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ABSTRACT

This paper focuses on an autonomous tactical sensor tasking policy where specific hypotheses of interest are resolved using
Dempster-Shafer theory. Optimal and unbiased hypothesis resolution is achieved by means of the Judicial Evidential Reason-
ing algorithm. Dynamical anomaly and custody hypotheses are resolved for a subset of station keeping GEO spacecraft. Evidence
for anomaly and custody are quantified using Mahalanobis distance binary detection methods and reachability theory, respectively.
Through a Monte Carlo design of experiments, the accuracy and robustness of the algorithm is studied to specified confidence
levels. Lastly, the tasking algorithm is demonstrated in real-time on a Raven-class telescope.

1. INTRODUCTION

There is a warranted concern for the safety of current and future space-assets as a result of an increasing number of
Earth-orbiting objects. To guarantee the safety of future space missions and operations, for commercial or scientific
reasons, it is imperative to understand and predict how space object (SO) states evolve [1, 2]. To improve the decision-
making processes, evidence of threats or hazards need to be identified in a timely manner. An area that could improve
the detection of threats and hazards is that of telescope tasking. In particular, the above-mentioned goals motivate a
need for predictive rather than reactive telescope tasking [3].

Early tasking methodologies optimize information theoretic measures to reduce global system uncertainty or state
estimate covariances [4, 5]. The tasking problem has also been solved as a Markov Decision Process (MDP) in the
information-space, using a receding-horizon control approach [6]. Linares and Furfaro formulate the optical tasking
problem as an MDP that is solved using reinforcement learning to minimize system uncertainty [7]. A more recent
method uses Rényi Divergence and labeled multi-Bernoulli filters to construct a reward function for multisensor task-
ing [8]. Lastly, a new survey strategy was developed that uses space object coverage and a weighted sky area approach
to solve an optimization problem [9]. These strategies can be said to acquire observations that improve global state
estimates which enable the resolution of unknown-unknowns by accumulating and post-processing a large amount
of data [3]. Note that these strategies are more reactionary in nature. However, how one uses a suite of sensors to
resolve known-unknowns, or predictive tasking, is of interest as it links SSA hypotheses directly to sensor manage-
ment. DS theory is suitable for such tactical problems and is the focus of the presented telescope tasking problem
solution, which is hypothesis-centric. Past work has been completed using Dempster-Shafer (DS) theory for tasking
or decision-making problems [10, 11].

In [10], a general evidence-gathering algorithm that resolves hypotheses is introduced, using a cost function that re-
duces both non-specificity and ignorance, driving the algorithm to select actions that uniquely resolve the true element
of the frame of discernment by minimizing by reducing using JirouSek-Shenoy (J-S) entropy [10, 12]. This paper
extends the capabilities of Judicial Evidential Reasoning (JER) and applies it to a real telescope system. Ensuring the
successful implementation of such a tasking algorithm is multi-disciplinary and requires many components working
together. JER is combined with estimation and reachability techniques to form a tasking algorithm that is able to
evaluate and execute action sequences for optimal hypothesis resolution. In particular, the algorithm is updated to be
purely driven by the system’s belief states. Two important aspects related to the maintenance of space situational and
domain awareness are the ability to maintain SO custody and discern dynamical anomaly. Custody maintenance is
important for real-time status monitoring while inferring dynamical anomalies is required for object re-acquisition and

Copyright © 2020 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) — www.amostech.com



to conjunction event prevention. These two tasking objectives can be formulated in a frame of discernment using DS
theory. To resolve these hypotheses, evidence for each has to be quantified.

This work redefines a Mahalanobis-distance binary detection method, specifically for Gaussian distributions, to quan-
tify evidence for anomaly. Custody is quantified using position reachable set over-approximations and is maintained
for a narrow-FOV telescope if the position reachable set approximation is contained in the telescope’s FOV. If the
reachable set is not fully contained in the FOV, there exists a possibility that custody has been lost, favoring a search
through the reachable set. The over-approximation is obtained by finding the maximal radius of the position reachable
set and is updated for each SO in the observation campaign using continuation methods. The result is a telescope task-
ing algorithm that is driven to maintain custody by preventing position reachable sets from becoming too large while
simultaneously detecting maneuvers.

A Monte Carlo study is designed and implemented to determine the accuracy and robustness of the algorithm to a
specified statistical confidence level. SOs in the public SO catalog are modeled to perform aggressive North-South
(NSSK) and East-West (EWSK) station keeping. With the use of confusion matrices, false-positive and false-negative
classification rates are quantified. In terms of anomaly detection, it is found that reducing false-negative rates is most
desirable for custody maintenance. Results show custody is maintained for all observable spacecraft in the Monte
Carlo simulation.

In addition to presenting robustness in simulation, a successful and empirical real-time demonstration of the JER task-
ing algorithm is shown for a Raven-class telescope. This requires several working hardware and software subsystems.
A telescope infinite-horizon LQR mount controller is used to open-loop track TLEs from the public catalog using
TheSkyX Software. Image processing is used to background subtract, detect, track, and discriminate SOs of interest
through the use of blob detection and a GM-PHD multi-target tracking algorithm. Topocentric right ascension and
declination measurements are used with an Unscented Kalman Filter to estimate SO inertial states. The real-time
demonstration resolves the custody and anomaly hypotheses for a combination of North-South and East-West station
keeping GEO satellites.

This paper contains a number of contributions relating to the application and extension of the JER tasking algorithm
for space situational awareness. First, a new maneuver detection method using Mahalanobis distance is presented.
Second, new evidence to hypothesis belief mappings are formulated that result in a purely belief and reachability
driven algorithm. Third, the robustness of the algorithm is demonstrated through a Monte Carlo simulation given
specified confidence interval significance levels, that evaluates success and fail rates. Lastly, the algorithm is interfaced
with existing observatory hardware to resolve the listed hypotheses using optical data in real-time.

2. THEORY

2.1 Dempster-Shafer Evidential Reasoning

An advantage of DS theory is its ability for reasoning with epistemic uncertainties, as one can model degrees of
support for a particular proposition, given a piece of evidence. This can simplify decision-making by using Dempster’s
combination rule for aggregating independent pieces of evidence [13]. The theory allows one to pose and resolve a
hypothesis mathematically as well as model complete ambiguity and equally likely propositions differently.

Hypotheses can be formulated mathematically using the frame of discernment, that is, the available state-space of a
variable denoted by ®. The elements of the power set of @, 29, or the set of all subsets, are referred to as propositions.
By definition, the allowable state variables in the frame of discernment have to be mutually exclusive and collectively
exhaustive, implying that only one element of the frame of discernment can be true [13]. For a given frame of
discernment, ®, the basic probability assignment (BPA) function m assigns degrees of belief or support to particular
elements of the power set 2€ and is defined as

m:29—10,1] (1)

m(0) =0 (2)
Z m(a) = 1. 3)
ac2®

The constraint in (3) enforces the mutually exclusive and collectively exhaustive property. The quantity m(a) is the
basic probability mass of set a, and is interpreted as the belief assigned exactly to a, not its subsets. Additionally, (2)
enforces that no belief is committed to the null set.
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Two BPAs m; and m;, representing distinct pieces of evidence, can be combined to form a new aggregate BPA m| & m;
using Dempster’s combination rule [14]:

(m1 ®my)(a) =K Y my (by)ma(b2) )
bl,b2€2® :biNby=a

where K is a normalization constant given by:

K=1- Z my(b1)ma(b2) )]
b|7b262® : biNby=0

Using DS theory, the anomaly hypothesis is defined with the following frame of discernment:
04 ={N, o}, (6)
where N and <7 denote nominal and anomalous, respectively. The power set of the frame is:
2% = {0, {N} {o/}.{N, o/ }} ©)
Similarly, the custody frame of discernment is paramaterized by C, denoting custody, such that
Oc ={C,~C}, (8)

where its corresponding power set is
29¢ = {0,{C},{~C},{C,~C}}. 9)

As mentioned, the power set denotes the propositions for each frame of discernment and DS theory allows one to
specify probability mass directly to elements of these sets of all subsets. Pieces of evidence are then used to obtain the
true anomaly or custody status in the frame of discernment.

2.2 Judicial Evidential Reasoning

Fundamentally, JER evaluates and selects actions that best resolve a set of hypotheses. The algorithm iteratively
evaluates action paths that gather multiple pieces of evidence to resolve hypotheses to a reasonable tolerance [10].
Different decision paths are compared to each other via an appropriate cost function. In this work, Jirousek-Shenoy
(J-S) entropy, which is interpreted as a measure of total uncertainty in a BPA, is used. J-S entropy is maximum for
vacuous BPAs that represent complete ambiguity or ignorance, which occurs when all of the belief mass is given to
the frame of discernment such that m(®) = 1, representing a complete lack of knowledge of which element a € © is
true. Minimizing J-S entropy is directly equivalent to identifying the true proposition in a frame of discernment. J-S
entropy then becomes an appropriate measure, or objective function, to be minimized for the purposes of hypothesis
resolution.

We can use multiple hypotheses, or frames of discernment, resulting in the set ® = {@y,...,®,}, where @, is an
individual hypothesis of size |®,|. A discrete-time set, t = {#, #+1,..., fx+1}, is considered at which sensor actions
can be taken. The set of available actions at time 7; for sensor j are given by the following index set A, ={1,...,n4 ;},
where ny ; is maximum number of available actions. Under the assumption that a given sensor can only perform one
action at a time, the available actions for sensor j throughout the time horizon #; € {t,...,f+7} is

Aj:Aj’;kX“'XAj (10)

kT

Given a sensor network, the set containing all possible action sequences of the network is obtained by taking the
Cartesian product of (10) over all sensors, s, yielding

A=A x - x A, (11)

Generally, the objective is to obtain the action set, A € 2 for s sensors that minimizes the J-S entropy, Hjs, which is a
function of the states in the frames of discernment. Additionally, a weight, wy, is designated to specify the priority for
resolving particular hypothesis ®,. As such, the optimal action sequence for the network of sensors is given by
<] .
A" = argmin Z wiHs(®p), @, € © (12)
Ael p—1
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Actions lead to pieces of evidence in the form of observations and processed data. When the evidence is combined
using the conjunction rule, an accrued evidence BPA can be computed. Suppose the prior BPA is denoted m,, (1) BPA,
1y, () is the accrued evidence at time 7, related to hypothesis /, combination of these BPAs leads to a posterior BPA
my, (1)

my, (1) = my, (t) @ g (1y). (13)

Multiple pieces of evidence can be gathered at a single time index if multiple sensors are used. A given sequence o
directly leads to sets of evidence. Since optimizing (12) is non-trivial, the original formulation is broken down into
a sub-problem using adversarial optimization for computational tractability. An efficient action tree is constructed
using alpha-beta pruning. An alternating agent approach is adopted using minimax and maximin optimization [10].
By finding and implementing action sequences that are proposition selfish, one gives equal opportunity to opposing
agents to build a case for or against a particular proposition. This approach reduces confirmation bias and limits
convergence to erroneous propositions. More details regarding JER can be seen in Jaunzemis’ prior work [10].

To capture the changing belief states over time, the JER algorithm is implemented using a receding time-horizon
approach. Consequently, the first actions in &* are implemented and the full process is repeated again for the next time
step. The actions change the next iteration’s initial conditions, providing the necessary feedback for the algorithm to
resolve all of the hypotheses.

2.3 Binary Hypothesis Detection

Given a reference trajectory, a state estimate, and associated PDFs, deviations between the estimates and the reference
can be used to quantify evidence for the anomaly hypothesis, which can be caused by un-modeled perturbations or
maneuvers. This hypothesis is particularly important as SOs in anomalous orbits can compromise the safety of other
active assets. Let the null and alternate hypotheses be denoted by 74 and 7], respectively. If the PDFs of these
hypotheses are known, a pre-defined false alarm level, 7y, allows one to perform a binary hypothesis test to detect
anomalies [15].

The purpose of anomaly detection in this paper serves to identify maneuvers or mismodeled dynamics. The null
hypothesis is modeled by a nominal (non-maneuvered) PDF, f,(x,(¢); p), which is constructed from an uncorrelated
track (UCT) at time #y. This can also be constructed from the last available state PDF. Conversely, the anomalous
(maneuvering) PDF is given by f,(x,(¢); p), and is constructed by successively updating the nominal PDF with
measurements via the UKF. Under the Gaussian assumption, it is only of interest to estimate the first two moments of
each PDF via the unscented transform [16]. Figure 1 demonstrates the various possiblilities, where there are two SO
state distributions, given by uncorrelated tracks at #p, which diverge from the nominal trajectory by different amounts.
SO 1 in the diagram is likely nominal, due to a large overlap in the nominal and anomalous PDFs, whereas SO 2 is
likely anomalous due to the reduced overlap in the Null and alternate hypothesis PDFs.

fa, (x1(tr), tr)

fﬂz(xz(tf)wtf)
‘\""'—" Efx, (¢1)]
fra(x2(t0), t)
' Sra(x2(t), t5) E[xy, (t)]

Fig. 1: Illustration of telescope tasking for anomaly resolution. One spacecraft is nominal and the other is anomalous,
as per binary hypothesis detection methods.

Consider the random vectors x,,,x, € R, representing the nominal and anamolous true state vectors of an SO. Under
the null hypothesis .7%), one expects the anomalous and nominal random vectors to be similar, because there is no
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statistical evidence that would suggest a dynamical anomaly has occurred, so
Xn (1) 22 Xa(1) (14)

Another random vector can be defined as
A = x,(t) = x4(t). (15)

If the assumptions for the nominal and anomalous random vectors are assumed to be Gaussian, the PDF of A is
A~ N(E[xa(t)] — Elxa(t)], Pu+Fa) (16)
As such, under the null hypothesis, one expects this random vector have the following distribution:
A~N(Ogy1, 2P,). (17)

If the alternate hypothesis is true, then the expected value E[A] # Ogy | and P, # P,. As such, in a similar fashion to
[15], Mahalanobis distance (MD) can be used to construct a scalar PDF to compare the .74 and .74 PDFs.

Using the PDF in (17), random vectors can be sampled, yielding A;, under the assumption the Null hypothesis is true.
Then, the following MD can be computed for each sample

1

2

di = ((Ai—E[A%})T ) (Ai—E[A%D) | (1)

where, E[A| 7] is the expected value of A, given the Null hypothesis is true. Similarly, the MD of a random vector
sampled from the alternate hypothesis PDF in (16) is desired, which are denoted A;. Then the MD of these samples
with respect to the Null hypothesis is computed using

= (B~ EialA) " 28) ! (B EiALA) ) (19)

With enough samples, numerical PDFs for the null and alternate hypotheses, fo(d) and fi(d), respectively, are con-
structed in terms of MD d. Thus, a binary hypothesis test can be performed given a pre-defined significance level. The
probability of false-alarm and detection can be computed numerically as:

Pra= / " fu(s)ds (20)
Dy = / " fuls)ds, 1)

where v € R>( represents the Mahalanobis distance variable at a given significance level ¥ € (0,1]. Then, if p; >
Pthresh = 1 — Pen (), the null hypothesis is rejected for the alternate hypothesis. We define the binary variable p, such
that

(22)

_ 0, pa < Pthwesh
Pn=
1; Pd > Pthresh,

which is used for quantifying evidence later using Dempster Shafer theory. Note that (18) will be Chi-squared by
definition with degree of freedom k = 6, though (19) is not. As E[A] — 0 and P, — P,, the binary hypothesis test
indicates a state is nominal.

2.4 Spacecraft Reachability

Custody maintenance requires having an understanding of when an SO is performing a maneuver and accurately
modeling the dynamics of such an object. A poor understanding of dynamics can result in loss of custody. Similarly,
if an object maneuvers, which is a special case of mismodeled dynamics, custody can also be lost as the object cannot
be tracked with appropriate observation instruments. One way of compensating for such a lack of knowledge is by
computing hypothesized forward reachable sets of the object under the assumption of a control policy. In this paper,
the SOs of interest are geostationary (GEO) satellites, in almost circular orbits with very low inclinations. For a
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pre-specified time-horizon, an initial condition x, and an admissible control set %, the reachability problem can be
expressed as an optimal control problem of the following form

1
max fx; Gxy

wew 2
s.t. x=f(x,u,t) (23)
g(x0,t0) =0,

where the initial manifold g(xo, 7)), in this paper, is given by an ellipsoidal set. The resulting forward position reachable
set, the set of all possible states a system can have given an initial set and a specified time-horizon, is formally defined
as

RH(tr; U, f.8,10) ={xp €R": Vu(t) € %, g(x0) <0, xp = §u(t; X0, P to), t € [to, 7]} (24)

As aresult, any state outside of the forward reachable set is not physically attainable by the system with the admissible
controls 7% . In this paper, the set given by (24) is over-approximated for the purposes of telescope tasking, by means of
a 6-dimensional sphere [17]. By assuming that a maneuvering or non-maneuvering spacecraft is using optimal control
to maximize the reachable distance from some initial set, we are tasking telescopes for a worst case scenario.

Instead of computing the entire position reachable set, in this work, we compute the reachable distance along a pre-
specified direction. Then, numerical continuation is used to update this maximum reachable distance as a function
of the time-horizon, 7', which amounts to integrating a set of differential equations [18]. The existence of a maximal
radius for the position reachable set, given a pre-specified time-horizon, is established in [17]. Thus, the maximum
reachable distance along d is dr = ||H(xf —06x1)|| = ||Hx¢|, where H = [I3x3,03x3] " is the matrix that projects the
6-dimensional states onto the position subspace. Given a bounded radius dy, an over-approximation of the position
reachable set is constructed by the set

By, (x) ={x¢€ R® : ||Hx| <dy}. (25)
Hence, if the position subspace is denoted by & C R3, then
proj» (%) ={y € R’ :y=Hx, Vx € R(t;:% . f.g.10)}- (26)

It is easily shown that proj (%) C proj(Ba,), i-e. the position reachable set is wholly contained in (25). This is
particularly useful as a bounded set can be searched to maintain custody of an SO. For each SO, numerical continuation
is used to update (25) as a function of time horizon.

2.5 Reachability-based Custody BPA

The position reachable set is the projection of the full-state reachable set onto the position subspace, even though
velocity variables are still considered in the reachable set computation. In this paper, only the position subspace is
relevant for a telescope trying to observe the spacecraft. The velocity at a given moment may be important for the
anomaly detection, but the position reachable set is what matters for maintaining custody. This section discusses how
the reachable set over-approximation relates to custody maintenance.

Given the telescope’s FOV, paramaterized by angle 6, and the estimated range vector from a ground station to the
spacecraft
p=%x—xg 27)

the maximum distance a telescope can view away from X, i.e. the estimated trajectory, along the sensor plane is
drov = ||p||sin(6). (28)

Clearly, the scalar drgy € R>g is a function of the range vector. For high altitude orbits, droy is large since a large
vector is swept by angle 8, whereas for low altitude orbits, droy is small. In this paper, a new definition of custody
is introduced, such that when the position reachable set is projected onto the image plane, if it is wholly contained in
the telescope FOV, custody is guaranteed over that time-interval. In other words, no portion of the reachable set lies
outside of the FOV. The area of the projection of the over-approximated reachable set By / (x) onto the sensor plane
is then given by A, = ndj%. When dy > droy, a portion of the projected reachable set lies outside the FOV, as seen
in Figure 2b. Conversely, when dy < drovy, this indicates that the reachable set is fully contained in the FOV, hence
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A, < Aropy, where Aroy is the area of the FOV on the image plane computed using (28). This is shown in Figure 2a.
The areas can be computed by projecting each set onto the the image (sensor), which is then used to determine the
degree of custody a telescope has with respect to an SO and its position reachable set. Hence, the area of this projected
set is

(29)

0, A, <Arov
nout A, —Arov, Ar>Arov.

Naturally, the larger A, becomes, the less likely custody can be maintained i.e. as A,.,,; — o, p. — 0. Conversely,
A, 0w = 0 suggests the probability mass for custody, p. = 1. As such, an area-based basic probability mass measure,
pe € [0,1], is constructed that represents the degree to which custody is maintained, summarized by the following
equation

(30)

Ar.uur

1, Ar <Arov
Pc=
A, Ar > Arov.

Fov Fov
S A>0
i 1 A >0! ]
{ d 1 r \ ]
\ \ / \ \ 1
Ao Arov
Ar,nut =0 Ar,out >0
(a) Ay our = 0: Full custody probability mass (b) Ay, our > 0: Reduced custody probability mass

Fig. 2: Custody Scenarios Based on Maximum Reachable distance d¢

2.6 Evidence to Hypothesis Mappings

One of the goals of the paper is to ensure that the size of each spacecraft’s reachable set drives the tasking algorithm
to perform different actions. The telescope’s FOV will determine how many distinct actions are required. If multiple
objects of interest can be seen in one image, less independent actions are required to resolve their hypotheses. It is
assumed that each telescope has two available actions, namely, tracking or searching for an SO of interest. If there are
N SOs of interest, then the action at time #; for a given sensor j, is a function

Aj, ={0,T,S}, (31)

where track action, T, results in the telescope tracking and observering the nominal trajectory of a desired spacecraft
through the use of the predicted estimates. The search action, S, searches the over-approximated reachable set. This
search occurs around the nominal (predicted) trajectory, since the reachable set is computed in terms of relative states
with respect to the estimate mean.

The impact a given action has on the belief state needs to be quantified. We have already quantified the probability
mass p. that custody can be maintained in (30), which is the custody probability conditioned on the SO being on a
nominal trajectory. This occurs when a tracking action is chose, such that p. = p.r. The alternative is the custody
probability conditioned on a search action, p.s. By definition, the state of the SO should be a member of the over-
approximated reachable set, thus, searching the reachable set leads to custody re-acquisition, hence p.s = 1. As such,
Pe|r < Pejs = 1, which makes searching a desirable action when p. 7 << pjs. This probability measure is used to
create a BPA for the custody hypothesis that depends on the action taken in A ; ;.. Additionally, the probability measure
is scaled by the probability of detecting an SO in optical data, p; [19].

Copyright © 2020 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) — www.amostech.com



2.6.1 Planning BPAs

The BPAs in the planning phase use the custody probability mass to form a gain-scheduling method to appropriately
select tracking or searching actions. The BPA must adhere to (1) [13]. For a given custody hypothesis @¢ € © the
planning BPA is

Mo ({CY) = pa P is({C}) = pa (Pejs = Per) = pa (1= pyr);

(32)
c|T(®C) =1- C\T({C}) ‘S(®C) - 1 c|S(®C)

where n%;‘ denotes the BPA affecting the custody hypothesis given a particular planned action. These BPAs encode
the impact of a tasking action on the custody hypothesis. The custody search action BPA is constructed such that
when p, 7, is low, search actions are prioritized. Conversely, when p,|r is high, search actions are minimized, as they
reduce JS entropy less than tracking actions, resulting in a gain-scheduling-like method to prioritize certain actions at
different times.

On the other hand, when resolving the anomaly hypothesis, the size of the over-approximated reachable set does not
provide any indication of whether or not an anomaly may have occurred, as such, the probability measure that an SO
is nominal, p, = p,r = py|s.- Thus, given an anomaly hypothesis @4 € O, the planning anomaly BPA is

ity ({N}) = pa pn peir iy s({N}) = pa pn (1 = i)
i, ({A}) = pa (1 = Pn)Pe|T i, s({A}) = pa (1 = n)(1 = pepr) (33)
i (©4) = 1= sy ((NY) =iy ([AD), g (©4) = 1 =i g ({N}) =y ({A})

where n%;‘ denotes the BPA affecting the anomaly hypothesis given a particular action, p4, p., and p, are the proba-

bility of detecting an SO in a given image, the probability of maintaining custody, and the probability of an SO being
nominal, respectively. Not that unless p; = p. = p, = 1, belief is always given to the frame of discernment @.

2.6.2 Execution BPAs

When an action is selected and executed in a receding-horizon manner, the evidence has to be quantified in terms of
a coherent BPA. Then, the gain-scheduling terms are removed as the evidence quantification is the same whether a
tracking or search action is chosen i.e. the evidence is purely a function of acquired measurements, which leads to

(€)= pa i ((AY) = pa (1 pa)
L,T< o) = 1—iit, ({C)), an( 0 =1- W({N} i ({AD)
gs({CH) = pa asUND) =pa (34)
C\S< ¢) = 1—1g(®c) a|5<{A}> — pa <1 )
i (N) = pa p i (©4) = 1 =g ({N}) = ({4})
where 7!, ol and m ‘ denote the BPAs affecting the custody and anomaly hypotheses, respectively,given a particular

executed action. It should be noted that in this work, no basic probability mass is given to the no custody proposition,
—C, which forces the algorithm to always maintain custody of the desired SOs.

3. METHODOLOGY

3.1 Monte Carlo Study

To test the robustness of the algorithm to varying cases of anomaly, a Monte Carlo study is completed. For this
study, like the demonstration, initial orbit data is acquired from the Space Track catalog [20]. Only one input is varied,
namely, each SOs assumed maneuver duration 7. This represents the time-horizon a spacecraft uses optimal control to
maximize its reachable distance in the along-track, dg, and cross-track directions, 0, which are related to East-West
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(EWSK) and North-South (NSSK) station keeping maneuvers. This represents a realistic scenario current ground
stations have to face.

However, in this paper, the maneuvers are modeled to be more aggressive since in traditional operations, spacecraft
do not use optimal control to maximize the reachable distance in the along-track, 0g, or cross-track, oy, direction, to
perform EWSK or NSSK. Instead, it is assumed that each spacecraft is continuously maneuvering to maximize its
reachable distance from its nominal trajectory. By sampling maneuver times, the reachable set is effectively sampled
to initialize anomalous spacecraft.

The most important outcome of the simulation is to determine classification accuracy. For statistical classification
tasks, there are various measures of performance, succinctly summarized by a confusion or error matrix. A typical
measure is accuracy, defined as:

TP+TN

A =
Ay = TP F TN+ FP+FN’

where TP, TN, FP, and FN are the true positive, true negative, false positive, and false negative rates of the experiment.
Accuracy represents the ratio of successful classifications to number of trials. To get a statistical strength on the Monte
Carlo’s measurement of accuracy, a minimum number of experiments or trials are required. In particular, denote
accuracy by p, like the probability of success in a Bernoulli trial. It is reasonable to assume that p will be normally
distributed, by the law of large numbers. As such, given a desired confidence interval width, w, and a significance-level
o, zg can be found for a standard normal distribution. Then, the required number of runs is

(35)

Za\ 2
nyc = () (p—p?) (36)

w

where w is the desired half-width of the confidence interval, p is the estimated accuracy, and zg is the % percentage

point of the standard normal distribution [21]. The number of Monte Carlo runs, nyc, depends on the expected
accuracy. Note that p = 0.5 maximizes the number of runs, so this is used to get an upper bound on the necessary
trials. If w = 0.02 = 2%, o0 = 0.05, z¢ = 1.96, and thus, ny;c = 2412. For each JER simulation, the ground station is
tasked to resolve two hypotheses for 12 SOs at a time. This leads to 201 necessary JER simulations.

The assumed maneuver duration 7 is sampled from a uniform distribution TO ~U [T}, T,], where T;, and T, are the
lower and upper bounds of the time-horizon uniform distribution, and are chosen to be 7; = 10 min. and 7;, = 4 hours.
In this simulation, it is assumed that 7;, hours have elapsed since the satellites were last observed by another ground
station. By using the prior covariance ellipsoid as the initial set, the ground stations reachable sets are computed at
the time the JER tasking algorithm is initialized, and again, 7, is used to constrain the maximum size of each reach
set. Table 1 highlights a summary of the MC related parameters. Since continuous-time optimal control is used to
compute the position reachable set over-approximations, the thrust capability, parameterized by u,,, is chosen for an
electric-propulsion class spacecraft with a mass between 500 — 1000kg.

Table 1: Monte Carlo Parameters

Ngm T; (Hours) T, (Hours) u, (km/s?) Pry
201 0.17 4 1x10~%  [0.05, 0.1, 0.15]

As mentioned in section 2.3, a non-maneuvering (quiescent) PDF and the updated estimate’s PDF are used to discern
anomaly using a binary hypothesis detection method. Since the PDFs are assumed to be Gaussian, their mean and
covariance matrix are required to fully characterize the PDFs and use the anomaly detection method. Both the nominal
(non-maneuvering) and estimate covariances, Py, and P, are initialized with position variance 0, and velocity variance
0y, yielding:

P, =P, :diag( Gg 143, sz 1143 ) 37

where 0, = 15 km and 0, =2 ms~!. The remainder of the paper assumes that P* = P,. The true state for SO i is
sampled from the 20 covariance ellipsoid centered at the state estimate mean, such that

Xeoi~ N (X5, B) ). (38)
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The GI% and ¢ values are chosen to be related to nominal Geostationary slot sizes, which are nominally separated by
some minimum angular separation, resulting in a Cartesian separation of roughly 100km. Then, ¢, is chosen such that
30, ~ 100 km. Thus, the nominal PDF assumes that spacecraft are in their respective GEO slot. For the purposes of
the Monte Carlo study, it is assumed that the i/ SO’s nominal reference trajectory is centered in its GEO slot and the
true states are thus sampled from the interior of the GEO slot.

3.2 Hardware

For this particular demonstration, a Raven-class telescope called the Georgia Tech-Space Object Research Telescope
(GT-SORT), located in Midtown, Atlanta, Georgia, USA, is used. Software Bisque’s Paramount ME II telescope
mount is used to control the pointing with TheSkyX Professional Edition software. Interfacing the JER code and
incorporating telescope and camera control modules requires custom made scripts developed in Python. Two optical
sensors are used, namely, the ZWO AS I071MC Pro (color) and ZWO ASI174MM-Cool (mono) cameras. The
cameras are used for the telescope and finderscope, respectively.

Regardless of whether a search or track action is selected, images (observations) are taken with the main telescope and
finderscope cameras. These are processed to acquire RADEC measurements, which are fed to each SOs UKF. Table 2
shows the GT-SORT and finderscope optical performance characteristics.

Table 2: Electro-Optical Sensor Parameters

Sensor Focal Ratio  FOV (arcmin.)  iFOV (arcsec.) Lim. Mag.
Telescope /6 25.56 x 16.98 0.31 12.9
Finderscope /2 287.58 x 181.38 8.127 12.06

A summarized process highlighting the JER algorithm for the demonstration is presented in Figure 3. This purposely
resembles a control flow diagram, where the actions are based on the current belief states. The receding horizon
approach results in the first action being selected and executed. The measurements over an action interval are used
to quantify the evidence as highlighted in section 2. A BPA is formed for each piece of evidence, which are then
combined, updating the belief states for each hypothesis. After initialization, the observation campaign ends when all
of the hypotheses are resolved, or, the JS entropies are below a pre-defined threshold [22]. For additional details on
the hardware implementation, see [22, 23].
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Fig. 3: Hardware/Software Telescope Logic

Moreover, the light pollution in the city makes star detection challenging with narrow FOV telescopes see Figure 7b,
which has limited star streak detections and noise in the center of the frame. In contrast to telescope rate-tracking, SO
or object tracking must be done from image frame to frame using a Gaussian-Mixture Probability Hypothesis Filter
[24], readily available from previous lab projects, to detect and track the object between measurements. This is a high
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SNR multi-object tracking algorithm that uses multiple particle filters to track objects across several image frames.
Once a measurement is obtained, the pixel-coordinates of the SO are mapped to the finder scope’s pixel coordinates.

4. RESULTS

The results obtained from the theory and hardware contributions are discussed in this section. Initially, a specific
simulation from the Monte Carlo batch is presented. Subsequently, the general outcomes from the Monte Carlo study
are discussed and lastly, the results obtain in the empirical demonstration are shown.

4.1 Specific Simulation Case

In this simulation, the ground station is tasked to resolve the anomaly and custody hypotheses for 12 SOs, all of which,
are initialized as vacuous or fully ambiguous, hence H;(®;) = 1, VO, € @. The corresponding receding-horizon, or
executed, tasking schedule can be seen in Figure 4. The two types of action at any given action interval are labeled
as “Track’ or ’Search’ in green and red, respectively. The observation campaign starts at 02:57:00 UTC and ends at
04:57:00 UTC, lasting a total of 4 hours. When the JER algorithm converges and resolves all of the hypotheses, no
further actions are necessary, hence the telescope is 'Idle’ for the remainder of the time-horizon.

The result of the gain-scheduling clearly takes effect, hence first search actions are used on spacecraft with very large
dy. Using (28), if the telescope’s FOV is parameterized by 6 ~ 0.283°, for SOs in GEO, one obtains d,, ~ 172km.
As such, when dy < dy,,, when the over-approximated reach set is fully contained in the FOV, tracking actions are
selected. Conversely, when dy > dy,,, which implies A, # 0, search actions are selected, which can be seen in
Figure 4. The maximum reachable set radius as a function of time for each spacecraft is visible in Figure 5.

Track Search Unobs.

oie M

AMC-2 (GE-2) 1

INTELSAT 5 (PAS 5) 4

AMC-3 (GE-3) 4

INTELSAT 901 4 L J

AMC-18 +

GALAXY 17 4 ‘

STAR ONE C2 4 [ ‘

GOES 14 + ‘

MORELOS 3 4 ‘ L

INTELSAT 29E ‘

ECHOSTAR 19 4

ALCOMSAT 1 ]

Fig. 4: Sample Simulation Telescope Schedule
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Fig. 5: Maximum reachable distances of 12 SOs over time. Mean reachable distance decreases as space objects are
re-acquired by a telescope and custody is maintained.

4.2 Monte Carlo Study

Whereas the previous sections discussed one specific simulation and the results of the empirical demonstration, this
section discusses the results obtained from analyzing the designed Monte Carlo experiment. A total of 201 simulations,
with twelve SOs per run, are used to obtain results with the pre-defined statistical confidence level. A variety of
significance levels, ¢, are considered for the binary detection method, directly resulting in particular probability of
false alarms, py,. The overall accuracy of the algorithm, given the current BPAs and models, are summarized in
Table 3. The algorithm correctly classifies, or resolves, the majority of hypotheses. This indicates the evidence to
hypothesis mappings perform as designed. In general, ps, = 0.1 resulted in the highest accuracy, though there is no
clear relationship between accuracy and the chosen probability of false alarm.

Table 3: Monte Carlo Results

Pra  Misclassification %  Accuracy % Custody Maintenance %

0.05 0.0554 0.9446 100
0.10 0.0364 0.96356 100
0.15 0.0407 0.9593 100

The Monte Carlo results are also summarized through the use of confusion matrices per Monte Carlo significance
level, visible in Figures 6a - 6¢. Since most hypotheses are correctly resolved, the diagonal entries in the confusion
matrix, which represent true positive (TP) and true negative (TN) rates are high. Enlarging the significance level o
for the given binary detection method, increases the probability of false alarm for the various anomaly detections,
resulting in an increase in the number of overall false-positives. This is directly visible across 6a - 6¢ in the lower left
quadrant. Likewise, the false-negative rate decreases as the probability of false alarm is reduced, seen by the upper
right quadrant. This shows the immediate trade-off between false and missed detections upon specifying a particular
significance level for a binary hypothesis detection method.
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Fig. 6: Confusion matrices for larger binary detection false alarm probabilities.

Discerning which probability of false alarm is preferable is contextual. There will likely be a ‘best” pr, > 0 that is a
balance of false-alarm and false-negative rates. In the case of maintaining custody of spacecraft, an important aspect
of SSA and SDA, higher false-negative rates may be preferred. If the true dynamical state were anomalous, and the
JER algorithm discerns it to be nominal, custody would likely be lost in the future as the spacecraft will diverge from
an observer’s estimated trajectory. Hence, for custody maintenance, it is preferable to have higher false negative rates
as a conservative measure, to ensure custody is maintained well into the future. Given the considered probabilities of
false alarm, overall accuracy, and false-positive to false-negative trade-off, the intermediate p s, = 0.10 is preferred.

4.3 Demonstration Scenario

An additional objective of this paper is to empirically validate and expand the JER algorithm’s capabilities. The
case and complexity to which JER is subjected relies heavily on the SOs that are considered in the experiment. The
empirical validation was posed to be challenging and relevant to the SSA community at large. Many important SOs
of interest lie in GEO due their cost and impact on civil and commercial infrastructure. As such, a total of 3 GEO
satellites are selected, namely, ANIK G1, ANIK F2, and GOES 14. GOES 14 performs East-West station keeping
maneuvers only. ANIK F2 uses continuous thrust capabilities and ANIK G1 performs North-South and East-West
station keeping. These three objects are active and use different kinds of maneuvers periodically, which makes them
suitable objects to consider for the anomaly and custody hypotheses.

4.4 Demonstration Results

For the purposes of the demonstration, the time-varying maximal distances, dy, were neglected since the TLEs or nom-
inal orbits of the GEO spacecraft were updated right before the observation campaign, resulting in very small maximal
dr. Hence, by design there never is a need to search. Instead, a static and maximum reachable set radius is used with
a magnitude of dy = 150 km for each SO. In angle-space this corresponds to a 0.24° error from a nominal orbit for
GEO spacecraft. Recall that the smaller dimension of the FOV of the telescope is 16.98 arcmin = 0.283°, thus the
spacecraft reachable sets are fully contained in the telescope’s FOV at all times over the course of the demonstration.

The obtained results are from an observation campaign on October 30, 2018, during Atlanta’s GEO glint season,
providing adequate conditions to detect and track GEO satellites. A time-horizon of two hours is given to the JER
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algorithm, though the algorithm was able to resolve the hypotheses in less than an hour. The action intervals are fixed
and 3 minutes long. A total of 16 actions are taken in the demonstration, totaling up to 48 minutes of observation
time. Every satellite is resolved as nominal since the deviations with respect to their nominal trajectories are small in
magnitude. The results from the GM-PHD filter tracking ANIK F2, GOES 14, and ANIK G1 are visible in Figures 7a
-7c. Blue squares, if any, are SOs that the GM-PHD multi-target tracking algorithm monitors frame to frame but are
not associated to the SO of interest, which is shown by the red square.

(a) Inverted Image of the Telescope FOV. (b) Inverted Image of the Telescope FOV.
GM-PHD Tracking ANIK F2 on Oct. 31, GM-PHD Tracking GOES 14on Oct. 31,
2018 2:03:08 UTC. 2018 2:05:35 UTC.

(c) Inverted Image of the Telescope FOV.
GM-PHD Tracking ANIK G1 on Oct. 31,
2018 2:08:38 UTC.

Fig. 7: Anomaly and custody beliefs and plausibilities.
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Fig. 8: GTSORT Optimal Action Sequence (Schedule)
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Fig. 9: Empirical demonstration hypotheses have monotonically decreasing JS entropies over the observation cam-
paign.

As the belief in a particular proposition of the frame of discernment increases, the J-S entropy decreases, since the hy-
potheses are incrementally being resolved. The total uncertainty in the system, in terms of conflict and non-specificity,
is being driven to zero. This suggests that a BPAs belief mass is increasingly being given to a singleton proposition in
the frames of discernment, which is directly equivalent to resolving, or discerning, the true state of a hypothesis. This
is also visible in Figure 9, which shows how the entropies of each hypothesis decreasing over time.

5. CONCLUSION

This paper presents novel contributions related to Dempster-Shafer theory-based telescope tasking. It applies the
Judicial Evidential Reasoning framework on existing observatory hardware. A new anomaly or maneuver detection
method is presented and position reachable set over-approximations are used to enforce custody of a set of space
objects. Moreover, the algorithms performance and the manner in which belief is quantified is statistically analyzed
by completing a Monte Carlo simulation for various detection significance levels. The results show a robust method
that handles worst-case maneuver magnitudes and timing. Additionally, this methodology is implemented on a robotic
telescope, showcasing the successful demonstration of the algorithm for real electro-optical sensors. Importantly, the
results of this paper range from theoretical contributions to empirical ones showing a working proof of concept for
hypothesis-based sensor tasking using evidential reasoning and reachability theory.
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