor. Common mistakes in coordinate systems or processing can be checked in 
PADME-CAL as well. If sufficient observations have been accepted, previous observations with only rapid analysis 
results can be given their final analysis in PADME-CAL.  

Next, a more rigorous correlation takes place in PADME-COR with respect to the entire internal space object 
catalog. Any uncorrelated tracks (UCT) can then be associated to build initial orbits for uncatalogued objects in a 
component called PADME-UCT.2 Finally, the orbits for correlated objects are updated with the new observations in 
a component called PADME-ORB. In the process of estimating the orbit in PADME-ORB, an additional check for 
outliers is performed; incidentally, this mechanism is the only method of detecting outliers when observations are 
submitted singly instead of in associated groups (i.e., tracks). The final estimate for measurement noise is 
determined by comparing the predicted noise for this sensor with 𝜎𝜎 along with the standard deviation of calibration 
satellite residuals and the standard deviation of the orbit fit residuals from PADME-ORB. All of the components 
mentioned can be mapped to their corresponding locations in the flow as shown in Fig. 7. 

 

                                                           
1 https://www.space-track.org/ 
2 The UCT resolution routine currently is only able to process angles-only measurements. 
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Figure 7. PADME flow diagram. 

 
VADER 

VADER operates on observational data such as the brightness magnitudes, coupled with the angular positions of the 
detected objects and the background stars. The VADER portion of O2DPA consists of several algorithms to provide 
both validation and exploitation of radiometry as shown in Fig. 8. Level B (validation) first checks the radiometric 
calibration and assigns an estimated systematic error, and then compares the current data to an empirical model 
created from past and concurrent data to assign each data point a score. The score and systematic error are then used 
to filter the data processed by the Level C (exploitation) algorithms. 

 
Figure 8. VADER flow diagram. 

 
Fig. 9 shows example output of the simple empirical algorithm, VADER-SE, using actual observations of IntelSat’s 
Galaxy 15 satellite from the Remote Maui Experiment (RME) small telescope. In Fig. 9a, most of the observations 
fall within the bounds of the empirical model and obtain a “pass” score. In Fig. 9b (later discovered to be a mis-tag), 
most of the observations fall outside the bounds of the empirical model and obtain a “marginal” or “fail” score. 
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Figure 9. Sample VADER Level B output. (a) Representative "good" day and (b) an example mis-tag event. 

 
It should be noted that the validation resulting from an empirical model comparison is only as good as the existence 
of good comparison data. In other words, it is straightforward to statistically identify the outlying bad data when 
compared to several examples of good data. If, however, the comparison data is biased, the resulting empirical 
model will also be biased; the scores for subsequent biased data would be artificially high while the scores for 
unbiased data would be artificially low. As another example, brightness variability caused by excessive poor-quality 
comparison data or intrinsic to the object itself (e.g., periodicity caused by rotation) will broaden the empirical 
model bounds and make the validation less sensitive to outliers. 

VADER Level C (exploitation) utilizes various algorithms to calculate object characteristics. The current algorithms 
are three tools from the Air Force Research Laboratory (AFRL)’s Attitude Shape and Retrieval (ASR) suite, 
although other algorithms can of course be added as desired. As an example, Fig. 10 displays the best period output 
of the ASR Periodicity Analysis tool (PAtool) for observations of the XM-1 satellite (SSN 26761) recently injected 
into a super-sync graveyard orbit. It is evident that XM-1’s rotation rate is spinning up (shorter period) initially quite 
rapidly and then more or less linearly (see Fig. 10 inset). These periodicity changes are induced by internal torques 
(e.g., transfer from momentum wheels) and/or external torques (e.g., radiation pressure). Note, in some cases the 
period calculated by PAtool was adjusted to the correct harmonic. 
 

 
Figure 10. Measured period by date for XM-1 graveyard object. 

 
 

a) b) 
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6. TESTING THE SYSTEM 

The Johns Hopkins University Applied Physics Laboratory (JHU/APL) has been tasked to verify that the O2 
system, including the data providers, the data center, and the data processing algorithms, fulfills the requirements 
and performs the functions specified by DARPA.  

Data providers – Each data provider will be tested on whether or not they can publish the information for their 
sensors as well as their observation data to the database. This testing will be conducted on a pass-fail basis. Each 
data provider must complete the integration test for near-real-time collected data  to participate in the O2 system 
performance tests. 

Database – The O2 database (i.e., OODA) will be tested on whether or not it is able to ingest and store data (e.g., 
observations, calibration satellite ephemerides, and space object catalogs) at an acceptable rate. OODA will be 
stress-tested by publishing one week’s worth of observation data at an average rate of 3 observations per second and 
a peak rate of 8 observations per second. Furthermore, OODA is also expected to be able to accept data from at least 
six different data providers simultaneously. The calibration data for the high-confidence assets will be retrieved 
from online sources and submitted to the database in daily batch submissions of at least 2 lines of ephemeris per 
second. Lastly, SpaceTrack catalogs (i.e., a list of TLEs) will be submitted as part of autonomously scheduled jobs 
occurring at a frequency of once per day producing at least 500 TLEs per second. The overall system is expected to 
have a minimum storage capacity of 1 terabyte. 

Data Processing Algorithms – A verification and validation (V&V) plan will be exercised to test the functionality 
and the accuracy of the PADME and VADER DPUs. The functionality will be tested by executing different use 
cases that span the various processing options. The accuracy will be tested in a modeling and simulation 
environment by comparing DPU outputs to known accurate data. Note that this testing involves only the standalone 
DPUs; the entire O2DPA infrastructure will be inspected and tested under a different mechanism (not presented 
here). 

For the modeling and simulation environment, JHU/APL will generate synthetic observation data via its Extensible 
Simulator (ESIM). The computed measurements will be based on a set of scenarios designed to test the algorithms’ 
performance under varying conditions and combinations of data quality and quantity.  

ESIM is a simulation environment designed to rapidly prototype low- to medium-fidelity sensor models along with 
concept of operations (CONOPS) with customizable detection capabilities. It is written in Java and utilizes the 
Orekit1 codebase for high-accuracy orbit propagation and frame transformations. The force models include: a high-
degree and -order aspherical-gravitational geopotential; third-body perturbations; solid and ocean tides; atmospheric 
drag; and solar radiation pressure. Common coordinate systems include Earth-centered Earth-fixed (ECEF) and 
Earth-centered inertial (ECI) frames. The simulation framework supports modeling scenarios with several types of 
ground- and space-based sensors observing various geocentric targets. To manage the concurrent components, a 
Java library is developed (called Mantis) that rests on a simulation layer integrating the JSON2 messaging 
configuration with the ActiveMQ3 messaging service (see Fig. 11). 

 

                                                           
1 https://www.orekit.org/ 
2 http://www.json.org/ 
3 http://activemq.apache.org/ 
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Figure 11. ESIM simulation application layers. 

 
 
The Java Astrodynamics Library at APL (JALA) is built on top of the Orekit framework and is used to configure 
specific sensor-target scenarios. ESIM allows for the configuration of several different sensor types: optical, radar, 
and passive RF (in progress). For each sensor type, appropriate detection models (e.g., elevation masks, signal-to-
noise ratio, sun/moon exclusions) are used to provide realism to synthetic measurement generation. Visualizations 
are accomplished via the custom Tactic Globe Visualizer (TGV); Fig. 12 shows an example scenario, from a space-
based perspective, of two terrestrial sensors each tracking a specific target over time. 

ESIM follows a simplified closed-loop approach for simulation data flow (see Fig. 13). The basic ESIM 
construction contains three essential modules: ESIM Simulator, Tracker/Scheduler, and the Spacecraft Sensor. The 
ESIM Simulator is the main program that controls the execution of the configurable modules, such as the 
Tracker/Scheduler and the Spacecraft Sensor. This modular setup gives the user compartmentalized control over the 
processing thread composition and runtime flow, allowing them to test different combinations of various options in a 
single integrated environment. 
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Figure 12. Tactic Globe Visualizer used for understanding and visualizing particular scenarios of interest. 

 
 

 
 

Figure 13. ESIM simulation closed-loop runtime modules. 

 
Since a particular algorithm’s performance is data-driven, JHU/APL will simulate a span of scenarios using a 
combinatorics approach to explore the range of data conditions that the system is expected to encounter during 
operations. The goal will thus be to generate performance curves or surfaces (as opposed to points) that are functions 
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of each tuning parameter. The data quality conditions, here used as tuning parameters, are as follows: (1) number of 
sensors, (2) sensor noise, (3) sensor bias, (4) number of observations, (5) temporal spacing between observations, 
and (6) orbit regime.1 Table 1 lists each tuning parameter along with a range of values used as a discrete 
representation of a continuous span. If a particular scenario is described by selecting one value from each column, in 
a pure combination sense, the number of possible scenarios to consider is 864. Automation techniques are under 
development to allow timely generation of configuration files and execution of each simulation to be completed 
prior to the demonstration phase. 

 

Table 1. Discrete ranges for each tuning parameter. 

Number of 
Sensors 

Noise (1-σ) Bias (percent of base 
unit) 

Number of 
Observations 

Observation 
Spacing (sec) 

Orbit Regime 

• 1 

• 10 

• None (0.0000) 

• Low (0.0125) 

• Medium 
(0.0500) 

• High (0.2000) 

• None (0.0000) 

• Low (0.0125) 

• Medium (0.0500) 

• High (0.2000) 

• 3 

• 6 

• 10 

• 1 

• 20 

• 240 

• LEO 

• MEO 

• GEO 

 

The accuracy of the orbit estimates produced by PADME (while processing synthetic data) will be evaluated by 
comparing against the known accurate ephemeris used in the simulation. The associated covariance matrix provides 
a convenient factor with which to scale the state estimate to account for uncertainty; the Mahalanobis distance can 
then be used to measure the closeness of the data sets. Acceptable and unacceptable accuracies will be determined in 
accordance with the guidelines put forth by the user. 

Given the difficulties of generating consistent and realistic radiometric data, the V&V for the VADER algorithms 
will be conducted by modifying real data rather than generating simulated data (the capability of ESIM to produce 
radiometric data is currently under development). The live-collected data will be modified by artificially adding 
sensor noise and bias to irradiance measurements that will be analyzed by VADER. The VADER algorithms will be 
evaluated using the same mechanisms as PADME, though the range of scenarios will likely be smaller due to the 
limitations of the real data sets. 

The demonstrations of the O2 system include four separate data collection campaigns of increasing length, each 
followed by a data replay period during which the collected data will be processed by the PADME and VADER 
algorithms. JHU/APL will direct these data collection campaigns by providing guidance to the data providers 
regarding what to collect, including the specific RSOs that should be observed as well as the collection timeframe 
and number of observations that should be provided for each object. The results of the demonstrations will be 
documented at the culmination of these events. 

 

7. CONCLUSION 

As of this writing, almost all of the aforementioned data providers have successfully collected sample data records 
(local to their sensing modality) and published them to the OODA database; the only sensors on which the system is 
still awaiting contributions are the radar units. The data center and database, themselves, are fully operational 
prototypes – the planned stress testing, load balancing, and performance analyses have been completed and the 
results documented. The O2DPA suite of tools and accompanying highly autonomous processing infrastructure have 
been designed and developed, complete with software requirements and system design documents. The O2DPA 
component is currently connected to the OODA database on the production OODC system. 

                                                           
1 The orbit regimes for this work are approximated into three spherical shell manifolds whose boundaries are defined based on 
altitude: low Earth orbit (LEO), medium Earth orbit (MEO), and geosynchronous orbit (GEO). 
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The next steps are to test the various O2DPA functionalities in end-to-end simulations while integrated with the 
database. Proceeding according to schedule, the demonstration phase is set to begin in November 2016 with live 
collections. The end of the demonstration phase is slated for March 2017.  

Pending the successful outcome of these demonstrations, the O2DPA tools will progress into the transition phase to 
bridge the gap between research and operations. A rough order-of-magnitude (ROM) white paper has been written 
to capture the details of transitioning the tools developed under the O2 program to potential end-use customers (e.g., 
AFRL, AFSPC) and corresponding destination platforms (e.g., Joint Interagency Combined Space Operations 
Center or JICSpOC). Specific measures are identified for these future customers to incrementally advance the 
maturity of the tools to Technology Readiness Level (TRL) 7 and higher; the plan also considers the possibility of 
integrating the tools within multi-layer security enclaves. 

Operational indications and warnings will undoubtedly benefit from increased observational evidence of space 
events. A commander’s decision options will be supported with higher confidence results drawn from a wider 
breadth of situational knowledge. With the data feed opened up to a larger community of observers, with a 
centralized data warehouse used to store and organize the information, and with highly autonomous data processing 
engines verifying and validating the flow of non-traditional observations, DARPA seeks to help radically shift the 
paradigm of space surveillance.  

The views, opinions and/or findings expressed are those of the author(s) and should not be interpreted as reflecting 
the official views or policies of the Department of Defense or the U.S. Government.  
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