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Figure 4. P-Spec spacecraft structure and separation mechanism 

 

6. OES ANALYSIS OF PLASMA PROPERTIES 

EP plasma emissions produce spectral signatures that are unique to the propellant used. Xenon propellant causes a 

plasma plume with peak light intensity at wavelengths of 460.3, 484.43, 823.16, 828.01, and 881.94 nm. Fig. 5 

shows a comparison of the emission profiles from a Hall thruster (left, BHT-200) [10] and the Plasma Controls, 

LLC hollow cathode (right). Prominent xenon emission peaks for each spectrum are found at 823.16, 828.01, and 

881.94 nm. Both spectra show the same peaks, indicating the plume from the cathode is representative of that from a 

xenon Hall thruster.  

Hall thrusters have also been operated on Krypton with prominent peaks at 758.74, 826.32, 829.81, and 877.67 nm 

and the 810.44/811.29 nm doublet [7,11]. Spectral measurements taken by Detector-Sat’s OES instrument on future 

missions would allow analysts to distinguish between xenon and Krypton propellants in Space Situational 

Awareness applications. Research is also being performed on other types of EP propellants that could be identified 

by their optical emission signature, including iodine, bismuth, zinc, and magnesium.  

 

 
Figure 5. Emission spectra from a xenon Hall thruster (BPT-200, left) and a Plasma Controls, LLC. 5 W 

hollow cathode (right). Spectra show the same prominent emission peaks indicating xenon emission. 
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Electron temperature can also be determined from the NIR spectral measurements of xenon and krypton emission by 

using a collisional radiative model (CRM) [12]. Electron temperature measurements can provide information 

regarding the efficiency of a Hall thruster. This could indicate whether an observed propulsion system problem, such 

as over-consumption of propellant, is due to a thruster efficiency problem or another cause, such as unmodeled 

disturbance torques. 

7. CONCLUSIONS 

Optical emission spectroscopy is an emerging tool for Space Situational Awareness that can enable identification 

and diagnosis of EP systems. Spectroscopic analysis does not require contact with plasma; therefore, it can be 

performed from a safe distance using a diagnostic satellite. The emission intensity of light measured using 

spectroscopy as a function of wavelength can provide information regarding the plasma temperature, species, 

density, and operating stability. This can help in the assessment of thruster performance for a cooperative or 

malfunctioning spacecraft, and it can be used to identify the propellant and thruster type on an unknown object. 

The P-Spec mission aims to demonstrate they key technologies needed for CubeSat-based EP diagnostics. The first 

flight test will demonstrate the OES instrument in space using a hollow cathode with xenon propellant in a mother-

daughter CubeSat configuration. This flight test will demonstrate the viability of inter-satellite, optical plasma plume 

analysis from a CubeSat platform and assess the range of standoff distances over which plasma plume spectral 

measurement is possible. 
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