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ABSTRACT

Untraced space debris are the principal threat to the functioning of operational satellites whose services have become
a fundamental part of our daily life. Small debris between 1 and 10 cm are currently too small to be cataloged and are
only detectable for a limited amount of time when surveying the sky. The very-short arc nature of the observations
makes it very difficult to perform precise orbit determination with only one passage of the object over the observing
station. For this reason the problem of data association becomes relevant: one has to findmore observations of the same
resident space object to precisely determine its orbit. This paper is going to illustrate a novel approach that exploits
Differential Algebra to handle the data association problem in a completely analytical way. The paper presents an
algorithm that uses the Subset Simulation to find correlated observations starting from the solution to the Initial Orbit
Determination problem. Due to the different capabilities of the observatories, several observing strategies are currently
being used. The algorithm is thus tested for different strategies against a well known approach from literature. Then,
the performance of the data association method is tested on some real observations obtained in two consecutive nights.
Finally, preliminary results for data association without Initial Orbit Determination are shown.

1. INTRODUCTION

The problem of determining the state of resident space objects (RSOs) is fundamental to maintain a collision-free
environment in space, predict space events and perform activities. Due to the development of new technologies and
the ever-growing number of RSOs, the number of observations available is increasing by the day. This calls for more
efficient methods able to deal with the amount of data produced. Furthermore, when surveying the sky, the short-arc
nature of the observations does not allow for precise orbit determination during a single passage of the object over an
observing station: being the detections very close in time, little is known about the curvature of the orbit. Thus, for
each observation there is more than one orbit that complies with the observation values, as shown in Fig. 1(a). The
set of admissible solutions corresponding to a single observational arc is here called the Orbit Set (OS). To reduce the
uncertainty on the solution and pinpoint the correct orbit associated with the observation, one needs other independent
observations of the same object as sketched in Fig. 1(b). The main challenge in this, however, is to determine whether
two or more observations pertain to the same object, thus whether they are correlated, since the objects are unknown
when observed. This is the problem of data association, where one has to look for a common solution in the two
OSs generated by the observations, as shown in Fig. 1(c) and Fig. 1(d). Current approaches for the data association
problem suffer from either high computational effort, due to the point-wise based algorithms to keep high accuracy
on the dynamical model, or low accuracy, due to the use of simplified dynamics to keep the problem (semi-)analytical
and computationally efficient. This paper proposes an algorithm to perform data association exploiting Differential
Algebra (DA) to overcome the issues from literature. DA is a computing technique that uses truncated power series
(TPS) instead of numbers to represent variables, thus allowing us to obtain results of complicated functions as high-
order Taylor polynomials. For the data association problem, we can thus obtain the definition of the Orbit Set in an
analytical form, without the need for point-wise sampling, and propagate the polynomial form in the DA environment
independently of the dynamics chosen, thus allowing us to keep accurate dynamics and an analytical description.
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(a) Geometry of the solution
for a short-arc observation.
The true orbit is contained in
a wide range of possible solu-
tions (pink).

(b) Once other observations
of the same object are avail-
able, one can pinpoint the true
orbit within the uncertainty
region (black ellipse).

(c) Geometry of correlated obser-
vations for short-arc observations.
The black orbit is the overlapping
solution of the two OSs.

(d) Geometry of uncorrelated ob-
servations for short-arc observa-
tions: no overlapping solution of
the two OSs.

Figure 1: Initial uncertainty region,
precise determination of the orbit
with new observations of the same
object and example of correlated
and uncorrelated observations.

In this paper we are focusing on the Initial Value Problem (IVP), that is defining
the initial condition of the problem and then propagate it to the next available val-
ues. The algorithm developed for this follows three steps. Firstly, an initial orbit
determination (IOD) algorithm is developed to compute the state of the orbiting
body observed at epoch one. The solution is obtained as a Taylor polynomial that
links the uncertainty in the observation to the state of the orbiting body through
the use of DA. Some information about DA is given in Section 2.1. Section 2.2
gives a general definition of the DA-IOD algorithm. Secondly, the state com-
puted at epoch one is propagated to a second epoch where a new observation
is available. The state is then projected onto the second observation domain,
to obtain the observations at the second epoch compatible with the propagated
state. Section 2.3 highlights the implementation of the analytical and numerical
propagators in the DA environment. At this point, one has an analytical function
that maps the observation space at epoch one onto the observation space at epoch
two. The third and last step determines the correlation probability of two obser-
vation sets, that is the probability that two observations belong to the same object.
We make use of the Subset Simulation (SS), a technique that employs Markov
Chains Monte Carlo (MCMC) to calculate the probability of rare events. Sec-
tion 2.4 describes the method and its application to the data association problem.
Lastly, Section 2.5 takes a step back and analyzes the possibility to pre-process
the observations to reduce the associated uncertainty: here, the steps to perform
a linear regression of the observations are shown.
Section 3 shows the results for the DA-IOD algorithm and data association.
Firstly, Section 3.1 shows the region of validity of the DA-IOD algorithm by
testing it for different observation strategies against the Admissible Region (AR)
approach [1, 2]. Section 3.2 shows the accuracy tests for the DA integrator for
both analytical and numerical integration. Then, Section 3.3 shows the results
for the data association with Subset Simulation performed with real observations
taken in two consecutive nights when looking at the Geostationary Earth Orbit
(GEO) region. Then, results for the IOD problem are also shown in Section 3.4
for pre-processed data to highlight the possible benefits of the regression. Prelim-
inary results of data association without IOD are also shown. Lastly, Section 4
concludes the paper.

2. MATHEMATICAL BACKGROUND

2.1 DIFFERENTIAL ALGEBRA
This work makes use of DA, a computing technique that uses TPS instead of
numbers to represent variables [3]. By substituting the classical implementation
of real algebra with the implementation of a new algebra of Taylor polynomials,
any deterministic function f of v variables that is Ck+1 in the domain of interest
[−1,1]v is expanded into its Taylor polynomial up to an arbitrary order k with
limited computational effort [4, 5]. The notation for this is: f ≈ T (k)f . Similarly
to algorithms for floating point arithmetic, various algorithms were introduced
in DA, including methods to perform composition of functions, to invert them,
to solve non-linear systems explicitly, and to treat common elementary functions
[6]. Ultimately, this technique allows for the definition of analytical solutions of
complicated systems of equations which normally require numerical techniques
to be solved.
DA variables are defined as follows:

[x0] = x0 + δx0 (1)

where the brackets [⋅] identify a DA variable, x0 is the reference value and δx0
the linear variation with respect to it.
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2.2 FIRST STEP: INITIAL ORBIT DETERMINATION
When in survey mode, typical observations in GEO only last a few minutes. Dealing with a very short arc, we are
trying to solve the problem of Initial Orbit Determination (IOD). To account for sensor level errors, the precision of
the observation (σP) can be modeled as white noise and thus be added to the nominal observed values as a Gaussian
random variable with zero mean and σP standard deviation [7]:

Y ∼ N (y,Σ) (2)

where,for the case of optical observations analyzed in this paper, the observed values y are the right ascension α and
the declination δ at three different epochs (t(1,1), t(1,2), t(1,3)):

yi = [
αi
δi
] , for i = 1 ∶ 3. (3)

Assuming independent observations,
Σi = diag (σ2P,αi , σ

2
P,δi) . (4)

The DA-IOD algorithm takes as input the observation of an object at three initial epochs (t(1,1), t(1,2), t(1,3)) and gives
as output the TPS of the object state at the central time of the observation t(1,2) expanded with respect to the precision
of the observation σPσPσP.This is done by initializing the observations as DA variables with the following structure:

⎧⎪⎪⎨⎪⎪⎩

[α]i = αi + 3σP,αi ⋅ δαi
[δ]i = δi + 3σP,δi ⋅ δδi

for: i = 1 ∶ 3 (5)

(a) Gauss: first guess for the ranges.
They don’t define a unique orbit and the
velocity vector is discontinuous at the
central time of observation.

(b) Lambert: continuity for the velocity
is imposed to find the correction for the
ranges. On e unique orbit is defined for
the nominal observations.

Figure 2: Sketch of the DA-IOD
algorithm.

thus defining a 6 dimensional uncertainty domain through the use of the 99.7%
confidence interval for Gaussian variables. In this way we obtain an analyti-
cal map that describes the relationship between the state of the satellite and the
uncertainty input. In particular, the map is:

fIOD = T (k) ∶ (αααt1 ,δδδt1) ⊂ R6 → (rrrt1 ,vvvt1) ⊂ R6. (6)

For varying values of the input within the confidence interval, one can
find the state of the body by means of a simple function evaluation.
The algorithm makes use of Gauss’s solution as first guess for the ranges
ρ1, ρ2, ρ3 and refines it by imposing continuity for the velocity at t(1,2)
by exploiting the solutions of the Lambert’s algorithm from t(1,1) to t(1,2)
and from t(1,2) to t(1,3). A simple sketch of the method is shown in
Fig. 2, while details of the mathematical description can be found in
[8].

Due to the polynomial form of the solution, the region of validity is determined
by tolerance set on the truncation error, which defines a convergence region.
This implies that in general, one single TPS may not able to describe the en-
tire OS. The Automatic Domain Splitting (ADS) tool [9, 10, 11] is thus applied
to the DA-IOD algorithm to estimate the truncation error and control it: when
the truncation error exceeds the tolerance, the ADS automatically splits the ini-
tial (ααα,δδδ)-domain into sub-regions and calculates a new TPS over the new sub-
domain. The ADS needs two input parameters: the truncation tolerance and the
maximum number of splits. With this division, the solution is described as a list
of TPS that accurately describe the state of the observed body over the entire
initial domain. The updated form of the map with the ADS notation is:

fIOD+ADS =⋃
i
T (k)i ∶ (αααt1 ,δδδt1)i ⊂ R

6 → (rrrt(1,2) ,vvvt(1,2))i ⊂ R
6. (7)
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Fig. 3 shows an application of the ADS to the Gaussian function by plotting the absolute error between the polynomial
approximation and the exact form with and without ADS. Fig. 3(a) shows the exact function, while in Fig. 3(b) the
sub-domains used to approximate it are superimposed. Fig. 3(c) and Fig. 3(d) show the absolute error between the
exact function and the polynomial approximation. It is clear that in Fig. 3(c) the error grows unbounded, while setting
a tolerance, in this case 10−5 forces the ADS to split the domain into 64 sub-domains and respect the threshold in the
entire domain. The ADS thus ensures the accuracy of the map over the entire domain considered.

The iterative procedure for the computation of the slant ranges within the DA-IOD algorithm may fail if the obser-
vation tracklet is too short and/or too uncertain. Indeed, multiple or very poor solutions for the Gauss algorithm fed
to the Lambert’s algorithm may lead to non-convergence of the iterative procedure to refine the solution and produce
hyperbolic orbits. This may happen both during the calculation of the point solution or during the calculation of the
expansion map in case a small portion of it fall within an hyperbolic area. In the latter case, only a point value is
available. This possibility is discussed in Section 3.1.

(a) Gaussian function: one polynomial approxi-
mates the entire domain.

(b) Gaussian function divided into patches: each
patch is a polynomial approximation.

(c) Absolute error without ADS. (d) Absolute error with ADS.

Figure 3: Example of ADS applied to Gaussian function [8].

2.3 SECOND STEP: PROPAGATION
Once the state of the satellite is found at t(1,2), one needs to propagate it to a second epoch where a new observation is
available. The goal is to calculate the function that maps the observation space at the initial epoch into the observation
space at the second epoch, to find whether the propagated observations intersect the real ones and thus correlation can
be found. The main feature of the integrator developed is its ability to work with both DA and ADS. Indeed, due to
the non-linear nature of the propagation, the truncation error is expected to grow and thus further splitting is necessary
during the integration process to keep an accurate map.

Two different integrators are presented and their accuracy checked in this paper: the analytical Keplerian integrator
and the numerical propagator. The first one has been developed to solve the two-body problem and is used throughout
this paper. The second integrator represents a further step in the development of an algorithm to accurately propagate
the OSs and analyze the influence of perturbations on the data association.

The main advantage of having a DA propagator is the possibility to integrate an uncertainty cloud in polynomial

Copyright © 2018 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) – www.amostech.com



form and then access the value of a single point just by means of a function evaluation. In Section 3.2 the integrators
are tested against MATLAB numerical integrator to check the accuracy of the cloud integration against the point-wise
integration.

2.4 THIRD STEP: DATA ASSOCIATION
The IOD solution is associated with a rather large uncertainty due to the short nature of the observations, which is
further increased when propagated. This implies that the uncertainty of the map projected onto the observation plane
at the second epoch (α̂ααt2 , δ̂δδt2) is significantly larger with respect to the uncertainty of the actual observations (αααt2 ,δδδt2).
The intersection of the two volumes can thus be regarded as rare event and algorithms optimized for the calculation of
small failure probabilities such as the Subset Simulation (SS) can be used.

2.4.1 Subset Simulation theory
The probability of an event defined over a continuous probability density function (PDF) can be generally calculated
as [12]:

pI = ∫ 1I(θ)π(θ)dθ, (8)

where θ ∈ Rd represents the uncertain parameter, π(θ) is the joint PDF for θ, I ⊂ Rd is the intersection domain and 1I
is the indicator function of the intersection domain:

⎧⎪⎪⎨⎪⎪⎩

1I = 1 if θ ∈ I
1I = 0 if θ ∉ I

. (9)

The original and best known stochastic simulation algorithm for estimating high-dimensional integrals is Monte Carlo
Simulation (MCS). In this method the probability pI is estimated by approximating the indicator function by its mean
over N sample events:

pI ≈ pMC
I = 1

N

N
∑
i=1

1I (θ(i)) . (10)

However, MCS has a serious drawback: it is inefficient in estimating rare events probabilities. Indeed when pI is very
small (pI << 1), one requires a big number of samples N ∝ p−1I >> 1 to accurately estimate pI. This is where the SS
comes into play: the basic idea of SS [13] is to represent a very small probability as a product of larger probabilities,
calculated sequentially. Starting from the initial domain, that is Rd, one can find a sequence of nested sub-domain that
shrink up until the intersection domain I, called failure domain in literature due to its initial use to calculate failure
probabilities: R6 ⊃ I0 ⊃ I1 ⊃ Ij−1 ⊃ Ij = I. The intersection probability pI can then be calculated as the product of
conditional probabilities at previous levels:

pI =
j

∏
k=1

P(Ik ∣ Ik−1). (11)

Clearly, by choosing the intermediate failure domains appropriately, all conditional probabilities pk can be made large
and the original problem be replaced by k intermediate ones. In particular, we implement the Modified Metropolis
algorithm, described in detail in [12]. Here, the main steps are reported. The algorithm starts with a MCS of the initial
domain. The sampling is performed according to the distribution π(θ). To define the intermediate domains, a specific
positive-valued function g ∶ Rd → R also called performance function is used: g(θ) may represent some a behavior
that rarely happens for a threshold b. The domain I can thus be defined as

I = {θ ∈ Rd ∣ g(θ) < b} , (12)

and the intermediate sub-regions as
Ij = {θ ∈ Rd ∣ g(θ) < bj} , (13)

where the intermediate thresholds satisfy the constraint b0 > b1 > ... > bm−1 > bm = b. Intermediate threshold values
bj define the values of the conditional probabilities pj = P(Fj∣Fj−1) and, therefore, affect the efficiency of the SS. In
practical cases the bj are chosen adaptively so that the estimated conditional probabilities are equal to a fixed value
p0 = 0.1. In specific, after ranking theN samples according to their performance g, the coefficient bj is chosen as

bj =
g (θ(Np0)) + g (θ(Np0+1))

2
(14)
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so that the best performing Np0 points are accepted and the conditional probability satisfied. For each accepted sample
at level 0, aMCMC is then built: after performing a randomwalk with variance σ2W, the proposed candidate ξ̃ is checked
against the seed through the initial probability distribution π(⋅) by calculating the acceptance ratio for each component
k of the vector

rk =
πk (ξ̃k)

πk (θ(i)k )
. (15)

ξ̃k is accepted only if it passes a uniform test with parameter min(1, r). Once the Np0 chains are calculated, they are
ranked again and the process is continued until the intermediate tolerance bj falls below the final tolerance b. Fig. 4
shows the process for N = 10 and p0 = 0.1. The dark red dots are the initial 10 MCS, then only the best performing
sample (Np0 = 1) is kept and a new chain (red) is calculated to re-fill the population. The new 10 points at Level 1
are then ranked and filtered with the tolerance b1. The second level marks the last step because b2 < b. Considering
the conditional probability at each sub-level has been fixed as p0, the rare probability of the event can be calculated
as:

pI =
m−1
∏
j=1
(p0) ⋅

Nm

N
(16)

where m is the number of sub-regions and Nm is the number of samples that fall within the Im region.

Figure 4: Sketch of the Subset Simulation algorithm with Markov Chains Monte Carlo. N = 10 initial samples and
p0 = 0.1 conditional probability.

2.4.2 Subset Simulation for data association
The SS can be applied to the data association problem to find the small intersection between the uncertainty volume of
the observation at the second epoch and the observation map propagated from the first epoch. Fig. 5 shows the passages
that lead to the calculation of the intersection volume: thanks to the use of DA, we have an analytical function that
maps Observation 1 onto Observation 2 (depicted as the dotted pipe, which increases its uncertainty when propagated
in time). The map goes from R6 to R6 through the calculation of the IOD solution, propagation and projection:

f =⋃
i
T (k)i ∶ (αααt1 ,δδδt1) ⊂ R6 → (αααt2 ,δδδt2) ⊂ R6. (17)

The function f is a union of i polynomials of order k created with the ADS.

The SS then looks for the values (αααt1 ,δδδt1) that are mapped into Observation 2 domain (thin pipe). The parameter
θ is Observation 1, with associated probability

π(θ) = N (μμμ,Σ) (18)

where the mean μμμ is defined in Eq. 3 and the covariance matrix Σ in Eq. 4. The sampling of (αααt1 ,δδδt1) and subsequent
calculation of IOD, propagation and projection is thus just a function evaluation.
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Figure 5: Sketch of the algorithm for data as-
sociation: connecting DA-IOD (Red), propa-
gation (black), projection (blue) with associ-
ated uncertainty (large pipe). Then, exploit-
ing SS to find the intersection volume and es-
timate correlation (thin pipe).

Having considered the uncertainty on the observation as white noise
as detailed in Eq. 18, the sum of the residuals is again a well known
probabilistic distribution:

J =
3
∑
i=1

⎡⎢⎢⎢⎢⎢⎣
(
α̂i − αt(2,i)
σ(2,i)

)
2

+
⎛
⎝
δ̂i − δt(2,i)
σ(2,i)

⎞
⎠

2⎤⎥⎥⎥⎥⎥⎦
∼ χ2 (6) (19)

where α̂αα and δ̂δδ are the calculated observations through f, while (αααt2 ,δδδt2)
and σσσ2 are respectively the new observations and their precision. The
residual function can thus be modeled as a chi-square and can be used
as performance function to rank the samples during the SS: the smaller
the residuals are, the closer the samples are to being in the intersection
volume.

The final threshold b is chosen as the quantile of the χ2 of level α =
0.003 and order 6:

qχ2(0.003,6) = 19.8 (20)
having six observed parameters and being 3σσσ2 the 3 − σ variation of a
Gaussian distribution.

The key for a fast convergence is the adaptive choice of the variance
σ2W for the random walk to build the MCMCs. Indeed, if the variance is
left unchanged from the initial MCS, at further levels the step may be
too large and each proposed candidate ξ̃ rejected, or too small and the
migration of the samples slow. To optimize the convergence, the vari-
ance is thus updated such that the acceptance of new candidates falls
within 30% and 50% [12].

2.5 STATISTICAL ANALYSIS OF OBSERVATIONS
So far, we have considered only three observations out of the entire
tracklet (first, middle and last) to gather the most information about the
curvature of the orbit. However, typical observing strategies include
more than 3 observations; this means we have disregarded other ob-
served parameters which could give more insight on the orbit of the
observed body. If more than three observations are available for a very
short tracklet, the distribution of the right ascension and declination can
be linearly regressed with respect to time, following the well known
linear regression equation ŶYY = β̂ββ0 + β̂ββ1XXX:

[ α̂
δ̂ ] = [

α̂0
δ̂0
] +
⎡⎢⎢⎢⎣

ˆ̇α
ˆ̇δ

⎤⎥⎥⎥⎦
t (21)

This can be conveniently done at the central time of observation (C).
The resulting values (α̂C, δ̂C, ˆ̇α, ˆ̇δ) are known as Attributable, from the well known AR approach. The quantity

T = β̂ − β
sβ̂
∼ tN−2 (22)

is known to be distributed as a T-Student [14], where β̂ stands for any of the 4 estimated coefficients that constitute
the Attributable, N is the number of fitted parameters and sβ̂ is standard estimate (SE) of the coefficient β̂. Having
centered the regression in the central time of observation (thus in the mean value of the predictors), it is trivial to prove
that the slope and intercept are uncorrelated. Their variance is thus reduced to being:

ΣAttr = diag [sα̂
1
N
, sα̂

12
N(N + 1)(N − 1)Δt2

, sδ̂
1
N
, sδ̂

12
N(N + 1)(N − 1)Δt2

] (23)
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Figure 6: Regression for the right ascension α centered at
the central time of observation. Values are amplified by a
factor 1000 for clarity purpose.

However, what we are interested in are the interpolated
values for the observations and corresponding confi-
dence intervals (CIs), to be able to construct the DA do-
main as in Eq. 5. Being the predicted values a linear
composition of the estimated coefficients, their variance
is:

ΣŶi = Hi Σ(β̂0,β̂1)H
T
i . (24)

where Hi = [1 ti − tC]. The confidence interval of the
predicted observations can then be constructed through
ΣŶi and the T-Student quantiles:

C.I.: [Ŷ ± t α
2 ,n−2 ⋅

√
diag(ΣŶ)] (25)

Fig. 6 shows the linear regression for a simulated
observation that follows the observing strategy of the
ZimSMART telescope [15]: 7 observations each 30 sec-
onds apart, thus constituting a 3 minutes tracklet. Ob-
served values and the CI are amplified by a factor of 1000
to enhance the behavior. The dashed line is the 98.5%
confidence interval (α = 0.03).

3. RESULTS

3.1 VALIDITY OF DA-IOD ALGORITHM
The DA-IOD algorithm that finds the solution to the IOD problem by expanding the central point with respect to un-
certainty in the observation angles is sensitive to two principal variations in the observation: the track length and the
uncertainty of the observation. The former contains information about the curvature, thus the shorter the track is, the
lesser is known about the curvature of the orbit, increasing the range of possible solutions. The latter directly influences
the size of the OS, by defining the uncertainty on the angles, as shown in Eq. 5. So far, the algorithm as been applied
to observations retrieved by a specific observatory (TFRM) whose strategy is to observe the object 5 to 8 times every
2 minutes with uncertainty that ranges from 1 to 3 arcsec (considered as the 3σ variation). Although this strategy is
shared by other sensors, there is a wide range of different strategies that include shorter, longer, more precise and less
precise observations. For this reason the validity of the DA-IOD algorithm had to be tested for different inputs to find
the boundary cases that it can handle.

The range for the length of the tracks observed and for the uncertainty were taken from [16] and adapted to also
accommodate the strategy adopted by [17, 15]. In particular, when surveying the sky in the GEO region the range for
the track length was [40, 3,600] s, thus comprising observations that spanned from 0.05% to 4% of the orbital period.
The uncertainty spanned [0.25, 50] arcsec. The tests have been run on the GEO object with NORAD ID 33595, ob-
served from the TFRM observatory starting on 2016 JAN 11 00:04:47.82. Each observation was simulated 100
times using the ephemerides of the object created with SPICE [18] and adding white noise. The tracklets comprised
three observed values, thus first, middle and last observation identified the entire tracklet and the regression detailed
in Section 2.5 was not performed.

Two different outputs need to be analyzed: the point solution for the IOD algorithm and the uncertainty expansion
of the map around that point. Fig. 7 shows the success rate for the point solution of the IOD, with a secondary axis
showing the arc length in degrees for clarity purpose. There are three macro areas with radically different results: the
lower triangle where the algorithm never fails (precise long observations), the upper triangle where the algorithm rarely
works (short and very uncertain observations) and the diagonal belt with a success rate around 80 − 90%. The reason
for such behavior is the following: the shorter and more uncertain the observation was, the poorer the Gauss’ solution
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Figure 7: Success rate for point solution of IOD. Three macro areas are found: lower triangle (always success), upper
triangle (rare success) and diagonal belt (80 − 90% success).

fed to the Lambert’s algorithm was. This led to non convergence of the iterative process to refine the state of the object
thus falling within hyperbolic orbits and not allowing for a solution. For boundary values of the observation length and
uncertainty, sometimes there was also more than one solution for Gauss’s algorithm, this however only happened for
initial conditions in the upper triangle. Only when a point solution could be found for the IOD, the expansion map with
respect to the uncertainty in the angles was also calculated by exploiting the ADS. Here the initial values contained
in the lower triangle and in the diagonal belt in Fig. 7 had very different behaviors. As can be seen in Fig. 8(a), the
success rate for the expansion map in diagonal belt is close to zero, while it is always possible to find an expansion
map for initial values contained in the lower triangle. The explanation for this very different behavior can be found in
Fig. 8(b), where the mean uncertainty of the range ρ is shown: one can see that close to the failure regions the uncer-
tainty grows up until 50,000 km. A larger uncertainty would trigger hyperbolic solutions and re-entering solutions.
This means that where the map expansion fails, the Lambert’s algorithm cannot approximate a part of the uncertainty
map with elliptic solutions. A clear result in Fig. 8(a) is the presence of a ratio between observation length and uncer-
tainty that determines the feasibility of the DA-IOD algorithm. On Fig. 8(b) two other reference data are shown: the

(a) Success rate for the DA-IOD algorithm. There is a net contrast be-
tween the area of 100% success and the area of 0% success, thus deter-
mining the boundaries of our algorithm. The black line corresponding
to the AR is shown for comparison reasons.

(b) Dimension of the uncertainty over the range for successful runs of
the DA-IOD algorithm. Uncertainty for the AR approach is also high-
lighted (black). The white square represents the initial values considered
in this paper, from TFRM approach.

Figure 8: Success rate of DA-IOD algorithm and uncertainty range for ρ for different observation strategies.
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red square refers to the typical initial values for observations of the TFRM observatory, which can be easily handled
by the algorithm, while the black line (Δρ ≃ 16,000 km) is the size of the uncertainty of ρ for the Admissible Region
approach [1, 2]. This approach extrapolates four parameters from the observations, leaving two degrees of freedom
where the uncertainty is bounded by physical constraints. In specific, the uncertainty over the range was calculated
for the following constraints: amin = 20,000 km, amax = 50,000 km, emax = 0.75 km, where the values are respectively
minimum semi-major axis, maximum semi-major axis and maximum eccentricity. These constraints comprise both
GEO and Geostationary Transfer Orbits (GTOs), which can both be observed when looking at the Geostationary area.
Fig. 8 shows that on the boundary of the failure region, our algorithm and the AR have comparable uncertainty on
the resulting range. However, the AR is the only viable method for shorter and less precise observations, while, our
method can have much smaller uncertainty for longer and more precise observational strategies. This shows that not
all observing strategies have to be treated with the AR approach. Some observations contain more information than
the attributable and thus can be treated differently to reduce the uncertainty on the output state, as done by the DA-IOD
algorithm. The white circle in Fig. 8(a) refers to the strategy adopted by [15] for the ZimSMART telescope. It is easy
to check that the DA-IOD algorithm as it is cannot handle this type of strategy. For this reason Section 3.4 analyses
the same strategy with pre-processed observations as explained in Section 2.5 to see if the regression can push the
boundaries of our algorithm to shorter and more uncertain observations.

3.2 DA-INTEGRATION
To be able to propagate large uncertainties in polynomial form as shown in Fig. 17, one needs an integrator that is
able to handle DA variables and the ADS tool. We, thus needed to check the accuracy of the polynomial propagation
against point-wise one to ensure that the accuracy of the integration was met on the entire domain propagated. The
output of the DA-IOD algorithm described in Section 3.1 is the state of the object in Cartesian Coordinates (CC).
However, previous tests showed that propagation carried out with Modified Equinoctial Elements (MEE) was more
efficient due to less splits being performed by the ADS. This is explained by the change in the parameters involved:
CC all have large variations over one orbital period, while MEE only have one fast varying variable and singularities
of classical orbital elements are avoided. Furthermore, in two-body dynamics five out of six MEE parameters remain
constant. For this reason, we propagated the state of the body in MEE. Finally, the integrated state was transformed
in spherical coordinates due to our need to calculate (α, δ). For this reason we needed to test the accuracy of both the
propagation and conversions. The tests were carried out on object NORAD ID 37816 for a 24h integration, with 7th
order polynomials. The truncation tolerance for the ADS was set to 10 m for range, 10 m/s for range rate, 10−6 rad for
right ascension and declination and 10−9 rad/s for their variation. Four different checks have been carried out:

• Point-wise numerical integrator in CC against MATLAB numerical integrator: here the implementation of the
numerical integrator is tested for point-wise integration before using it with DA variables.

• DA+ADS analytical integrator against point-wise analytical integration: here the map expansion is tested against
the point-wise integration with the same analytical integrator, to look at the accuracy of the polynomial form.

• DA+ADS analytical integrator against MATLAB numerical integrator: here the accuracy of the DA analytical
integrator is tested against a numerical point-wise integrator.

• DA+ADS numerical integrator in MEE with conversion from CC against MATLAB numerical integrator: here
the accuracy of the propagation in MEE starting from the state in CC and ending with the projection on the
observation space is tested. This represents the entire process we need for the data association.

Fig. 9 shows the output of a one day integration to give a sense of the uncertainty involved: in Fig. 9(a) the grey line
is the real orbit, the grey dots are the centers of the polynomials in CC being propagated, while the yellow and red
dots are the centers of the polynomials at final time tf, respectively for a propagation with MEE and CC. One can see
in Fig. 9(b) that the uncertainty on the right ascension spans almost π, while the declination shows a much smaller
deviation.
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Figure 9: 24h propagation with DA+ADS of a GEO object with focus on the uncertainty on right ascension and
declination.

3.2.1 Point-wise numerical integrator in CC against MATLAB numerical integrator
The numerical integrator developed to work with DA and ADS was firstly tested for point-wise integration against the
ode78 MATLAB integrator, which was used for all accuracy tests in this section. All integrations were carried out
with an Absolute and Relative tolerance of 10−12. Fig. 10 shows good accordance between the two integrators with a
maximum difference in the order of 10−9 after 24h propagation. This shows that the numerical integrator developed
well integrates the dynamics.

Figure 10: Maximum absolute error on right ascension and declination for point-wise numerical integration against
MATLAB integrator.

3.2.2 DA+ADS analytical integrator against point-wise analytical integration
After testing the point-wise integration, the accuracy of the expansion map was tested against point-wise integration
with analytical integration. Having set the truncation tolerance to 10−6 rad for right ascension and declination, the ADS
split the initial domain to enforce it. The absolute error between map evaluation and point-wise integration showed
perfect accordance with the tolerance set, thus validating the use of function evaluations of the propagated map for
the algorithm developed. One can also appreciate the distribution of the points: it is clear that more sub-domains are
needed to well approximate the solutions furthest from the orbital plane (as seen from the declination plot), while the
number of domains is evenly distributed on the right ascension plot. Lastly, the error plot is a sum of V-shaped errors:

Copyright © 2018 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) – www.amostech.com



these are the errors on each sub-domain, smallest at the center and largest at the border.

Figure 11: Maximum absolute error on right ascension and declination for map evaluation against point-wise analytical
integration.

3.2.3 DA+ADS analytical integrator against MATLAB numerical integrator
After testing the map accuracy against the point-wise analytical integration, the accuracy of the DA integration was
checked against MATLAB ode78 integrator. Having set a tolerance for the ADS of 10−6 rad on the angles, the results
are in perfect accordance with it, thus proving the good behavior of the propagation with DA. Again, one can appreciate
the V-shaped error and the good approximation with few domains of the small declination angles.

Figure 12: Maximum absolute error on right ascension and declination for DA+ADS analytical integration against
MATLAB integrator.

3.2.4 DA+ADS numerical integrator in MEE with conversion from CC against MATLAB numerical integrator
This last test was carried out after validating point-wise and DA integration and DA map evaluation. This checks the
entire process needed for data association with SS: the state in CC was transformed to MEE, propagated with DA
and projected onto the observation space. This was compared with point-wise numerical integration with MATLAB
ode78. The results, once again, showed accordance with the tolerances set, proving that the ADS takes care of both
conversion and propagation errors during the entire process. One can thus propagate the polynomial found with the
DA-IOD algorithm to the epoch where a new observation is found and project it onto the observation space.
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Figure 13: Maximum absolute error on right ascension and declination for MEE map evaluation against point-wise
numerical integration.

3.3 DATA ASSOCIATION RESULTS

Figure 14: SS for two observations in GEO taken in
consecutive nights.

In this section the results for the data association prob-
lem are shown. The DA-IOD algorithm, DA+ADS prop-
agation and SS were put together to solve it. Real ob-
servations taken on consecutive nights on January 14 and
15, 2016 from TFRM were used as input. Each track-
let contained between 5 and 8 observations spaced by
2 minutes and with an uncertainty ranging from 1 to 3
arcsec. For each observation, the DA-IOD, DA+ADS
Keplerian propagation and SS were run to try to asso-
ciate observations made around 24h apart. Fig. 14
shows the work of SS over the propagated state. Al-
though the image only shows a 2D area, the algo-
rithm worked at three different observation times simul-
taneously (thus 6D) to find the values of the first do-
main that fell withing the acceptance region at the first,
middle and last observation times of the second track-
let. As can be noted, the shape of the propagated
state in the top plot is the same as in Fig. 9(b). The
SS then found the small overlapping domain. This
simulation needed five levels to reach convergence and
find the correlation. As can be seen, the intersec-
tion area is very small and thus a classical MCS would
fail in looking for correlation. Furthermore, at each
new level one can appreciate the presence of points per-
taining to the previous one: these are the best per-
forming values used to create the MCMC at the new
Level.

The test case at hand considered 8 observations in two con-
secutive night and looked for correlation for each one of them.
Knowing already which objects the observations pertained to,
we were able to assess whether the results of the data associa-
tion were correct. To avoid processing observations that were
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clearly not correlated, an initial check was carried out on the state. The DA-IOD algorithm was performed on both
observations considered and the uncertainty over the first five MEE elements calculated: if there was no overlapping,
then the observations were discarded without carrying on with the propagation and SS. This could efficiently be done
thanks to the bound tool implemented in DAwhich estimates the range of a polynomial over a given domain, thus easily
allowing for comparison without the need of point-wise sampling. It has to be noticed that we modified the threshold
for correlation b: we indeed multiplied it by an incrementing factor that took into account the error introduced by using
Keplerian dynamics. Table 1 shows the results for the correlation carried out on the 64 couples.

Table 1: Results for data association.
January 14, 2016

Obj 1 Obj 2 Obj 3 Obj 4 Obj 5 Obj 6 Obj 7 Obj 8

Ja
nu

ar
y

15
,

20
16

Obj 9 C T T T T T T T
Obj 10 C T T T T T T T
Obj 11 C T T T T T T T
Obj 12 T SS,FN T T T T T T
Obj 13 T T T T C T T T
Obj 14 T T T T T T C C
Obj 15 T T T T T T T T
Obj 16 T T T C T T T T

Legend:
C Correlated
T Discarded with test
SS Discarded after SS
FP False positive
FN False Negative.

The table shows that the pre-check on the orbital parameters is able to discard several uncorrelated observations: this
saved us from propagating the uncertainty map and performing SS. Although this check was performed on the two-
body dynamics hypothesis, other quantities are conserved when the main perturbations are considered: for example
the energy and the polar component of the angular momentum are conserved in the zonal problem. We’ll thus take
into consideration researching into other possible pre-checks, since they make the computation much faster. Once
the test was passed correlation was found 7 out of 8 times, with the one non-correlation being a false negative. We
believe this was due to the dynamics used: the two-body dynamics may lead to small errors on the computation of the
right ascension and declination which determines the false non-correlation, despite the modification of the correlation
threshold. Indeed, previous tests carried out on simulated Keplerian observations did not show this behavior, being the
dynamics coherent with the data handled. Overall, the method showed good results with only one false negative and
no false positive.

3.4 DATA ASSOCIATIONWITH PRE-PROCESSED OBSERVATIONS
This section takes a step back to analyze the input of our method. The results for the IOD in Section 3.1 were obtained
with raw data. Since our method had 0% success rate for the observing strategy adopted by [15] and depicted in
Fig. 8(a) with a white circle, we also ran simulations with pre-processed observations, following the approach defined
in Section 2.5.

Table 2: IOD and DA-IOD algorithm with fit-
ted observations for the initial values depicted
by the with circle in Fig. 8(a).

Success rate IOD center: 100%

Confidence Success rate ΔρInterval DA-IOD

82% 97% 9108 km
90% 42% 17228 km
95% 16% 17580 km
98.5% 2% 18903 km

Indeed, being able to decrease the standard deviation of the fitted pa-
rameters through regression we could still be able to solve the DA-
IOD problem for shorter and more uncertain initial values. Table 2
summarizes the outcome of the simulations for a 3 min long track-
let made of 7 observations with 1 arcsec uncertainty. First of all,
the point solution could always be found, increasing the success rate
from 85% to 100%. In the table, the possibility of using larger con-
fidence levels is also contemplated: so fare we’ve used the q0.997 of
the Gaussian distribution, but a 5% or 10% confidence level may be
enough for our investigation. Clearly, the smaller the confidence we
have on the observations, the larger the output uncertainty is, as can
be seen from the third column of the Table. It can be noted that,
again, when reaching the boundary of the capacity of the DA-IOD
algorithm, Δρ gets closer to the size of the AR (≃ 16000 km). As a
result of the size of the uncertainty, the success rate of the DA-IOD
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algorithm also drops when the confidence level drops. However, the presence of solutions at all CIs considered hints at
the possibility to lower the barrier of the DA-IOD capacity to much shorter tracklets by pre-processing the observation
with a linear regression, thus enabling the possibility to handle many more observing strategies with the algorithm
proposed with smaller uncertainty associated.

Nevertheless, there are observing strategies for which the DA-IOD algorithm still cannot find a solution. For this
region we developed a side algorithm for data association that does not involve the computation of an IOD solution,
but uses instead the uncertainty from the AR, which was found to be the best solution for these cases. The main differ-
ence, however, is that the attributable too was considered with its own uncertainty. The initial domain was initialized
in spherical coordinates, instead of the definition given in Eq. 5. The values for the range and range-rate uncertainty
were taken from the AR, the center points ρ0 and ρ̇0 simply being the mean value:

⎧⎪⎪⎨⎪⎪⎩

[ρ] = ρ0 + δρ
[ρ̇] = ρ̇0 + δρ̇

(26)

The attributable statistically defined in Section 2.5, had the coefficient estimates as center points and the confidence
interval as uncertainty:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

[αC] = αC + δαC
[α̇C] = α̇C + δα̇C
[δC] = δC + δδC
[δ̇C] = δ̇C + δδ̇C

(27)

We then tried this approach on the test case presented in [15]: four objects were observed in the same field of view
every two hours in a six hours span. Fig. 15 shows the values for the right ascension and declination of the four objects
observed.

Figure 15: Right ascension and declination of four objects observed four times over a six hours time.

Figure 16: Chains found by the al-
gorithm. Shapes refer to the obser-
vations in Fig. 15.

The strategy was the following. Each state observed at t1 was prop-
agated at t2 and checked against the new observations. Since the
propagation was carried out with the ADS, at each new time step a
list of polynomials was available. Each of the polynomials was then
checked against the new observations: only if at least one polyno-
mial had a six-dimensional overlapping with the new observations un-
certainties, the couple of observations (Ot1 , Ot2 ) was saved. Also in
this case, the bound tool was exploited to compare the uncertainty
ranges. Then, the couples formed were propagated to t3 where the
same check was carried out and the triplets (Ot1 , Ot2 , Ot3 ) complying were
saved. Lastly, the check was performed at t4 to obtain the full chain
(Ot1 , Ot2 , Ot3 , Ot4 ).

Fig. 16 shows the correlations found for the test case presented in Fig. 15: out of 256 possible combinations, the
algorithm found 4 true positive, 1 false positive, 0 false negative and 251 true negative. One false correlation was
found at t3 but was then discarded when none of the observations at t4 was chosen. This triplet was discarded on the
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hypothesis that all four objects had been re-observed at all times. We expected a possible false correlation due to the
two objects observed (square and cross) having very similar orbital parameters. However, in this particular case the
false correlation can be discarded with post-processing, since all other chains contain observations only used once.
The algorithm overall looks promising for those observations that do not allow for IOD. However, it would only be
suitable for strategies where new observations are acquired after a short amount of time, due to the computational
load of propagating a large uncertainty. To give a sense of the size of the propagated domain and underline the use
of the ADS in the algorithm, Fig. 17 shows the pruning process of the range and range-rate for the association of the
observations of the NORAD ID 36380 object: 4th order polynomials were used, with tolerance of 10 m for the range,
10 m/s for the range rate, 10−5 rad for the angles and 10−8 for the angle rates.

Figure 17: propagation and pruning of intial uncertainty domain.

The initial domain (D1) was initialized with the dimension of the AR, depicted with blue, red and yellow lines in
Fig. 17(a). In practice, the AR considered was overestimated to allow for the definition of the domain in a single box.
D1 was then propagated with the Keplerian DA+ADS integrator at time t2. The correspondent (ρ2, ρ̇2) uncertainty
cloud is shown in Fig. 17(d). Each 6D box of the cloud calculated with the bound tool was checked against the
uncertainty of the observation at t2 and only the boxes complying with the constraint of overlapping with the new
observation were kept (in this case only one, shown in light blue). The box kept (and shown as D2 in Fig. 17(b)) was
then propagated at t3, where the correspondent (ρ3, ρ̇3) uncertainty cloud in Fig. 17(e) was checked against the new
observation. Again, only one box was kept (blue box), which served as starting point (D3) in Fig. 17(c) to compute
the last pruning (the dark blue box).

4. CONCLUSION

This paper showed a novel method to solve the data association problem. In order to do so, firstly the DA-IOD algo-
rithm was tested to check for which types of observing strategies it was suitable: the test showed that the algorithm was
able to obtain a much smaller uncertainty associated to the state with respect to the AR for a certain ratio of length and
uncertainty (as for the observations from TFRM). However, the algorithm was not suitable for shorter observations,
such as the strategy of the ZimSMART, where the AR was found to be the only viable method. Then the DA+ADS
propagator was tested for both Keplerian analytical and numerical integrations. This was necessary to check that the
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point-wise integration, the map expansion and the conversions were carried out with the correct accuracy. Tests showed
that all of the parts tested were in accordance with the accuracy required. Lastly, the data association was performed.
The SS looked for the very small overlapping region between two tracklets only when an initial check on the orbital
parameters was positive. This turned out to be a key part of the data association process, since it allowed us to avoid
performing propagation and SS for those observations that were clearly non-correlated. The fast check was allowed
by the use of a tool developed in DA which estimates the range of polynomial, thus describing the uncertainty regions
as boxes, which were efficiently compared. Although results are satisfying, we believe that using Keplerian dynamics
may introduce false negatives due to the error introduced on the dynamics, as seen for one case in the results. Having
the numerical propagator ready and tested, we’ll try to perform the associations considering the main perturbations to
check whether these false non-correlations can be avoided. Indeed, we did not see this behavior when dealing with
simulated observations in Keplerian dynamics, where the dynamics was coherent with the data handled. Lastly, pre-
liminary results for a data association method that does not involve an IOD solution were presented: indeed, there
are some observations for which an IOD is not achievable, thus not allowing for the utilization of the DA-IOD + SS
method presented. The new algorithm started from an initial state and uncertainty given fromAR and linear regression,
thus involving a rather large uncertainty. It then exploited the ADS to perform data association. This method would
only be suitable for re-acquisition after a short period, due to the large uncertainty involved. Overall, the results for
this new algorithm were rather satisfying with the correct correlation of all four objects and one false positive.

The first step for future work will be the implementation of linear regression to pre-process the observation used
for the data association problem. Given the preliminary results on the DA-IOD algorithm shown in this paper, we
expect a much faster computation given that a smaller uncertainty will have to be handled. Furthermore, the numerical
propagator with the main perturbations will be tested for associations performed over large separations of time. This
will check the impact that the dynamics has on the correlation of observations. Furthermore, both methods for data
association (with and without IOD) will be tested with more observations to have a better statistics of the correla-
tions. Lastly, the application of the algorithm to boundary value problems (BVP) will also be investigated: being two
observations boundary values, there could be ground for improvement in the association approach.
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