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Abstract

The Space-object National Imagery Interpretability Rating Scale (SNIIRS) allows human analysts to pro-
vide a quantitative score of image quality based on identification of target features. It is naturally difficult to
automate this scoring process, not only because the scale is based on identifiable features but also because
the images may be in an almost-resolved image quality regime that is difficult to handle for traditional
machine vision techniques. In this paper we explore using a convolutional neural network to automatically
produce SNIIRS scores. The neural network is trained with a catalog of analyst-graded images of resolved
space objects and then its performance is assessed by comparing the network accuracy to that of a trained
analyst.

1. Introduction

This paper explores the viability of augmenting a human-in-the-loop image quality grading task with a Con-
volutional Neural Network (CNN). The recently illustrated superiority of CNNs at performing a majority of
computer vision tasks (described in section 2) implies that they would be well suited to the task of grading
image quality. The utility of space object images is constrained by the resolution and quality of the image.
The Space-object National Imagery Interpretability Rating Scale (SNIIRS), a variant of the National Imagery
Interpretability Scale (NIIRS) [1], allows human analysts to provide a quantitative score of image quality
anchored on the size of resolvable target features. The task of scoring currently requires a human analyst
due to the almost-resolved regime in which many of the images reside, as well as the score dependence on
resolved feature size rather than signal to noise ratio (SNR), point spread function size [2], etc. The nature
of the SNIIRS metric leads to high degree of subjectivity, as what constitutes a 'resolved feature’ can vary
between equally trained and capable analysts.

The SNIIRS rating scale ranges from 0-12, and while scores are typically defined and reported as integer
values, nothing precludes finer resolution scoring. This allows us to approach the problem as a regression
task. We refer to the regression task as scoring throughout this paper. We evaluate a range of ImageNet
pre-trained models and grade by performance in terms of mean absolute error (MAE) for the task of scoring
given a single image frame. The task of scoring from a single input frame is assumed to be more challenging
than the same task given an image ensemble as input.

We present experiments performed on a substantial set of simulated data using realistic renders of real satel-

lites. The purpose of this study is to evaluate the utility of CNNs at the task of scoring for the purpose of
improving score standardization, reducing human-in-the-loop reliance, and reducing time to score. Scoring

Copyright © 2019 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) — www.amostech.com



in real time would allow for real-time optimization of collection settings during image acquisition, potentially
boosting overall image quality.

We provide a discussion of related works in Section 2. Section 3 details a formalization of our problem
and approach. Section 4 provides a discussion of our dataset, training architecture, hyperparameters, and our
experimental results. We conclude with brief remarks in Section 5.

2. Related Works

Several related works have explored the applications of CNNs and deep learning to astronomy. For noise
reduction, [3] recently presented a proof-of-concept neural network for denoising the bispectrum for astro-
nomical image recovery on synthetic data. For classification, [4, 5, 6] investigated the application of object
classification using neural networks on photometric light curves and showed promising results. Using Gen-
erative Adversarial Networks (GANs), [7] recovered features from artificially degraded images with worse
seeing and higher noise than the original with a performance that far exceeded the capabilities of simple de-
convolution. Additionally, [8] used a GAN to generate more realistic images of galaxies than existing state
of the art. [9] used machine learning to automatically segment and label galaxies in astronomical images.
[10] showed promising results using an autoencoder for real-time MFBD of solar images. Additionally there
have been probes into image scoring with deep learning; [11] applies a CNN to images and yields a "human
opinion’ quality score, and [12] uses a relatively shallow network to give a quality score to distorted images.
The success of these approaches motivates our application of similar networks to the scoring of ground based
LEO (Low Earth Orbit) observations.

3. Formalization

Let X and ) be two spaces, where X is a set of simulated astronomical images corresponding to a collection,
and ) is the collections score, i.e., Y = {R} (regression). We refer to each collection z; € X as a pass
containing n sequential images. Given a pass z; € X, our primary design goal is to train a network f : X' —
Y, which takes as input a collection x; € X and provides a scoring prediction, y; € ). To do this we train a
single image classifier g : X; — )); that takes as input a single image, x;; € X}, for the jt" image belonging
to a pass x; and makes a prediction y;; € ); for image x;;. We then repeat this action for every image in
pass ;.

4. Experiments

This section briefly covers our datasets used in this work, our experimental settings (training architecture and
regimes), and our experimental results.

4.1. Datasets

The SNIIRS score of a space object is a measure of the smallest resolvable feature. It is a log, based score,
with a larger value indicating that smaller features are resolvable. An analyst is required to determine what
features are resolvable in a given image, and to determine the size of the smallest resolvable feature. Pos-
sible scores range from O (no resolvable features) to 12 (features smaller than Smm can be resolved). In
practice many of the higher scores are not currently attainable for ground based observations. The useable
range of this metric for ground based systems can be viewed in terms of 7y and object range. A reasonable
span of rg values might be from 5cm (poor seeing) to 100cm (adaptive optics corrected). At a typical LEO
range of 600km, these 7y values equate to resolutions of approximately 10m (SNIIRS 3) and .5m (SNIIRS
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7) respectively in the I-band. For this study a significant database of analyst-scored ground-based LEO ob-
servations was made available, however this data contained a lack of diversity that even with class weighting
was difficult if not impossible to overcome, with several classes having no representation in the data at all.
The solution posed was to construct a simulated basis set for initial training, and then for future work fold in

actual sensor data.

To create the simulated dataset a metric was constructed using a validated atmospheric simulation code [13]
to apply a broad range of atmospheric turbulence characterized by Fried Parameter r( to a scaled 3-bar target
render with cascading target sizes (Fig. 1). By setting the simulated range and instantaneous field of view
(IFOV), we designated the simulated physical size of the 3-bar targets. Measuring the smallest resolvable
3-bar target for a simulated 7y and then fitting in the style of a General Image Quality Equation (GIQE) [14]
produced a mapping from A 7y to A SNIIRS. Simulating a reasonable set of 7y values allowed us to degrade
an image by multiple SNIIRS with a resolution of approximately 1/4 of a SNIIRS. In the simulation used
r9 was a dependent variable and could not be directly set, only measured. This resulted in range of SNIIRS
scores with less recognizable but still entirely valid values, as can be viewed in Figure 2. We constrained our
scores to a range from 3 to 7, corresponding to 7 of Scm and 100cm as described in the previous paragraph.
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Figure 1: 3-bar target used to calibrate the simulation SNIIRS scores.

An image set containing 5000 satellite renders with 38 discrete satellites in multiple poses and configurations
was used as the basis for the simulated set. The SNIIRS score of each render was established by a trained an-
alyst. This is referred to as the absolute score. The absolute score is the SNIIRS of the target as viewed from
a diffraction-limited optical system with a circular aperture, i.e. the upper limit for the simulated SNIIRS is
capped at the absolute score on the basis of resolvable features discenable in the diffraction limited image.
The basis set contains a range of initial SNIIRS values, which after degradation provides a diverse data set of
greater than 90,000 scenarios each containing 125 simulated images. From here on this simulated data will
be referred to as SILO (Simulated Images of LEO Objects).

A subset of SILO was used for network training. This subset was evenly sampled across SNIIRS 3-7 as
shown in Fig. 2. To prevent contamination of the validation data, the subset was segregated by target render.
Of the 38 discrete targets, the training set contained 30, and the remaining 8 were reserved for validation and
testing (discrete sets). This ensured that images in the validation data were dissimilar to the training images.
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Figure 2: Histogram illustrating the distribution of SNIIRS scores in the simulated training data.

80% of data was used for training, 20% for validation and testing.

4.2. Performance

In this work, we investigated the following networks: Densenet 121/169/201 [15], Inception Resnet V2 [16],
Inception V3 [17], NasNet Large and Mobile [18], ResNet 50 [19], VGG 16/19 [20], and Xception [21].
For each of the pre-trained models we replaced the top dense layers with a following sequence of top layers
(non-convolutional layers, * following layer indicates ReLu activation followed by a dropout layer with rate
of 0.2): a global average pooling layer, a 1024 neuron dense layer*, a 256 neuron dense layer®, and finally a

1 neuron dense layer with linear activation. Each dense layer was initialized with Glorot normal distribution
[22].

For input image augmentation, we applied random augmentation to each training image with the follow-
ing specification: rotation within +30 degrees, horizontal flips, vertical flips, and zoom within +£20%. Image
augmentation was not used during testing inference. We used an iterative deepening training regime, where
we first train the top dense layers by freezing all lower layers (CNN layers) for 5 epochs. We then freeze the
top dense layers and “unfreeze” the base model and train for 5 epochs. This is followed by another round of 5
epochs with base model frozen and the top dense layers trainable. Lastly we make the entire model trainable
for 10 epochs. We use the Adam optimizer with a learning rate of 10~3 and 10~ for the first and last two
iterations, respectively. We used a Mean Absolute Error (MAE) loss function, and saved models at the point
with which the validation loss did not improve.

The predictions on our test set are presented in Table 1. We show our results both with and without Con-
trast Limited Adaptive Histogram Equalization (CLAHE) augmentation. CLAHE augmentation is a method
shown in [23] to improve classification performance, particularly when issuing predictions on grayscale im-
ages on pre-trained ImageNet models that are optimized for 8-bit red-green-blue (RGB) inputs. Formally, the
CLAHE grid size and nominal clip limit was augmented according to the following:

a € U(~loga(k),loga(k)) | g(k) = k +a, (1)

where k is the nominal grid size or the nominal clip limit [23]. In Table 1, we see that while CLAHE
augmentation improved our predictive performance as a whole, the best performing network in terms of MAE
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Table 1: Performance of various ImageNet models on our dataset with or without CLAHE augmentation.
Bold denotes model best performance. VGG16 and VGG19 failed to converge with the training scheme as
attempted.

Without CLAHE With CLAHE

Model
MAE MAE
Densenet 121 0.276 0.187
Densenet 169 0.405 0.180
Densenet 201 0.255 0.126
Inception Resnet V2 0.140 0.283
Inception V3 0.253 0.252
NasNet Large 1.130 1.527
NasNet Mobile 1.069 0.458
ResNet 50 0.368 0.251
VGG 16 0.938 0.938
VGG 19 0.939 0.938
Xception 0.124 0.140
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Figure 3: Distribution of 2560 test set predictions from the peak scoring network evenly sampled over the
full range of SNIIRS scores. Histogram at right displays density of predictions.
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Truth SNIIRS = 5.3 Truth SNIIRS = 5.7 Truth SNIIRS = 6.2 Truth SNIIRS = 6.5
Predicted SNIIRS = 4.9 Predicted SNIIRS = 5.6 Predicted SNIIRS = 6.0 Predicted SNIIRS = 6.2
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Figure 4: Example satellite render with range of applied degradations. SNIIRS scores are typically reported
as integers. The values here have been rounded to one decimal to illustrate network performance. The
predictions shown were obtained with the peak scoring network from Table 1.

was Xception trained without CLAHE, this network is used for all predictions shown herein. Adjustments to
the training regime described earlier in this section could change this result. Figure 3 looks at the distribution
of network predictions vs truth scores for all images from the test set; i.e. objects never before seen by the
network. Figure 4 is a mosaic of a particular render at varying SNIIRS scores with comparisons between
prediction and truth.

4.3. Reproducibility

For reproduction, all neural networks were trained using Python 3 and Keras in conjunction with TensorFlow
[24, 25]. Operating system and hardware specifications include RedHat Linux 7 on an NVidia DGX Work-
station with four Tesla V100 GPUs with 32 GB of memory on each card. Because the goal of this work was
a feasibility investigation, we did not tune or search for optimal hyperparameters.

5. Conclusion

We have shown that CNNs can perform admirably at the heretofor human only task of scoring LEO image
quality. Particularly, given a single frame from our dataset we showed that the Xception network performed
the task optimally, and that CLAHE augmentation generally improved performance. For future work, we plan
to test network performance on real data to determine transferability, followed by optimization of real data
performance by training with an amalgam of real and simulated images. It may also be beneficial to explore
a customized network, as well as perform an exhaustive search for optimal hyperparameters. Additionally,
we would like to apply active learning to improve and sharpen our overall scoring performance.
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