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ABSTRACT 

 
Although direct measurements of the projected areas of various Geosynchronous Earth Orbit (GEO) satellite facets 
are impossible without high-resolution imaging, estimates of the albedo-Area (aA) product lead to the possibility of 
inferring the area. Such size estimates are an integral part of its identity. We are engaged in parallel development of 
two methods for calculating aA for the body/communication antennae structures and one method for the solar panels. 
We have previously reported on the Two Facet Model (2FM) method for body aA, and here we discuss a method 
based on differences between new observations and a baseline catalog that has been constructed from the GEO 
Observations with Longitudinal Diversity Simultaneously (GOLDS) data. We report on evaluations of the 2FM and 
differential method (DM) algorithm results. We also discuss a new method of estimating solar panel aA by fitting new 
data that include specular glints. All of these measurement methods are compared to models and simulations that serve 
as a proxy for ground truth. Because of the partially directional nature of the composite Bi-directional Reflectivity 
Distribution Function (BRDF) of all bus-mounted appendages, variance of body aA results is expected to be 
significant. Short-term and long-term variance of the derived aAs will also be discussed. 
 

1. INTRODUCTION 
 

We have been conducting both observational and analysis programs for geostationary satellites. The primary databases 
that we have created and used for algorithmic development are the Geo Color Photometry Catalog (GCPC, Gregory 
and Payne) and the Geo Observations with Longitudinal Diversity Simultaneously (GOLDS, Gregory, et al). The 
observations were carried out with a variety of commercial, off-the-shelf (COTS), Raven-like sensors that are 
primarily located in continental US (CONUS) and Maui. The photometric observations were obtained through the 
Johnson (or its derivatives) filter system, with most of the data being in the B and R filters, thus providing both 
brightness and color information. Several analyses of the data have been conducted and show, among other important 
findings, that there are important diurnal, seasonal, and geographic dependences of both brightness and color. The 
research presented here is aimed at deriving effective estimates of the sizes of these objects by calculating the albedo-
Area (aA) products of the bus/payload/com antennae and solar panels based on “new data”, using the GCPC and  
GOLDS catalogs to develop our algorithms.  In general, these new methods can be used with any new ground- or 
space-based sensors and can be generalized to different filter/detector combinations. 
 

2. SATELLITE-BASED COORDINATES 
 
One of our goals has been to remove as much of the sensor location and seasonal variations as possible by carrying 
out our calculations in a coordinate system that is based on the Resident Space Object (RSO) itself.  The manner in 
which these ground-based geographic and seasonal effects contribute to observed brightness is determined from the 
calculation of several body frame angles. 
 
In defining the RSO reference frame, it is assumed the Geo object is in a nadir-aligned stabilization (i.e., the normal 
of the nadir-facing facet is anti-parallel to the vector that points from Earth center to the satellite). Fig. 1 shows the 
geometry of the RSO coordinate frame. The surface represents the nadir-pointing facet of the object, and we identify 
the surface normal n with the body axis zB. For a satellite in orbit, the direction of its velocity vector, |v|, lies in the 
orbital plane, as does n, and so the cross product n x |v| is normal to n and points to orbital South. We identify this 
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vector as yB. If the object is in a perfectly circular orbit (e ≡ 0), the velocity vector v would complete the triad, and the 
body frame would be complete; however, for e ≠ 0, the third reference frame axis, xB, is defined by yB x zB ≡ (n x |v|) 
x n. 
 

 
Fig. 1 Definition of RSO coordinate frame 

Fig. 2 shows the four body angles that will be used in the work described herein; these are the Sun zenith and azimuthal 
angles (θs, Φs, respectively) and observer zenith and azimuthal angles (θo, Φo, respectively). Zenith angles are the 
separations between the surface normal and the vectors that point to the Sun or observer. Azimuthal angles are 
measured between one of the axes (xB, in the figure) and the projection of the Sun, or observer, vector onto the facet 
surface. The sign of these angles (i.e., the direction of rotation from the xB axis) must be taken into account. For our 
purposes, one only needs to calculate |ΔΦo| = |Φs- Φo|, the absolute angular difference between the projections of the 
Sun and observer vectors. 
 

 
Fig. 2 Definition of body angles in RSO coordinate frame 

3. THE TWO FACET MODEL (2FM) METHOD FOR BODY aA 
 
The measured brightness of an RSO can be decomposed into the contribution due to the RSO solar panel and the 
contribution due to the RSO bus. Following the assumptions that the solar panel tracks the sun (possibly with an offset) 
and that the bus tracks nadir, the dynamics of a RSO can be approximated with a two-facet model. One facet in the 
model represents the RSO solar panel and tracks the sun. This facet is assumed to be approximately planar and is 
assumed to have both specular and Lambertian reflective properties. As the solar panel is assumed to be planar, it is 
decomposed into a singular albedo-Area product. The second facet of the model represents the RSO bus. The bus is 
assumed to be nadir pointing and is a complex three-dimensional shape. The bus is assumed to exhibit primarily 
Lambertian reflectance but is further assumed to have reflective properties that are pose-dependent relative to the sun 
and observer. Due to this pose-dependence, the RSO bus is thus decomposed into a number of different albedo-Area 
products to accommodate differential albedo-Areas under different observation conditions. 
 
At present the method for solving for the various albedo-Area products of the bus is reviewed. A method for integrating 
the various albeda-Area products into a single average albedo-Area product for the RSO bus is additionally discussed. 
The method for solving for the albedo-Area products of the RSO bus leverages the assumed Lambertian reflectance 
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of the bus to represent the albedo-Area products in terms of a system of linear equations which can be efficiently 
solved. In contrast to the bus, the specular nature of the solar panel’s reflectance requires the reflectance be modeled 
in terms of a function that has high reflective properties near the point of ideal specular reflection and low reflective 
properties further away. The specular nature of the Solar Panel’s reflectance requires the usage of a non-linear shape 
parameter. Due to this introduced non-linearity, the current method cannot be applied to the solar panel. An alternative 
method for computing the albedo-Area of the solar panel is later discussed in Section 6. As such, the current discussion 
concerns the decomposition of the body contribution to a signature into a number of pose-dependent albedo-Areas. 
 
The RSO bus is modeled with a Lambertian basis function. That is, the projected albedo-Areo of the RSO bus is 
proportional to cos(𝜃𝜃𝑠𝑠) cos (𝜃𝜃𝑜𝑜) where 𝜃𝜃𝑠𝑠 is the angle between the RSO-nadir vectors and the sun, and 𝜃𝜃𝑜𝑜 is the angle 
between the RSO-nadir vector and the observer. As the observed brightness of the bus is assumed to be pose 
dependent, the bus is modeled with multiple basis functions multiplied by participation factors 𝑏𝑏𝑖𝑖(𝛾𝛾) which are 
functions of the orbital angle 𝛾𝛾. The particular choices of participation factors 𝑏𝑏𝑖𝑖 are somewhat arbitrary; however, 
here they are assumed to be piecewise continuous linear functions. For the bus, then, the total projected albedo-Area 
𝑎𝑎𝐴𝐴𝐵𝐵𝐵𝐵𝐵𝐵�  is a sum of the projected albedo-Areas across all orbital angle ranges: 

 
 

𝑎𝑎𝐴𝐴𝐵𝐵𝐵𝐵𝐵𝐵� =  �𝑎𝑎𝐴𝐴𝑖𝑖 cos(𝜃𝜃𝑠𝑠) cos (
𝑘𝑘

𝑖𝑖=1

𝜃𝜃𝑜𝑜)𝑏𝑏𝑖𝑖(𝛾𝛾) 
( 1 ) 

 
 𝑎𝑎𝐴𝐴𝑖𝑖 is the in-orbital angle albedo-Area of the RSO bus, and 𝑘𝑘 is the total number of orbital angle bins. The above 
equation is linear in terms of unknown coefficients 𝑎𝑎𝐴𝐴𝑖𝑖. Thus the parameters can be solved for by constructing a linear 
system of equations: 

 
 𝑋𝑋𝑋𝑋 = 𝑌𝑌 ( 2 ) 

 𝑋𝑋 is a design matrix of basis functions per orbit angle bin: 
 

 

𝑋𝑋 =  �

cos(𝜃𝜃𝑖𝑖1) cos(𝜃𝜃𝑜𝑜1)𝑏𝑏1(𝛾𝛾1) cos(𝜃𝜃𝑖𝑖1) cos(𝜃𝜃𝑜𝑜1)𝑏𝑏2(𝛾𝛾1) ⋯ cos(𝜃𝜃𝑖𝑖1) cos(𝜃𝜃𝑜𝑜1)𝑏𝑏𝑘𝑘(𝛾𝛾1)
cos(𝜃𝜃𝑖𝑖2) cos(𝜃𝜃𝑜𝑜2)𝑏𝑏1(𝛾𝛾2) cos(𝜃𝜃𝑖𝑖2) cos(𝜃𝜃𝑜𝑜2)𝑏𝑏2(𝛾𝛾2) ⋯ cos(𝜃𝜃𝑖𝑖2) cos(𝜃𝜃𝑜𝑜2)𝑏𝑏𝑘𝑘(𝛾𝛾2)

⋮ ⋮ ⋱ ⋯
cos(𝜃𝜃𝑖𝑖𝑖𝑖) cos(𝜃𝜃𝑜𝑜𝑜𝑜)𝑏𝑏1(𝛾𝛾𝑛𝑛) cos(𝜃𝜃𝑖𝑖𝑖𝑖) cos(𝜃𝜃𝑜𝑜𝑜𝑜)𝑏𝑏𝑛𝑛(𝛾𝛾𝑛𝑛) ⋯ cos(𝜃𝜃𝑖𝑖𝑖𝑖) cos(𝜃𝜃𝑜𝑜𝑜𝑜)𝑏𝑏𝑘𝑘(𝛾𝛾𝑛𝑛)

� 

( 3 ) 

 
𝛽𝛽 is a column vector of the unknown 𝑎𝑎𝐴𝐴𝑖𝑖, and 𝑌𝑌 is a column vector of observed projected albedo-Areas. The ordinary 
least squares solution can then be computed as 𝛽𝛽 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑋𝑋)𝑌𝑌 where 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 represents the Moore-Penrose 
pseudoinverse 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑋𝑋) = (𝑋𝑋𝑇𝑇𝑋𝑋)−1𝑋𝑋𝑇𝑇, giving the desired result.    
 
Now that we have shown how to compute a vector of pose dependent albedo-Areas, we will discuss how to convert 
this vector into a singular albedo-Area value to represent the satellite as a whole.  We wish to obtain a single aA value 
because it is easier for an analyst to work with one value rather than a vector of values.  It is also easier to perform 
change detection using one aA value rather than the entire vector.  
 
The method we use is as follows: 
 
We only use the lambertian observations with 𝛾𝛾(orbit angle) values in [-75, 75] to calculate the body diffuse aA. There 
are 11 orbit angle bins, each spanning 15 (𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵) degrees measured in 𝛾𝛾.  From the previous steps, we obtain 𝛽𝛽 
which holds 11 aA values. 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 15 

𝑛𝑛 = # 𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 

< 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 >𝑖𝑖= 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑡𝑡ℎ𝑒𝑒 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑜𝑜 < 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 >  𝑓𝑓𝑓𝑓𝑓𝑓 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑖𝑖 

𝑤𝑤𝑖𝑖𝑖𝑖 = ��
𝛾𝛾𝑖𝑖

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
�� − �

𝛾𝛾𝑖𝑖
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

� 

𝑤𝑤𝑖𝑖𝑖𝑖 = ��
𝛾𝛾𝑖𝑖

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
�� − �

𝛾𝛾𝑖𝑖
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

� 
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𝑎𝑎𝐴𝐴𝑖𝑖𝑖𝑖 = 𝛽𝛽 �� 𝛾𝛾𝑖𝑖
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵��

  

𝑎𝑎𝐴𝐴𝑖𝑖𝑖𝑖 = 𝛽𝛽 �� 𝛾𝛾𝑖𝑖
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵��

  

 
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑎𝑎𝑎𝑎 =  

∑ 𝑤𝑤𝑖𝑖𝑖𝑖 ∗ 𝑎𝑎𝐴𝐴𝑖𝑖𝑖𝑖 + 𝑤𝑤𝑖𝑖𝑖𝑖 ∗ 𝑎𝑎𝐴𝐴𝑖𝑖𝑖𝑖𝑛𝑛
𝑖𝑖=1

∑ cos�𝜃𝜃𝑠𝑠𝑖𝑖� ∗ cos (𝜃𝜃𝑜𝑜𝑖𝑖)
𝑛𝑛
𝑖𝑖=1

 
( 4 ) 

 
4. THE DIFFERENTIAL METHOD (DM) FOR BODY aA 

 
Many of our methods treat a signature as the primary analysis source. In our usage, “signature” refers to a plot of 
brightness or color index vs. the longitudinal component of the total sensor/RSO/sun Phase Angle (LPA or just PA).  
PA = 0o is defined when the object lies directly opposite the sun in its diurnal motion. Hence negative PA values occur 
earlier in the night, and positive PA values occur later. An experienced analyst can qualitatively extract a number of 
important features from a signature, and we are continuing development to automate these kinds of analyses.  For 
example, a signature can provide information about the offset of the solar panels from their nominal direction of 
pointing at the sun.  It can also often provide the number and placement of large communication (com) antennae. 
Since different manufacturer/bus types tend to have self-consistent offsets and large structures, signature types are 
correlated with manufacturer/bus types. 
 
As examples, we present Fig. 3 and Fig. 4, which illustrate simple and complex signature types, respectively.  In both 
plots, we use the range corrected (36,000 km) Johnson R band magnitudes (i.e., Rabs, to indicate brightness).  We note 
that all of the DM analysis presented here will use Rabs. The reason for concentrating on the R band observations is 
that we are trying to analyze the portions of the RSO that do not include the solar panels, which are brightest in the 
blue. Especially near glint season, signatures are dominated by the central PA regions where the solar panels are 
brightest.  Note that the DTV-10 (bus type Boeing Space Systems 702) signature in Fig. 3 shows only one brightness 
peak that is located near PA = 0o and has monotonically decreasing brightness on either side. In contrast, Fig. 4 presents 
the signature of SES-1 (bus type STAR 2), and one can see shoulders, which are located between 30o and 40o on either 
side of the central peak, which, in this case, is offset by about 8o from the sun (i.e., the solar panel normal is offset by 
about 4o from the direction to the sun). At some times during the year, as seasonal illumination conditions vary, these 
shoulders turn into broad peaks. Our interpretation of these shoulders and side peaks is that they arise from diffuse 
reflections from large com antennae, with the peak at negative PA arising from an antenna located on the eastern or 
leading side of the satellite. 
 

 
Fig. 3 Example signature – DTV-10, showing a single peak 
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Fig. 4 Example signature – SES-1, showing a peak with two shoulders 

We have pointed out the degree of complexity of signatures because this is an important consideration in applying the 
DM method.  We use the brightness information in the range abs(PA) > 40o in the body aA calculation.  In the RSO-
based coordinate system discussed in Section 2, this is also approximately the same range in ΔΦ at these angles that 
lie far from 0o. To emphasize these points, note that the brightness in the PA > 40o range is higher for the complex-
signature satellites than that of the simple-signature satellites, and we allow for this natural difference in our DM 
method. 
 
The Differential Method is based on determination of the mean difference in magnitude between the new observations 
of a satellite and a baseline catalog for that satellite’s signature type.  These catalogs were built up from observations 
taken during the GOLDS project, in which multi-site observations were made in 2013.  They feature many exposures 
per night in B and R.  We have constructed four baseline catalogs—that of the Single Peak, the Double Peak (Left), 
the Double Peak (Right), and the Triple Peak objects.  Double Peak (Left) signatures have a single com antenna whose 
corresponding brightness peak is usually somewhat lower than the central peak, which is  generally caused by specular 
or near specular reflections from the solar panels and are located typically in the range -10o < PA < +10o.  The lower, 
broad side peaks tend to be located in the range 30o < abs(PA) < 40o. The Double Peak (Right) signatures are essentially 
mirror reflection of the Double Peak (Left) signatures. The Triple Peak signatures show evidence for peaks at both 
negative and positive PAs. 
 
Fig. 5 presents the magnitude and body-referenced angle information found in the baseline catalogs.  For illustrative 
purposes, we have added all of the catalogs together. There are two main groupings in the ΔΦ coordinate, and the 
noticeable tracks that lie at a nearly constant value of ΔΦ but move from front left to back right in θs are the trajectories 
that the data takes when observations are taken many times throughout a single night. The two groupings (roughly 
half positive and half negative) in ΔΦ represent the positive and negative portions of the Phase Angle distribution, 
i.e., those observations made prior to the moment of 0o PA (the positive ΔΦ values) and those made after 0o PA. 
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Fig. 5 Three-D plot of the combined baseline catalogs 

Although the DM method is based on catalogs built up from moderate-cadence observations taken during a series of 
whole nights, any number of new observations can be used to estimate aADM.  Conceptually, one simply plots the new 
θs, ΔΦ, and Rabs observations onto a plot similar to that of Fig. 5 and then finds the mean distance in magnitude between 
the new data point and the mean Rabs of the nearest catalog neighbors.  This magnitude difference is converted into a 
flux ratio, which is proportional to the aA ratio between the newly observed satellite and the mean aA of the satellites 
used to construct the catalog. The equation that we use is  aA = aAmean,i * (0.4*10^(-∆Rabs)).  In this equation, 
the subscripts “mean” and “i” indicate the mean aA value adopted for the ith of the four catalogs, and ∆Rabs is the 
average difference between the new data and the catalog mean.  
 
An example of the process is shown in Fig. 6 It illustrates most of the features of the DM method. The red plus sign 
markers indicate the distribution of the new data in the body-referenced coordinate system for the satellite AMC-18 
on the night of Feb. 5, 2013 as seen from the Kirtland Raven.  The blue circle markers indicate the mean value of the 
N = 25 nearest neighbors that are found in the catalog (neighbors in the θs and ΔΦ coordinates).  The new estimate of 
aADM is directly calculated from the average value of the Rabs difference between the catalog means and the new data. 
 

 
Fig. 6 Example plot of Baseline Catalog (black), Mean of Catalog (blue circles), and New Data (red plus signs) 
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5. COMPARISONS BETWEEN 2FM AND DM METHODS FOR BODY aA 
 
One problem in developing algorithms that calculate aA is there generally does not exist ground truth for this quantity.  
One can examine photographs and artists’ conceptions in order to estimate the projected area of components when 
they are in orbit and then guess the albedo of the materials that appear to be important contributors of the total 
reflection.  However, this is not very satisfactory, especially given the rather wide range of albedos for tested materials. 
 
Given the lack of ground truth, we primarily rely on comparisons between our two methods in order to perform a low 
level of verification and validation.  In addition to the fact that the two methods generally agree well, we add in the 
facts that the calculated values agree well with comparisons to web illustrations and also that the disagreements, when 
they do exist, agree with an analysis of the physical nature of the satellites’ major components. 
 
Table 1 presents our comparisons for the eight primary target satellites in the GOLDS1 observing campaign, which 
took place in the late winter and spring of 2013.  Column 1 lists the common satellite name (or obvious abbreviation).  
Column 2 provides comments about the complexity and structure of the photometric signatures for each satellite.  The 
single peak and triple peak objects have been discussed above.  However, the two satellites, AMC-15 and AMC-18, 
have signatures that are of a higher complexity.  During the portion of the observing campaign that took place prior 
to the Vernal Equinox, they each showed Double (Left) signatures, while after the equinox, they had Double (Right) 
signatures.  This behavior is quite unusual in our experience and suggests that the com antennae on these two satellites 
might be mounted in planes that are tilted with respect to the Celestial Equator.  Column 3 lists our best understanding 
of the manufacturer/bus type. The A2100 buses and derivatives are made by Lockheed Martin.  The SS/L objects are 
made by Space Systems Loral. The BSS satellites are made by Boeing Space Systems, and the STAR 2 is made by 
Orbital Sciences Corp. Columns 4 and 5 list the estimated aA values resulting from the DM and 2FM methods, 
respectively.  The quoted uncertainties are standard error of the mean.  All quantities are in units of m2. 
 

Table 1 Comparison Between DM and 2FM Body aA Methods 

Satellite Signature Type Bus Type aA DM (m2) aA 2FM (m2) 
AMC-1 Single Peak A2100A 1.8±0.2 1.8±0.2 
AMC-15 Complex A2100AXS 1.6±0.3 9.0±1.7 
AMC-18 Complex A2100A 9.3±1.7 19.1±1.7 
DTV-8 Single Peak SS/L 1300 2.6±0.5 1.6±0.1 
DTV-9S Trip Peak SS/L 1300 1.9±0.4 4.1±0.5 
DTV-10 Single Peak BSS-702 4.2±0.6 2.2±0.1 
SES-1 Triple Peak Star-2.4 10.3±2.3 11.1±1.2 
SPACEWAY-1 Single Peak  BSS-702 2.0±0.6 2.0±0.2 

 
We note the four Single Peak satellites show a high level of agreement between the two body aA methods of 
calculation.  However, the four satellites with complex signatures show much less agreement, and we see the 2FM 
method produces higher values of aA than the DM method does for each of these four RSOs. 
 

6. THE SOLAR PANEL (SP) METHOD 
 
Here we discuss and derive our method for the calculation of the Solar Panel albedo-Area (SPaA). This section is 
broken up into a preliminary and an algorithm section.  In the preliminary section, we discuss the geometry of the 
problem and give details on various sub-algorithms needed for calculation for SPaA. In the algorithm section, we 
discuss the step-by-step process from taking a light signature and returning a value for SPaA. 
 

6.1 THE GEOMETRY OF THE SOLAR PANEL AND ITS ALBEDO 
 

We must consider the geometry involved with the solar panel and the incident light relative to the observer.  Refer to 
Fig. 1 for the geometry discussed. We denote the solar panel’s normal vector as 𝑁𝑁�.  From this vector, the angle towards 
the Sun’s incident light is labeled 𝜃𝜃𝑖𝑖, and the angle towards the observer’s location is denoted 𝜃𝜃𝑟𝑟.  The angles 𝜙𝜙𝑖𝑖 and 
𝜙𝜙𝑟𝑟 are defined as the angles, in the panel’s plane, going from the 𝑥𝑥 − 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 to the projection of incident and reflected 
light into the panel’s plane.  Under the assumption that the reflected light will attain a rotational symmetry, we assume 
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that 𝜙𝜙𝑖𝑖 = 180°. This is the same geometric convention used by [3]. Note that we use 𝜃𝜃𝑖𝑖 here in reference to the incident 
light to the panel’s surface whereas in the body-frame we use 𝜃𝜃𝑠𝑠. 

 
Fig. 7 The angles and vectors of the Solar Panel 

The bidirectional reflectance distribution function (BRDF) is defined to be the function 𝑓𝑓(𝜃𝜃𝑖𝑖 ,𝜃𝜃𝑟𝑟 ,𝜙𝜙𝑖𝑖 ,𝜙𝜙𝑟𝑟) which 
describes the scattering of radiance, reflected off of the panel’s surface, in all directions above the hemisphere. This 
is written as:  

 
𝑓𝑓(𝜃𝜃𝑖𝑖 ,𝜃𝜃𝑟𝑟 ,𝜙𝜙𝑖𝑖 ,𝜙𝜙𝑟𝑟) =

𝑑𝑑𝐿𝐿𝑟𝑟(𝜃𝜃𝑟𝑟 ,𝜙𝜙𝑟𝑟)
𝑑𝑑𝑑𝑑(𝜃𝜃𝑖𝑖 ,𝜙𝜙𝑖𝑖)

 

 

( 5 ) 

where 𝐿𝐿𝑟𝑟 is the spectral radiance of the reflected light, and 𝐸𝐸 is the spectral irradiance. The albedo is the total (unitless) 
ratio of reflected to incident light off of a given surface throughout the entire hemisphere of possible reflections.  This 
quantity, denoted 𝑎𝑎, is defined as:  

 
𝑎𝑎 = � � 𝑓𝑓(𝜃𝜃𝑖𝑖 ,𝜃𝜃𝑟𝑟 ,𝜙𝜙𝑖𝑖 ,𝜙𝜙𝑟𝑟) cos(𝜃𝜃𝑟𝑟) sin(𝜃𝜃𝑟𝑟)𝑑𝑑𝜃𝜃𝑟𝑟 𝑑𝑑𝜙𝜙𝑟𝑟

𝜋𝜋
2

0

2𝜋𝜋

0
. 

 

( 6 ) 

This formula, as discussed in [3] and [2], can be derived as follows: let 𝜔𝜔 be the solid angle of reflection, and 𝑑𝑑𝑑𝑑 be 
the element of the solid angle, formed by the panel reflection in the unit-hemisphere. By definition this value is a 
constant: 

 

𝜔𝜔 = � 𝑑𝑑𝑑𝑑
 

ℎ𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑒𝑒𝑒𝑒𝑒𝑒

= � � sin(𝜃𝜃𝑟𝑟)𝑑𝑑𝜃𝜃𝑟𝑟𝑑𝑑𝜙𝜙𝑟𝑟

𝜋𝜋
2

0

2𝜋𝜋

0

. 

 

( 7 ) 

As we expect a varying albedo, we instead consider the projected solid angle, denoted Ω, and the element of projected 
solid angle 𝑑𝑑Ω, defined as: 

 

Ω = � 𝑑𝑑Ω
 

ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑒𝑒𝑒𝑒𝑒𝑒

= � cos (𝜃𝜃𝑟𝑟)𝑑𝑑ω
 

ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑒𝑒𝑒𝑒𝑒𝑒

= � � cos (𝜃𝜃𝑟𝑟)sin(𝜃𝜃𝑟𝑟)𝑑𝑑𝜃𝜃𝑟𝑟𝑑𝑑𝜙𝜙𝑟𝑟

𝜋𝜋
2

0

2𝜋𝜋

0

. 

 

( 8 ) 

Thus, our total reflectance, using a BRDF under the consideration of projected solid angles, is given by: 
 

 
𝑎𝑎 = � 𝑓𝑓(𝜃𝜃𝑖𝑖 ,𝜃𝜃𝑟𝑟 ,𝜙𝜙𝑖𝑖 ,𝜙𝜙𝑟𝑟)

 

ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑒𝑒𝑒𝑒𝑒𝑒

𝑑𝑑Ω = � � 𝑓𝑓(𝜃𝜃𝑖𝑖 ,𝜃𝜃𝑟𝑟 ,𝜙𝜙𝑖𝑖 ,𝜙𝜙𝑟𝑟) cos(𝜃𝜃𝑟𝑟) sin(𝜃𝜃𝑟𝑟)𝑑𝑑𝜃𝜃𝑟𝑟 𝑑𝑑𝜙𝜙𝑟𝑟

𝜋𝜋
2

0

2𝜋𝜋

0
. 

( 9 ) 
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6.2 CONVERSION TO OFF-REFLECTION ANGLE 
 

Another angle used to simplify the notation is the glint angle 𝜃𝜃∗ or off-reflection angle. This is the angle from the 
observer to the reflection of the incident light across the panel’s normal.  This angle can be written as: 
 

 𝜃𝜃∗ = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[cos(𝜃𝜃𝑖𝑖) cos(𝜃𝜃𝑟𝑟)− sin(𝜃𝜃𝑖𝑖) sin(𝜃𝜃𝑟𝑟) cos(𝜙𝜙𝑖𝑖 − 𝜙𝜙𝑟𝑟)]. ( 10 ) 

The derivation of the off-reflection angle formula is as follows: Assuming that all vectors are of unit length, let Θ𝑖𝑖 and 
Θ𝑟𝑟 be the sun and observer vectors, as in Fig. 7. We can write these vectors, along with the solar panel normal vector, 
𝑁𝑁�, in terms of their components with respect to the panel’s plane. We assume the 𝑦𝑦 direction is given by the orbital 
north vector, 𝑂𝑂𝑂𝑂𝑂𝑂� , and the 𝑥𝑥 direction is given by 𝑂𝑂𝑂𝑂𝑂𝑂� × 𝑁𝑁�.  These vectors can be now be written as: 
 

 
 Θ𝑖𝑖 = �

cos(𝜙𝜙𝑖𝑖) sin (𝜃𝜃𝑖𝑖)
sin(𝜙𝜙𝑖𝑖) sin(𝜃𝜃𝑖𝑖)

cos(𝜃𝜃𝑖𝑖)
�,   Θ𝑟𝑟 = �

cos(𝜙𝜙𝑟𝑟) sin (𝜃𝜃𝑟𝑟)
sin(𝜙𝜙𝑟𝑟) sin(𝜃𝜃𝑟𝑟)

cos(𝜃𝜃𝑟𝑟)
� ,   𝑎𝑎𝑎𝑎𝑎𝑎   𝑁𝑁� = �

0
0
1
�. 

( 11 ) 

 
We can now calculate the panel specular vector (the true reflection vector), 𝑃𝑃�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, as:  
 

 𝑃𝑃�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 2𝑁𝑁��Θ𝑖𝑖 ∙ 𝑁𝑁�� − Θ𝑖𝑖 

= 2�
0
0
1
�� �

cos(𝜙𝜙𝑖𝑖) sin (𝜃𝜃𝑖𝑖)
sin(𝜙𝜙𝑖𝑖) sin(𝜃𝜃𝑖𝑖)

cos(𝜃𝜃𝑖𝑖)
� ∙ �

0
0
1
��−�

cos(𝜙𝜙𝑖𝑖) sin (𝜃𝜃𝑖𝑖)
sin(𝜙𝜙𝑖𝑖) sin(𝜃𝜃𝑖𝑖)

cos(𝜃𝜃𝑖𝑖)
� 

= �
0
0
2
� cos(𝜃𝜃𝑖𝑖)− �

cos(𝜙𝜙𝑖𝑖) sin (𝜃𝜃𝑖𝑖)
sin(𝜙𝜙𝑖𝑖) sin(𝜃𝜃𝑖𝑖)

cos(𝜃𝜃𝑖𝑖)
� 

= �
− cos(𝜙𝜙𝑖𝑖) sin (𝜃𝜃𝑖𝑖)
− sin(𝜙𝜙𝑖𝑖) sin(𝜃𝜃𝑖𝑖)

cos(𝜃𝜃𝑖𝑖)
�. 

 

( 12 ) 

Next, by definition, the off-reflection angle is given by the dot product of the specular and observer vectors:  
 

 cos(𝜃𝜃∗) = 𝑃𝑃�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∙ Θ𝑟𝑟  
 

= �
− cos(𝜙𝜙𝑖𝑖) sin (𝜃𝜃𝑖𝑖)
− sin(𝜙𝜙𝑖𝑖) sin(𝜃𝜃𝑖𝑖)

cos(𝜃𝜃𝑖𝑖)
� ∙ �

cos(𝜙𝜙𝑟𝑟) sin (𝜃𝜃𝑟𝑟)
sin(𝜙𝜙𝑟𝑟) sin(𝜃𝜃𝑟𝑟)

cos(𝜃𝜃𝑟𝑟)
� 

 

= �
− cos(𝜙𝜙𝑖𝑖) sin (𝜃𝜃𝑖𝑖)
− sin(𝜙𝜙𝑖𝑖) sin(𝜃𝜃𝑖𝑖)

cos(𝜃𝜃𝑖𝑖)
� ∙ �

cos(𝜙𝜙𝑟𝑟) sin (𝜃𝜃𝑟𝑟)
sin(𝜙𝜙𝑟𝑟) sin(𝜃𝜃𝑟𝑟)

cos(𝜃𝜃𝑟𝑟)
� 

 
= − cos(𝜙𝜙𝑖𝑖) sin(𝜃𝜃𝑖𝑖) cos(𝜙𝜙𝑟𝑟) sin(𝜃𝜃𝑟𝑟)− sin(𝜙𝜙𝑖𝑖) sin(𝜃𝜃𝑖𝑖) sin(𝜙𝜙𝑟𝑟) sin(𝜃𝜃𝑟𝑟)

+ cos(𝜃𝜃𝑖𝑖) cos(𝜃𝜃𝑟𝑟) 
 

= −(sin(𝜃𝜃𝑖𝑖) sin(𝜃𝜃𝑟𝑟))(cos(𝜙𝜙𝑖𝑖) cos(𝜙𝜙𝑟𝑟) + sin(𝜙𝜙𝑖𝑖) sin(𝜙𝜙𝑟𝑟)) + cos(𝜃𝜃𝑖𝑖) cos(𝜃𝜃𝑟𝑟). 

( 13 ) 

 
Lastly, we use the following trigonometric identity to get to the required form of 𝜃𝜃∗: 
 

 cos(𝐴𝐴 − 𝐵𝐵) = cos(𝐴𝐴) cos(𝐵𝐵) + sin(𝐴𝐴) sin (𝐵𝐵) ( 14 ) 
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Applying the identity in Equation ( 14 ) to Equation ( 13 ), we get: 
 

 cos(𝜃𝜃∗) = − sin(𝜃𝜃𝑖𝑖) sin(𝜃𝜃𝑟𝑟) cos(ϕi − ϕr) + cos(𝜃𝜃𝑖𝑖) cos(𝜃𝜃𝑟𝑟). ( 15 ) 

After re-arranging terms and applying the inverse cosine to both sides, we arrive at the claimed formula for off-
reflection angle: 
 

 𝜃𝜃∗ = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴[cos(𝜃𝜃𝑖𝑖) cos(𝜃𝜃𝑟𝑟)− sin(𝜃𝜃𝑖𝑖) sin(𝜃𝜃𝑟𝑟) cos(𝜙𝜙𝑖𝑖 − 𝜙𝜙𝑟𝑟)]. ( 16 ) 

 
6.3 CALCULATING OFF-REFLECTION ANGLE FROM A SOLAR PANEL OFFSET ANGLE 

 
Another formulation of the off-reflection angle which is needed comes from simple geometry. We assume that our 
signature data will be collected in terms of longitudinal phase angle, and if we also know the solar panel’s correct 
offset angle, then we can convert our signature into brightness versus off-reflection angle (from phase angle).  To see 
this, we define the off-reflection angle as the angle between the panel’s specular reflection vector, 𝑃𝑃�⃗𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, and the panel 
to observer vector, 𝑅𝑅𝑅𝑅�����⃗  (RSO to observer vector). Assuming these vectors are normalized, then, an equivalent form of 
( 16 ) is: 

 𝜃𝜃∗ = cos−1�𝑃𝑃�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  ̇𝑅𝑅𝑅𝑅� �. ( 17 ) 

 𝑅𝑅𝑅𝑅�����⃗  is the difference between the position vectors of the observer and satellite with respect to the Earth-centered 
frame, the panel’s specular reflection vector can be calculated by: 
 

 𝑃𝑃�⃗𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑁𝑁� ∗ 2 ∗ �𝑅𝑅𝑅𝑅�����⃗   ̇𝑁𝑁��− 𝑅𝑅𝑅𝑅�����⃗ . ( 18 ) 

The 𝑅𝑅𝑅𝑅�����⃗  vector is the difference between the position vectors of the sun and satellite, and the panel’s normal vector can 
be found by fixing some solar panel offset angle, 𝑆𝑆𝑆𝑆𝑆𝑆, and calculating: 
 

 𝑁𝑁� = cos(𝑆𝑆𝑆𝑆𝑆𝑆) ∗ �� 𝑂𝑂𝑂𝑂𝑂𝑂� × 𝑅𝑅𝑅𝑅�����⃗ � × 𝑂𝑂𝑂𝑂𝑂𝑂� �+ sin(𝑆𝑆𝑆𝑆𝑆𝑆) ∗ �𝑂𝑂𝑂𝑂𝑂𝑂� × 𝑅𝑅𝑅𝑅�����⃗ �. ( 19 ) 

Hence, if we have the solar panel’s offset angle, then Equations ( 19 ), ( 18 ), and ( 17 ), in that order, give us a 
conversion from phase angle to off-reflection angle. 
 

6.4 DERIVATION OF SOLAR PANEL aA 
 

The solar panel albedo-Area is defined as the product of its albedo and its area, thus: 
 

 (𝑎𝑎𝑎𝑎)𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑎𝑎 𝐴𝐴 ( 20 ) 

 
with 𝑎𝑎 being the albedo and 𝐴𝐴 the area of the panel in 𝑚𝑚2.  Let 𝑔𝑔(𝜃𝜃∗) be the “shape” of the BRDF. We assume the 
panel’s BRDF to have a Gaussian shape, as a function of off-reflection angle, given by:  
 

 𝑔𝑔(𝜃𝜃∗) = 𝑒𝑒−2sin2(𝜃𝜃∗)/𝜎𝜎2 ( 21 ) 

 
where 𝜎𝜎 is the width parameter of the curve and must be determined a priori (i.e., by a fitting procedure). To be used 
as the BRDF’s shape, 𝑔𝑔(𝜃𝜃∗) must be normalized as to allow the BRDF to give the distribution of albedo over the 
hemisphere of possible observer locations.  To achieve this, we define a normalizing factor 𝐺𝐺𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛.  This constant will 
be the value by which the volume under 𝑔𝑔(𝜃𝜃∗) is normalized to 1 over the hemisphere: 
 

 𝐺𝐺𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =
1

∫ ∫ 𝑔𝑔(𝜃𝜃∗) cos(𝜃𝜃𝑟𝑟) sin(𝜃𝜃𝑟𝑟)𝑑𝑑𝜃𝜃𝑟𝑟 𝑑𝑑𝜙𝜙𝑟𝑟
𝜋𝜋
2
0

2𝜋𝜋
0

. ( 22 ) 
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This allows for us to define our Gaussian BRDF by: 
 

 𝑓𝑓(𝜃𝜃∗) = 𝑎𝑎 𝐺𝐺𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛  𝑔𝑔(𝜃𝜃∗). ( 23 ) 

Next we consider the model we are using for the panel’s reflection, which consists of both specular and diffuse parts 
as per [1]. We estimate that the solar panel radiant intensity, measured in 𝑊𝑊

𝑠𝑠𝑠𝑠
, would be composed of a primarily specular 

pattern (at least 80%), while the remaining intensity would be due to a diffuse contribution (less than 20%). This 
resulted in our model: 
 

 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝜃𝜃∗,𝜃𝜃𝑖𝑖 ,𝜃𝜃𝑟𝑟) = 𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 
 

≈ 0.8 𝐸𝐸 𝐴𝐴 𝑓𝑓(𝜃𝜃∗) + 0.2 𝐸𝐸 𝑎𝑎 𝐴𝐴 cos(𝜃𝜃𝑖𝑖) cos(𝜃𝜃𝑟𝑟)/𝜋𝜋 

( 24 ) 

 
where 𝐸𝐸 is the in-band Solar irradiance (𝐸𝐸 ≈ 642 𝑊𝑊

𝑚𝑚2 for open band).  Since we are using inverse modeling, we attempt 
to capture the specular component of the solar panel in its entirety. This method results in the weighting constants 
being modified so that the panel has an entirely specular nature.  That is, our model in ( 23 ) is simplified to become: 
 

 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝜃𝜃∗) = 1 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 0 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 
 

= 1 𝐸𝐸 𝐴𝐴 𝑓𝑓(𝜃𝜃∗) + 0 𝐸𝐸 𝑎𝑎 𝐴𝐴 cos(𝜃𝜃𝑖𝑖) cos(𝜃𝜃𝑟𝑟)/ 𝜋𝜋 
 

= 𝐸𝐸 𝐴𝐴 𝑓𝑓(𝜃𝜃∗). 

( 25 ) 

 
Using a light curve, we attempt to fit the observed data to this model as: 
 

 𝑆𝑆𝑓𝑓𝑓𝑓𝑓𝑓(𝜃𝜃∗) = 𝑃𝑃 𝑔𝑔(𝜃𝜃∗) ( 26 ) 

for some scaling constant 𝑃𝑃.  If the fit is successful, then we should have 𝑆𝑆𝑓𝑓𝑓𝑓𝑓𝑓(𝜃𝜃∗) = 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝜃𝜃∗), thus resulting in:  
 

𝑆𝑆𝑓𝑓𝑓𝑓𝑓𝑓(𝜃𝜃∗) = 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝜃𝜃∗) 
 
𝑃𝑃 𝑔𝑔(𝜃𝜃∗) = 𝐸𝐸 𝐴𝐴 𝑓𝑓(𝜃𝜃∗) 
 
𝑃𝑃 𝑔𝑔(𝜃𝜃∗) = 𝐸𝐸 𝐴𝐴 �𝑎𝑎 𝐺𝐺𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛  𝑔𝑔(𝜃𝜃∗)� 
 

𝑃𝑃 = 𝐸𝐸 𝑎𝑎 𝐴𝐴 𝐺𝐺𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 
 

 𝑆𝑆𝑓𝑓𝑓𝑓𝑓𝑓(𝜃𝜃∗) = 𝑃𝑃 𝑔𝑔(𝜃𝜃∗) ( 27 ) 

which is then easily solved for the solar panel albedo-Area, units of (𝑎𝑎𝑎𝑎)𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 are 𝑚𝑚2: 
 

 (𝑎𝑎𝑎𝑎)𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑎𝑎 𝐴𝐴 

=
𝑃𝑃

𝐸𝐸 𝐺𝐺𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
. 

( 28 ) 

 
 

6.5 THE LINEAR FITTING METHOD (LFM) 
 

This algorithm was developed in order to better estimate the region, in longitudinal phase angle, for the specular region 
of a light curve. We call it the linear fit method (LFM). For the LFM, we assume a Gaussian BRDF as in Equation 
(21). The fitting process is done assuming the light curve can be fit to the  function 𝑓𝑓(𝜃𝜃∗) = 𝑃𝑃𝑃𝑃(𝜃𝜃∗) = 𝑒𝑒𝑎𝑎∗cos(𝜃𝜃∗)+𝑏𝑏. 
While the cosine term is equivalent to the sine squared version, we opt for the cosine form, as it provides a cleaner 
form to which we can fit it linearly. Using this model has a few advantages. Firstly, it is symmetric, so the sign of the 
off-reflection angle is irrelevant (the solar panel specular contribution to a signature is symmetric with respect to 𝜃𝜃∗). 
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This means it is easy to tell where the signature is symmetric; it is symmetric where two halves of the signature, one 
with positive off-reflection angles and the other with negative off-reflection angles, fall on top of one another. The 
specular region must be within this range. Second, the equation is linear with respect to log(𝑅𝑅𝑅𝑅) vs cos (𝜃𝜃∗), so we 
want to find in what region the data becomes linear when plotted as log(𝑅𝑅𝑅𝑅) vs cos (𝜃𝜃∗), and that will be what we use 
as the specular region. 
 
Using this new model, we perform an iterative search for where the two halves of the data are symmetric and linear. 
The specular region is centered around the off-reflection angle 𝜃𝜃∗ = 0, so at each iteration we remove the same 
fraction, say 1/4th , of the data with the lowest off-reflection angle and process the data through LFM again. We stop 
once we find data that is sufficiently close to linear; checking if the data is linear incorporates a check for if the data 
is symmetric because if two halves do not fall on top of each other, then the data cannot be linear. In order to check if 
the data is linear, we fit the data with the linear fit produced by the observation points with the largest and smallest 
off-reflection angle. If any of the remaining points are further from the fitted line than some predetermined distance, 
then the data is not sufficiently linear, and the next iteration of the algorithm is executed. Once the data that is linear 
satisfies our maximum distance bound, we use the fitted line produced by the observations with the largest and smallest 
off-reflection angles as the specular fit for the data. A flow chart of the algorithm can be seen in Fig. 8. 
 

 
Fig. 8 Flowchart of the linear fitting algorithm 

Fig. 9 shows an example run of the algorithm. Each red line represents one iteration of LFM. For a given iteration, all 
of the data with smaller off-reflection angles (larger cosine values) than the line is used for the fit. This process occurs 
from left to right, so the first iteration is represented by the left most line, the second by the line directly to the right 
of that, and so on. The data to the right of the rightmost line represents the data that was found to be linear “enough”; 
the linear fit between the observation points with the largest and smallest off-reflection angles in that range of data is 
used as the fit for the model. The process stops once this maximum distance is reached. 

 
 

Copyright © 2017 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) – www.amostech.com



 
 

Fig. 9 Example run of linear fit algorithm on a light curve  

The final line from LFM, whose equation can be given as 𝑦𝑦 = 𝑚𝑚 cos(𝜃𝜃∗) + 𝑏𝑏, allows for the Gaussian parameters in 
( 27 ) to be estimated by 𝑃𝑃 = 𝑒𝑒𝑚𝑚+𝑏𝑏 and 𝜎𝜎2 = 1

𝑚𝑚
. 

6.6 THE SOLAR PANEL METHOD ALGORITHM 
 

The process of generating the solar panel albedo-Area takes three stages to complete. First, a solar panel offset angle 
must be correctly identified.  This is the angle between the solar panel’s normal vector and the sun.  Second, using the 
correct offset angle allows for the light curve to be converted from longitudinal phase angle to off-reflection angle. 
Finally, in the off-reflection angle space, the linear fitting method allows for a Gaussian fit to be made to the data 
whose parameters allow for SPaA to be calculated. 
 
The overall process occurs in the following manner with regard to a single light curve which we assume to be data 
collected in radiant intensity, RI, in units of  𝑊𝑊

𝑠𝑠𝑠𝑠
, vs longitudinal phase angle: 

 
1. Obtain correct solar panel offset (𝑆𝑆𝑆𝑆𝑆𝑆) angle. 

a. Create a set 𝑆𝑆𝑆𝑆𝑆𝑆 guesses in the range of [−30°, 30°]. 
b. For each 𝑆𝑆𝑆𝑆𝑆𝑆 guess, calculate the light curve’s off-reflection angles, 𝜃𝜃∗, by ( 17 ). 
c. Use the LFM to approximate a specular region in terms of 𝜃𝜃∗, for each SPO guess. Denote this 

region by �−𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠∗ ,𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠∗ �. 
d. Within the specular region, �−𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠∗ ,𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠∗ �, we fit a quadratic function, 𝐴𝐴𝜃𝜃∗2 + 𝐵𝐵𝜃𝜃∗ + 𝐶𝐶, to the 

graph of  log(𝑅𝑅𝑅𝑅)𝑣𝑣𝑣𝑣 𝜃𝜃∗.  Recall that we assume the brightness, 𝑅𝑅𝑅𝑅, to have a Gaussian shape inside 
the specular region. 

e. Record each value of the quadratic 𝐵𝐵 for each 𝑆𝑆𝑆𝑆𝑆𝑆 guess. 
2. Obtain the correct set of off-reflection angles. 

a. Use a root finding algorithm to find the root of all values of quadratic 𝐵𝐵 versus the 𝑆𝑆𝑆𝑆𝑆𝑆 guesses.  
The 𝑆𝑆𝑆𝑆𝑆𝑆 which provides a value of 𝐵𝐵 = 0 will be the panel’s true offset angle, 𝑆𝑆𝑆𝑆𝑂𝑂𝑜𝑜. 

b. Use 𝑆𝑆𝑆𝑆𝑂𝑂𝑜𝑜 to obtain the signature’s true off reflection angles by ( 17 ). 
3. Calculate SPaA. 

a. For the off-reflection angles obtained with the correct offset 𝑆𝑆𝑆𝑆𝑂𝑂𝑜𝑜, use the LFM to obtain Gaussian 
parameters (𝑃𝑃 and 𝜎𝜎) for Equation ( 27 ). 

b. Numerically integrate 𝐺𝐺𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 from Equation ( 22 ). 
c. Plug the values of 𝑃𝑃,𝜎𝜎, and 𝐺𝐺𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, in to ( 28 ) to obtain the solar panel albedo-Area. 
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6.7 SOLAR PANEL aA RESULT SUMMARY FOR USNO DATASET 
 

Here we present a summary of our results on the solar panel albedo-Areas found by the method presented. The 
photometric observation data was collected by sensors over the course of two years starting in 2013. The mean 𝑎𝑎𝑎𝑎 
values shown in Table 2 are averages over all light curves returning a value as some nights do not contain enough data 
to produce a meaningful value. 
 

Table 2 Solar panel aA results for several GEO satellites 

Satellite Name Bus Type Mean Solar Panel 
albedo-Area (𝒎𝒎𝟐𝟐) 

AMC-1 (GE-1) LM A2100A 6.6 
AMC-7 (GE-7) LM A2100A 4.4 

Galaxy-12 Star-2 8.5 
Horizons-1 (Galaxy-13) BSS 601-HP 13.0 

AMC-10 (GE-10) LM A2100A 4.7 
AMC-11 (GE-11) LM A2100A 6.0 

Galaxy-14 Star-2 5.4 
Galaxy-15 Star-2 5.4 
AMC-21 Star-2 11.4 
CIEL-2 Spacebus 4000C4 13.3 

GOES-15 BSS 601-HP 15.8 
 

7. DISCUSSION AND CONCLUSION 
 
We have presented results on one new algorithm (DM) and one algorithm under continuing development (2FM) for 
extracting the albedo-Area of the satellite body alone. For those satellites with simple signatures (i.e., one central 
brightness peak located near PA = 0o), the agreement between the two methods is quite good. However, for those 
objects with more complex signatures (i.e., those with broad shoulders or secondary peaks that are located in the 
general range of 20o <  abs(PA) < 40o), we find that the two methods disagree and that the 2FM method estimates the 
body aA as larger than the DM method does. 
 
There is an explanation for the disagreements. First, the DM method excludes brightness data that lies in the range 
abs(PA) < 40o, whereas the 2FM method often includes brightness data that lies in the range 20o < abs(PA) < 40o.  The 
inclusion of data that is closer to the central PA regime does not affect the single peak signature objects because the 
bright near-specular solar panel reflections do not encroach on the PA range of either method in such signatures.  
However, for those satellites that show side peaks or shoulders, the “excess” brightness does often fall in the PA range 
of the 2FM method (cf. Fig. 3 and Fig. 4).  These differences do not strike us as flaws in either method.  Indeed, we 
believe that it might be possible to exploit the differences in a manner that allows for a richer set of features that can 
be gleaned and thereby provide for better SSA analyses. The differences between the DM and 2FM methods, to the 
best of our current interpretation of the data, lie in whether or not a substantial portion of the reflected light of the com 
antennae are included in the aA calculation. Hence the DM estimates of aA appear to be more directly related to 
characterize the size of the main body/payload of the satellite, while the 2FM estimates of aA appear to be more 
directly related to the body/payload plus the com antennae. We are currently evaluating whether or not these 
differences can be fully exploited. 
 
Another new algorithm has been developed and tested for estimating the albedo-Area of the solar panels based on the 
specular contribution of the overall reflected intensity from the satellite. The diffuse contribution from solar panels, 
by their design and function, is negligibly low and so is ignored in this approach. The sizes of the solar panels vary 
with satellite design and type of solar panel material. The areas can range from 12 to 70 m2 for the satellites we have 
studied. Since albedo is less than one, reflectance aAs are only proxies for the true physical size. Further research 
might indicate if the aAs can be studied over time to determine effects of space weather on the reflectivity of the 
materials. 
 

Copyright © 2017 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) – www.amostech.com



The accuracy of these approaches for estimating the component aAs is dependent on sampling the various parts of the 
satellite well. Research continues to understand the effects of sparse data on the resulting aAs. Another challenge in 
validating these approaches is the availability of truth data. Our research group has been using satellite model 
dimensions as a proxy for truth data. 
 
One future area of work is to investigate the use of splines for improving the fit of the specular regions of the 
signatures. If improvements to the fits are shown, this would improve both the solar panel offset calculation and the 
solar panel aA. Another area of work will be to investigate how to fuse the DM and 2FM methods for improved body 
aA estimation with sparse data and possibly to quantify the contribution of the antennae. 
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