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ABSTRACT 

 

A space operations tradecraft consisting of detect-track-characterize-catalog is insufficient for maintaining Space 

Situational Awareness (SSA) as space becomes increasingly congested and contested. In this paper, we apply 

analytical methodology from the Geospatial-Intelligence (GEOINT) community to a key challenge in SSA: 

predicting where and when a satellite may maneuver in the future. We developed a machine learning approach to 

probabilistically characterize Patterns of Life (PoL) for geosynchronous (GEO) satellites. PoL are repeatable, 

predictable behaviors that an object exhibits within a context and is driven by spatio-temporal, relational, 

environmental and physical constraints. An example of PoL are station-keeping maneuvers in GEO which become 

generally predictable as the satellite re-positions itself to account for orbital perturbations.     

 

In an earlier publication, we demonstrated the ability to probabilistically predict maneuvers of the Galaxy 15 

(NORAD ID: 28884) satellite with high confidence eight days in advance of the actual maneuver. Additionally, we 

were able to detect deviations from expected PoL within hours of the predicted maneuver [6].  This was done with a 

custom unsupervised machine learning algorithm, the Interval Similarity Model (ISM), which learns repeating 

intervals of maneuver patterns from unlabeled historical observations and then predicts future maneuvers.  In this 

paper, we introduce a supervised machine learning algorithm that works in conjunction with the ISM to produce a 

probabilistic distribution of when future maneuvers will occur. The supervised approach uses a Support Vector 

Machine (SVM) to process the orbit state whereas the ISM processes the temporal intervals between maneuvers and 

the physics-based characteristics of the maneuvers. This multiple model approach capitalizes on the mathematical 

strengths of each respective algorithm while incorporating multiple features and inputs.  Initial findings indicate that 

the combined approach can predict 70% of maneuver times within 3 days of a true maneuver time and 22% of 

maneuver times within 24 hours of a maneuver.  We have also been able to detect deviations from expected 

maneuver patterns up to a week in advance. 

1. PROBLEM 

 

Space Situational Awareness (SSA) tradecraft needs to evolve to keep pace with the increasing number of objects in 

space.  The rate of new satellites in recent years have spiked to almost exponential growth partially due to 

commercial enterprises who have decreased the cost of launches and made small satellites (small sats) readily 

available.  The LA Times reports that in 2010 there were just 25 small sats launched into space but it is estimated 

that over 200 will be launched in 2016 [4].  While many of the older small sats did not have maneuvering 

capabilities, there is a push to add propulsion to the new models for collision avoidance.  As such, within the next 

five years, we can not only expect the total number of objects (both small sats and standard satellites) in space to 

increase greatly, but we can expect the total number of maneuverable objects to increase as well.   

 

From an SSA perspective, having maneuvering capabilities on satellites is important because it can help to reduce 

conjunctions and collisions.  However, from and Indications and Warnings (I&W) perspective, maneuverable 

objects can pose a challenge because a satellite’s track cannot be reliably propagated using orbital dynamics and 

physics alone. Dynamic events, such as an unanticipated maneuver, could result in a broken track and possibly the 

introduction of an Uncorrelated Target (UCT).  Timeliness is critical for collision avoidance but unexpected 

maneuvers can result in a time-consuming process of data association to regain the satellite’s chain of custody.  

Therefore, I&W needs to be able to predict when a satellite might maneuver with enough advanced notice to execute 

a course of action (COA).   
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2. ACTIVITY ANALYIS APPROACH 

 

Predicting when a satellite will maneuver requires establishing a baseline understanding of how a satellite behaves 

under specific environmental and spatio-temporal constraints.  Within the geo-spatial intelligence (GEOINT) 

community, there has been a push to move away from analyzing where an object is and instead centering analysis 

about what the object is doing [3].  This activity analysis approach hinges on the premise that an objects locations 

and behaviors are constrained by activity that it is performing. Activities have a sequence of events and expected 

behaviors that are associated with it, which we call Patterns of Life (PoL) [2].  Once an object’s activity is inferred, 

the PoL that they are performing at the current time and future times can be probabilistically estimated.  For 

instance, satellites will perform station-keeping maneuvers to offset gravitational pull and other atmospheric 

conditions to maintain a fixed position over earth or keep from re-entering the atmosphere.  These station-keeping 

maneuvers are typically repeatable and predictable for a satellite, time of year and location.   Although there is a 

degree of variability of how PoL are executed, they still can serve to narrow the field of possible times that a 

satellite would most likely be performing maneuvers.  In this paper, we continue development on our probabilistic 

satellite maneuver prediction technology that automatically learns a satellite’s PoL to establish baseline or normal 

maneuver patterns.  Then, using these PoL we predict the next maneuver and quickly identify when deviations from 

this pattern will most likely occur.  Deviations are not necessarily threats, but they are unexpected behaviors which 

can be flagged for space operators to analyze as an early stage of a threat warning and assessment (TWA) system.  It 

is our hypothesis that an activity analysis approach can discover anomalous maneuvers sooner to increase the 

amount of time possible for a Course of Action (COA) assessment.   

 

3. MODEL DETAILS 

 

In an earlier publication [6], we introduced the Interval Similarity Model (ISM), as an approach to learn PoL.  The 

ISM is an unsupervised machine learning algorithm which effectively clusters temporal intervals based on periods of 

maneuvers and non-maneuvers.  The ISM lends itself well to the challenge of activity analysis because it models the 

context over a duration of time and re-estimates its models as new context becomes available.  It abstracts away 

from the object being modeled and rather focuses on the observational behavior being executed.  However, even 

with online re-estimation of models, it can take a little while to pick up on new PoL leading to false negative 

predictions and decreased recall.  Additionally, all unsupervised machine learning methods can learn bias in the 

data.  Although we have not experienced this phenomenon on the test data, we are aware of the high degree of noise 

and bias in operational datasets.  Therefore, in this paper, we introduce a widely-used supervised machine learning 

model, the Support Vector Machine (SVM) [5], to use in conjunction with the ISM.  We initially gravitated away 

from supervised machine learning approaches because ephemeris data and a history of known patterns is not always 

available, but is required to train a supervised algorithm.  However, our dataset did have ephemeris so we decided to 

capitalize on the powerful classification capabilities that the SVM provides as part of our multiple-model approach 

(Figure 1).  We refer to this multiple model approach as the ISM+SVM combined model and the single model 

approach as just the ISM model. The SVM processes the orbit state to whereas the ISM processes the temporal 

intervals between maneuvers and the physics-based characteristics of the maneuvers.  The probabilistic estimates of 

produced by both models are combined into a single probabilistic distribution function (PDF) that predicts the 

likelihood of maneuvers occurring at time. Details of each model follow in the subsections below. 

 

 

 Figure 1: Multiple model approach capitalizes on the mathematical strengths of each algorithm while incorporating 

multiple features and inputs 
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Interval Similarity Model (ISM) 

ISM effectively calculates the probability that a satellite is executing a pattern of maneuvers that are similar to 

historical PoL. Inspired by similarity-based clustering [1], ISM’s output is a probability density function (PDF) 

detailing the probability that a maneuver will occur with respect to time. It avoids strict clustering in favor of a 

probabilistic approach to allow for learning of patterns that can generalize with new observations.  ISM populates an 

interval similarity matrix that connects consecutive intervals strongly or weakly based on the similarity between the 

two intervals. Ultimately this method produces a matrix estimating the probability that each interval is likely to 

repeat in the future, and this allows for future prediction of maneuvers. The columns of the similarity matrix are 

generated one at a time, one per each maneuver. Whenever a new maneuver occurs, it creates a new interval 

between itself and each maneuver that has occurred previously. We are primarily interested in representing how 

likely it is that that interval will repeat in the future. An interval is likely to repeat if it is part of a pattern of 

repeating intervals, and intervals in a repeating pattern are likely to be similar. 

 

Formally, suppose we have labeled maneuvers, i through k, and intervals ij, ik, and jk.  Our approach uses Bayesian 

probability calculation to estimate likelihood that maneuvers are part of a repeating pattern.  Equation 1 computes 

the similarity of interval length where σ is the estimated standard deviation of the interval ij duration, and where 

interval ij and interval jk are the durations of those intervals.  This is the “similarity” part of the interval similarity 

model, and is the probability that maneuver k at time t would be observed when the model was given that interval ij 

and interval jk are part of the same pattern.   Next, we take this similarity indicator and fit use it to estimate how 

likely it is that that interval will repeat in the future. This estimate is a Bayesian calculation which includes the 

similarity between intervals ij and jk, the initial probability that ij would repeat, and adaptive priors.  

 

 (Equation 1)  

 

Once the probability of repeat is estimated for each interval, the next step is to use that information to predict when 

the next interval will occur. A probability distribution for when the next maneuver will occur is generated for every 

interval. It is weighted by the interval’s calculated likelihood of repeat.  All of these predicted and weighted 

probability distributions are combined into one distribution and combined with the outputs of the SVM in the next 

subsection.  

 

Support Vector Machine (SVM) 

The SVM a supervised machine learning algorithm that is typically used as a classifier to determine if observations 

belong to a specific category such as a maneuver or non-maneuver class.  Unlike the ISM, the SVM does not learn 

temporal intervals of PoL. Instead, it classifies whether an object will imminently maneuver.  The SVM uses a set of 

labelled ephemeris data to discover a set of separating rules between classes. These rules can then be applied on a set 

of new unlabeled data points such that we can classify them as points belonging to a class.  More specifically, in the 

SVM formulation any set of data points, is treated as a set of points (or feature vectors) in a multi-dimensional 

vector space.  To discover the separating rules (also known as ‘training the algorithm’) means to find a separating 

hypersurface in this multi-dimensional vector space such that all (in practice most) of the points belonging to each 

class lie on different sides of the hypersurface.  For this paper, we used ephemeris data of labeled historical 

maneuvers and orbit state as feature vectors to train the model. The SVM was trained to recognize pre-maneuver 

orbit states – that is the orbit state immediately before a maneuver. We hypothesized that since station-keeping 

maneuvers are designed to return the satellite to a desired orbit state there would be a correlation between orbit state 

and maneuvers times.  

 

Once trained, the SVM outputs a likelihood that a given orbit state was “pre-maneuver”. To use the SVM for 

prediction we first used an orbit state propagator to predict the future orbit state of the satellite. After each maneuver 

we used the propagator to calculate the orbit state for every four minutes of the next fifteen days. We then fed the 

fifteen days of predicted orbit state to the SVM to produce a probability of maneuver vs. time result. 

 

The final step was to fuse the SVM results with the ISM results. This was done by taking the probability of 

maneuver vs. time produced by both the SVM and the ISM and multiplying them together, then renormalizing the 

result.  

 

Copyright © 2016 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) – www.amostech.com



4. DATASET OVERVIEW 

Our approach was tested using the maneuver times for the Galaxy 15 (NORAD ID: 28884) geo-synchronous 

satellite, during a four-year period (2011-2015).  The dataset was synthetically generated by the Air Force Research 

Labs (AFRL) Space Vehicles Directorate and demonstrated realistic levels of collection cadence (up to six days 

without observations of object) and noise (up to 90 microradians). This data was astrometric and had orbit state.  It 

had four sources, each collecting at a different cadence and from a different earth-based location.   In this paper, we 

worked on a subset of 2013 to 2015 which contained 144 maneuvers. Galaxy 15 was selected for experimentation 

purposes for three reasons.  First, ephemeris data was freely available for use in validation and training of the SVM.  

Second, it demonstrated Patterns of Life (PoL) when performing station-keeping maneuvers.  Lastly, there were 

maneuvers which did not follow established PoL which could be used as a test case for anomalous maneuver 

detection.  Figure 2 shows PoL in the form of the duration between maneuvers.  On average, the satellite 

maneuvered every 3.5 days, however there were instances where there was as little as 1 day between maneuvers and 

as much as 19.5 days between maneuvers.  In the results section, we demonstrate the ability to alert the user to these 

anomalies in advance. 

 

 
Figure 2: The dataset contained 144 maneuvers performed by Galaxy 15 from January 2013 to May 2015.  

On average the satellite maneuvered every 3.5 days but there were instances where there was as little as 1 day 

between maneuvers and as much as 19.5 days between maneuvers.   

 

5. PREDICTION RESULTS 

We evaluated our results across five dimensions:  precision, recall, confidence, timeliness and likelihood 

performance.  Our original hypothesis was that the ISM+SVM combined model would outperform the ISM model 

across board. What we learned is that the combined model performs better under some circumstances and that the 

ISM model performs better under different circumstances.  The precision and recall scores reported below did not 

have significant differences between the two models, but there were advantages to using the combined approach. In 

general, the combined model was more confident in its predictions with a higher average probability for correct 

predictions than the ISM.  The ISM, on the other hand, predicts maneuvers further in advance than the combined 

model.  It appears that each model worked to its strengths with the ISM outperforming the combined approach on 

longer, repeating patterns whereas the combined approach was better able to handle dynamic patterns.  This is 

demonstrated in Figure 3 in which the vertical red line represents the true maneuver time, the blue line represents the 

predictions of the ISM+SVM combined models and the black line represents the predictions of the ISM model.  This 

color scheme will be consistently used throughout future figures. Frequently, the ISM and combined approaches 

were in sync (Figure 3, left), but when they were not, it indicated a lower confidence prediction and sometimes a 

departure from an established PoL (Figure 3, middle and right). 

 

Precision and Recall 

Precision and Recall are standard metrics within the classification research area.  Precision measures correctness 

while recall measures completeness.  Precision evaluates how many predicted maneuvers were correct out of the 

total number of predictions made.  Recall evaluates how many predicted maneuver times were correct out of the 

total number of true maneuver times.  A third metric, F-Score is frequently used as a single score to balance out 

precision and recall. For these dimensions, we scored based on the difference in hours between the predicted 

maneuver time and the true maneuver time.  We scored for each hour up until 24 hours and then again for 36, 48 and 

capping it at 72 hours. 
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Figure 4 shows the comparative precision for both the ISM only (blue) and ISM+SVM approaches (orange).  Along 

the x-axis is the number of hours separating the predicted maneuver time from the true maneuver time and the y-axis 

represents probability up to 1.  For precision, there was very little difference between the two models.  The 

combined model approach started off strong with a 22% precision over the ISM only approach of 19% for 

maneuvers predicted within an hour of a true maneuver.  In other words, of the total number of correct predictions 

that the combined model made, 22% of the predicted maneuver times were within 1 hour of a true maneuver time.  

The ISM rapidly caught up though and by the 24-hour mark, overtook the combined approach slightly.  For both 

approaches, over 40% of the predicted maneuver times within the same day (within hours) of the true maneuver.   

Over 70% of the predicted maneuver times were within three days of the true maneuver.  

 
 

 

 

 

On the flipside of precision is recall.  While the precision scores were fair, the recall for both ISM and ISM+SVM 

combined approaches were low.  Figure 5 shows the recall at each hour starting from a low of 13% of true total 

maneuvers being predicted within an hour of a true maneuver time by the ISM model only.  In other words, out of 

the total number of maneuvers that actually occurred, only 13% of them were predicted to occur at a time within 1 

hour of the true maneuver time. It peaks at 50% of true total maneuvers being predicted within 72 hours of a true 

maneuver time also by the ISM model.  It follows the same trend as observed in precision, where the combined 

model initially starts with stronger scores, but is overtaken by the ISM only approach by around the 24-hour mark.  

These low scores are due to the prevalence of false negatives (missed maneuvers) and the probabilistic nature of this 

approach.  Although only the most probable result is returned, the system produces a vector of maneuvers and 

associated probabilities that can be accessed by adjusting the probability thresholds.   Figure 6 shows the recall if the 

Figure 4:  Precision Results for the ISM (blue) and ISM + SVM combined models (orange) were very close.  

The combined model correctly predicted 22% of maneuver times within one hour of a true maneuver.  Both 

models achieved over 70% prediction of maneuver times within 3 days of a true maneuver. 

Figure 3:  The ISM (black line) and ISM+SVM (blue line) combined models were often in sync (left) when 

predicting maneuvers (red line) and when they were not in sync, it indicated a lower confidence prediction.   
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three most probable maneuvers are returned.   By returning the top three results, the recall increases to 24% within 1 

hour for the combined model and 81% for within 72 hours of a true maneuver.   

 

 
 

 

 

 

 

 

 
 

 

 

 

Probabilistic Confidence 

 

 

The drawback with returning additional results is that precision can take a hit because more predictions are being 

made, but not all of them are correct. We can use the probabilities themselves as a deciding factor as to whether to 

return just the most probable results or the top three most probable results for a prediction.  When the system is 

confident on its prediction, the associated probability is much higher than the second most probable result.  On 

average, when the most probable result is correct, it’s associated probability is four times higher than the most 

probable result for an incorrect prediction for both the single and multiple model approaches.  When there is a small 

delta between the top two or three probabilities, it indicates that the models are not confident in their prediction and 

the rankings between them are not reliable.  Figure 7 illustrates this effect.  On the right, is a confident, correct 

prediction has a much higher probability than the second most probable prediction.  On the left, is a less confident 

prediction where the delta between the first, second and third most probable results is small.  By returning multiple 

results only for low confidence predictions, we can boost recall without flooding the user with a large uptick in 

results and hitting to precision. This process is tunable to the user to allow them to achieve the right balance of 

precision and recall.     

 

Figure 5:  Recall results for the ISM (blue) and ISM+SVM combined (orange) models were very close.  The 

ISM slightly outperformed the combined model by correctly predicting 15% of true maneuver times to 

occur at a time within 1 hour of the true maneuver time. It peaks at 50% of true total maneuvers being 

predicted within 72 hours of a true maneuver time also by the ISM model.   

Figure 6:  Recall results for the three most probable predictions are greatly improved over the recall 

results for just the most probable prediction (Figure 4).   By returning the top three results, the recall 

increases to 24% within 1 hour for the combined model and 81% for within 72 hours of a true 

maneuver for the ISM model.   
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Figure 7:  The system produces a vector of most probable maneuver times.  For confident predictions, there is 

a large delta between the probabilities of the first and second most likely maneuvers (shown as blue 

(ISM+SVM) and black (ISM) peaks on right).  For less confident predictions, there is a small delta between 

the probabilities of the most likely maneuvers (left) and sometimes the true maneuver (red vertical line) is not 

the one predicted with the highest probability.   

 

Timeliness 

A critical component of this approach is to predict maneuvers as far in advance as reasonable.  Therefore, we 

evaluated our solution on how many days in advance can a maneuver time be correctly predicted.  On average, true 

maneuvers were correctly predicted 8.5 days in advance, with correct predictions in as little time as 1 day in advance 

and up to over 2 weeks in advance.  

 

Likelihood Performance 
Finally, we compared the ISM and ISM+SVM Combined model results for likelihood metrics. As is seen in Table 1, 

the combined model performed slightly better than the ISM on instantaneous log-loss and mean PDF and performed 

similarly in the other metrics. Log-loss is a measure the likelihood of the observed data given the prediction. In our 

case it measures the likelihood that the maneuvers would occur when then did given the predictions made by the 

algorithm. A baseline used for comparison (which modeled maneuver events as a Poisson process – meaning it 

assumed no pattern) achieved a log-loss score of 2.73. Since it is a “loss” metric, smaller values are better than 

larger ones.  Comparing the score of the ISM+SVM model (2.11) to the baseline score shows it had approximately 

86% increased performance (using the exponentiation of the difference in scores.   

 

 
 

6. PREDICTION OF ANOMALIES 

In the results section above, we presented how well we predicted future maneuvers.  However, the purpose of this 

system is not just to predict future maneuvers correctly, but also to rapidly detect when there is a deviation from 

expected PoL.  When we use the term anomalous, we are simply referring to the observation that the maneuver is 

unusual or has different characteristics from the majority of other maneuvers occurring in the dataset. As mentioned 

above and shown in Figure 2, maneuvers occurred every 3.5 days on average in this dataset, but there were periods 

when multiple maneuvers occurred in 24 hours and when only 3 maneuvers were performed over the course of 3.5 

weeks.  Figure 8 shows three instances of anomalous maneuvers in the dataset and our results over them.  On the 

left, there were two maneuvers that occurred within 24 hours.  We correctly predict the first one with a very high 

spike in probability.  We also predict the second maneuver with a low probability 7 days in advance.  For the middle 

and right charts, the models have a very strong bias to predict maneuvers during a 17- and 20-day gap in maneuvers, 

Table 1:  Metrics comparing the performance of the ISM vs. the ISM+SVM combined models. 
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respectively.  In both cases, many maneuvers are predicted in rapid succession which indicates to the user that there 

is a deviation from expected PoL within that timeframe.  In all three of these anomalous cases, the system is alerting 

the user to a change from expected behaviors.   

 
 

 

 

7. CONCLUSIONS 

Our approach has demonstrated the ability to predict 70% of maneuver times within 3 days of a true maneuver time 

and 22% of maneuver times within 24 hours of a maneuver.  We have also been able to detect deviations from 

expected maneuver patterns up to a week in advance.  Although the incorporation of the SVM did not significantly 

boost overall scores, it did provide benefits in increased confidence and increased precision of predicted maneuver 

time.   

 

This technology can be used to increase timeliness of unanticipated dynamic events to provide operators with 

maximum time to generate and execute a COA, if warranted.  The application of this work extends beyond 

maneuver prediction.  It can be incorporated into data association tasks for Uncorrelated Track (UCT) correlation.  It 

can be used to dynamically task a constellation of sensors to decrease observation gaps.  And it can be used for left-

of-event prediction of large scale, long term patterns of life. Future work is planned for validation on larger datasets, 

additional objects and model extensions. 
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