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Abstract

Bispectrum processing is a well-established tool for phase retrieval in speckle imaging. Recent advance-
ments in image processing with neural networks imply great effectiveness with denoising, in-painting, and
image recovery, suggesting that the application of a customized neural network to the bispectrum could im-
prove the quality of the reconstructed phase. Motivated by this, we explore the application of deep neural
networks to assist with and enhance the performance of a standard bispectrum phase retrieval algorithm.

1. Introduction

Bispectrum processing is a well-studied tool for phase retrieval in speckle imaging. It has been shown that
the quality of the reconstruction can be limited by noise [14]. Given the stellar performance of deep learning
in super-resolution and denoising, it seems likely that such methods could be successfully applied to denoise
the bispectrum and reduce its sensitivity to noise.

The method described here supplies a custom deep convolutional neural network with a selection of noiseless
and noisy bispectra for training. Once trained the network is applied to heretofore unseen noisy data and an
image reconstructed from this ‘corrected’ bispectra. Here we describe the formation of the training data, the
network used, and the training of said network. Also described is the reconstruction and results.

2. Related Works

Convolutional neural networks (CNNs) are one of the most widely accepted methods in computer vision and
are status quo for image classification, segmentation, and detection tasks. With the recent success of these
algorithms in imaging competitions, such as Kaggle, ImageNet, etc., coupled with the advancements in deep
learning libraries, GPU hardware acceleration and data availability, these methods have received heightened
interest in the astronomical and space situational awareness (SSA) domain. These recent advancements in
image processing with CNNs imply great effectiveness with denoising, in-painting, and image recovery, sug-
gesting that the application of a customized neural network to the bispectrum could improve the quality of
the reconstructed phase.

Several related works have demonstrated significant improvements to state-of-the-art performance using
CNNs for image denoising [10, 15, 16]. Specifically, stacked denoising autoencoders were presented as
early as 2010 by [13]. Their methodology has been fine-tuned over the years with implementations, such
as the U-Net architecture, yielding state-of-the-art in many image segmentation tasks [12]. Specifically for
denoising, [5] successfully removed X-ray computed tomography (CT) artifacts using the U-Net architecture.
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Further, [8] successfully used the U-Net for image restoration with state-of-the-art performance. We draw
motivation from this architecture and recent success and apply it to bispectrum phase retrieval as shown in
Figure 1.

Figure 1: Neural network in bispectrum processing pipeline.

3. Methodology

The training data for this analysis was generated in Matlab. The MNIST [7] set of handwritten numbers
was used as the base. These images are functionally very similar to astronomical images, as both have an
object with distinct features roughly centered on a black background. A point spread function (PSF) was
generated to correspond to each base image. A unique 128x128 pixel PSF representing light turbulence was
simulated for each base image using phase screens with Kolmogorov statistics [11] with an approximate Fried
parameter of 50cm, and an aperture of 3.6m. The base image set was then resized from 28x28 to 128x128
and convolved with the PSF image set, resulting in the reference or noiseless data set. The resulting image
set was cropped to 64x64 to reduce bispectrum/training computation time. A copy of the noiseless data set
was then created and random Gaussian noise added. This noisy data set will be referred to as the degraded
set. Examples of these image sets are shown in Figure 2.

Figure 2: Examples of image sets. the noiseless image (center) represents the original convolved with the
PSF, the degraded image (right) represent the noiseless with added Gaussian noise.

The approach chosen for this paper was to denoise the bispectrum, requiring that the bispectrum be calculated
for each noiseless and degraded image. The bispectrum is defined as [11]:

B(~f1, ~f2) = I(~f1)I(~f2)I
∗(~f1 + ~f2)

Where I is the Fourier transform of the image, ~f1 ranges over the full 64x64 pixel image, and ~f2 was given
a small range of from -2 to 2 pixels to reduce computation time and the size of the result. The final size
of a single training ’frame’ was 64x64x5x5. Leveraging symmetry of the bispectrum would allow this size
to be greatly reduced [9], however this was not taken advantage of for this study. Cropping the image sets
from 128x128 to 64x64 has a degrading effect on the reconstruction, limiting the achievable quality of the
reconstructed image.
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Several approaches were taken in preparing the training data. The bispectrum being a complex quantity, two
ways of converting this to real values for training are to simply separate into real and imaginary parts, or to
compute the phase and amplitude. Separating into real and imaginary results in fields with less than desirable
statistics for training. The core of the array has values many orders of magnitude larger than those at the
edges, leading to significant issues with the regression cost function. In order to prepare the data the dynamic
range needed to be decreased without corrupting the bispectrum. To do this the pixel standard deviation was
calculated for the data set. The training set was then divided by the standard deviation array and scaled to
have a maximum range of -1 to 1. A comparison of 2-d slices of the bispectrum before and after scaling is
shown in Figure 3. Using phase and amplitude was explored, however better results were seen by splitting
into real and imaginary arrays. The 64x64x5x5 frames were reshaped into 25 64x64 slices for network train-
ing.

4. Network Architecture and Experimental Settings

Figure 3: 2-d Slices of the Noiseless bispectrum before and after scaling. Plot scales are unique to better
show detail.

For this experiment we employed the aforementioned U-Net architecture shown in Figure 4. All of the con-
volutional layers used a ReLU activation function except for the last, which used tanh. We initialized each
kernel to Glorot normal initialization [4]. Because the bispectrum contains both a real and imaginary image,
we attempted a Siamese neural network with shared parameter weighting in each convolutional layer [3].
However, performance was not improved potentially due to the magnitude of the differences between the
values of the real and imaginary images. For input image augmentation, we applied random augmentation to
each training image with the following specification: rotation within ±25 degrees, horizontal flips, vertical
flips, and zoom within ±10%. Our dataset consisted of 11000 image pairs, from which we used a 80% train-
ing, 10% validation, and 10% test split. We used the Adam optimizer with learning rate set to 1e−4. Mean
squared error (MSE) was used as the loss function for simplicity, but a trade study may find a more effective
option. The CNN was trained for 20 epochs until validation mean squared error did not improve, and the best
validation mean squared error was saved for inference/prediction. Image augmentation was not used during
inference.
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Figure 4: U-Net architecture used in denoising 2-D images. Last output layer used tanh activation, all other
layers were ReLU.

For reproduction, all neural networks were trained using Python 3 and Keras in conjunction with TensorFlow
[2, 1]. Operating system and hardware specifications include Ubuntu Linux 16.04 with dual Nvidia 1080 Ti
GPUs. Because the goal of this work was a feasibility investigation, we did not tune or search for optimal
hyperparameters.

Following the denoising of the bispectra by the network, the network prediction is rescaled (i.e. the pre-
training standard deviation scaling is reversed), the real and imaginary components are combined, and a
recursive reconstructor [11] is used to recover the object phase of a 50 frame ensemble. The Fourier modulus
was then obtained via the Labeyrie method [6], and the two combined to form the final image. In Figure 7
and Figure 8 this result is referred to as the network reconstruction.

The combined reconstuction shown in Figure 7 and Figure 8 was obtained by combining the magnitude of
the rescaled network corrected data with the phase of the degraded data set and applying the recursion. This
has the advantage of retaining some of the noise suppression from the network, in addition to much of the
image information that the network tended to corrupt.

5. Results

The images below show the improvement gained by application of the network to the the noisy data. The
quality of the noiseless reconstruction is limited due to lack of diversity of the PSF over the simulated col-
lection time. The network prediction shows clear reduction in noise, however in the process of denoising it
has changed the content significantly enough to prevent an accurate reconstruction. Figure 6 shows slices of
the bispectrum before and after application of the network. The network noise reduction is obvious, however
closely comparing the noiseless and network predicted images reveals subtle differences. Figure 5 shows the
residuals found by subtracting the corrected data from both the noiseless and degraded.
These differences lead to the degradation in the reconstruction shown in Figure 7. Again the noise present in
the degraded data has been suppressed, however there is a significant reduction in the quality of the recon-
structed image. Some improvement in noise reduction without degradation of the image were found using the
combined reconstruction described in the previous section. In all cases this combination resulted in reduced
noise, and in some cases it improved the visual quality of the reconstruction.
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Figure 5:
Residuals for an arbitrary 2-d bispectrum slice found by subtracting the noiseless data from both the

corrected data (left) and degraded data (right).

Figure 6:
Network predictions as seen on 2-d slices of the bispectrum. While the network prediction is a clear

improvement, some differences remain. All real and imaginary component plots have the same respective
scales.
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Figure 7: Network predictions after reconstruction with a triangle filter applied. The network reconstruction
on its own shows some degradation, however the combined reconstruction is on par with the degraded with
less noise. The Original column represents the images prior to convolution with PSF. Scales are unique to
each plot to better show detail.

Figure 8: Network predictions after reconstruction with no filter. As in the filtered plots, the combined has
less noise than the degraded. Scales are unique to each plot to better show detail.
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6. Conclusion

This effort indicates that applying a deep convolutional neural network to noisy bispectra can reduce the noise
in the reconstructed phase, and a combination of degraded and network corrected can improve the quality
of the reconstruction even if the network corrected is less than ideal. While the improvements shown here
are minimal, the training set used was rather small. Increasing the size of the training set and expanding
the augmentation parameters are standard practice for improving network accuracy. A code base has been
constructed to enable rapid production of unique PSFs to allow for straightforward expansion of the training
set, and a network architecture proven to denoise has been established. Further work will involve a more ex-
tensive data set as well as a further look into the feasibility of denoising the bispectrum phase and amplitude.
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