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ABSTRACT SUMMARY 

The number of Low Earth Orbit (LEO) objects will TRIPLE in the next 2 years and collisional hazards will increase. 
The Machine learning Enabled Thermosphere Advanced by HASDM (META-HASDM) system is a collaborative 
project between Space Environment Technologies and West Virginia University. It will significantly reduce 
uncertainty in thermospheric density specification and will improve conjunction assessment as well as operational 
global space traffic management. META-HASDM, in particular, will aid with space weather forecasting technologies 
and techniques by providing: i) information for scientific and operational use via new machine learning (ML) 
algorithms; absolute atmosphere density at HASDM's current 2–10% uncertainty algorithmically; ii) predicted values 
for outside HASDM's historic time period; iii) improved LEO ballistic coefficients above 500 km; iv) dynamic 
uncertainties for HASDM, JB2008, and forecast drivers; and v) improved forecasts for solar and geomagnetic indices. 
In addition, META-HASDM already provides a new space weather benchmark with the two solar cycle SET HASDM 
density database that has been released publicly at https://spacewx.com/hasdm/ and accuracy, time resolution, and 
global scale, where no comparable dataset currently exists. In this paper, we report on the progress of META-HASDM. 

1. INTRODUCTION

The number of LEO objects will TRIPLE in the next 2 years and this stuns us. Behind this is the drive for a high-
speed internet, the life blood of our global economy and national defense. Commercial efforts, such as SpaceX’s 
Starlink constellation, but not limited to them, are hugely expanding global internet capacity in the next two years. At 
the time of this paper (September 2021), SpaceX’s Starlink has 1600 satellites in Low Earth Orbit (LEO) at 550 km 
with a goal of orbiting up to 42,000 total satellites in that region. In January 2019 there were already 34,000 objects 
in Earth orbit larger than 10 cm (a grapefruit) of which 2/3 of that population (23,000) was in LEO. 

The Starlink systems, along with all of NASA’s active satellites, will be joined by the entire satellite fleet that will see 
active management within of the emerging Space Traffic Management (STM) paradigm of the Department of 
Commerce (DoC). All these government systems, including NASA’s Conjunction Assessment Risk Analysis (CARA) 
program supporting conjunction assessment (CA), depend upon the functioning of one thing – the U.S. Space Force 
(USSF) Space Command’s High Accuracy Satellite Drag Model (HASDM). HASDM [1] is a data assimilative system 
combined with an empirical forecast model. It provides the most accurate atmospheric density and object locations to 
its users. However, it is only as good as its underlying uncertainty. Furthermore, the advanced utility of the HASDM 
model has not been available to most users outside the DoD and NASA CARA. 

The primary objective of this work is to provide a parametrized model of the thermosphere that is based on a recent 
public release of 20-years of HASDM data. We use machine learning (ML) to capture the principal modes in the 
available HASDM database and present them as an empirical model (META-HASDM) that can be used by a wider 
community. Another goal is to provide the percent error of atmospheric density, which has been identified as the key 
component needed to account for mismodeling of the current epoch and forecast atmosphere density [2]. Hejduk and 
Snow show in that work that if the atmosphere density uncertainty is known, then the square of that uncertainty can 
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be directly added to the normalized ballistic coefficient variance. The result is a probability of collision between two 
satellites that can be more accurately predicted, allowing operators to reduce false positive and false negative collision 
predictions. These operators are the end users like NASA CARA, NASA ISS, SpaceX Starlink, other agencies’ high 
value satellites, and commercial LEO satellites that will be working with DoC STM. Finally, HASDM neutral 
densities, and therefore the META-HASDM outputs resulting from this work, are calibrated by satellite drag 
observations via a specific drag coefficient (CD) coefficient model. This CD model is verified by comparing the 
HASDM public database with drag observations across a wide range of altitudes. The results are published here so 
that users of META-HASDM and the public HASDM database can compute unbiased drag values for any LEO object. 

In this paper we describe the META-HASDM machine learning methodology. Next, the principal components of the 
HASDM database are analyzed. Error characteristics of the META-HASDM density model are then presented. 
Finally, we present recommendations for computing unbiased drag estimates using the META-HASDM model by 
adopting specific, altitude dependent, drag coefficient models. 

2. METHODOLOGY

Access to the HASDM density database 
Under authority from USSF, Space Environment Technologies (SET) has extracted two solar cycles of temperature-
corrected coefficients to create the SET HASDM density database. This is the first-time there has been an extraction 
of this operational database for scientific use [3]; there is no comparable dataset in existence and the densities in this 
database are those used by groups such as NASA CARA for the last two solar 
cycles. The information content in the database inherently includes all the 
geomagnetic storm and sub-storm, extended solar flare, nitric oxide (NO) and 
carbon dioxide (CO2) thermospheric cooling perturbations. Because of its 
accuracy, time resolution, global scale, and information content, the SET 
HASDM database densities are now used as a new space weather benchmark 
for atmospheric expansion. This database will help refine the Phase 1 
Benchmark that was released by the National Science and Technology Council 
[4] for upper atmospheric expansion.

The global density SQL database from January 1, 2000 to December 31, 2019 
has 3-h time resolution, 25-km altitude steps and a 175–825 km altitude range 
on a 10° ´ 15° latitude/longitude grid. This database is publicly available for 
scientific research use and is located at the URL https://spacewx.com/hasdm/. 
Figure 1 shows an example of the output of the SET HASDM density database 
at 400 km for the October 30, 2003 Halloween storm period at 00:00 UT. It is 
this database that we will use to assess uncertainties of the JB2008 model 
forecasts. The uncertainties in the HASDM database are discussed in the ML 
section. 

Figures 2a-t show the range of error for high and low solar activity. The one-sigma density error averages between 2–
4% at high activity and 5–10% at low solar activity, depending upon altitude. There is higher uncertainty in HASDM 
at low solar activity for high altitudes because the atmosphere is thinner and there is a weaker signal in drag 
observations. 

Machine Learning Characterization of the HASDM database 
As part of this work, our team developed a machine learning (ML) capability to examine both the statistical uncertainty 
of the HASDM density database and the beginnings of an algorithm to replicate the database using a set of drivers. 
This algorithm is a prototype for a model called HASDM-ML. In this analysis, we: 

• examined a Principal Component Analysis (PCA) method for identifying the dominant modes for both
JB2008 and HASDM;

• trained a prototype ML model on HASDM and JB2008 data for comparison, referred to as HASDM-ML and
JB08-ML, respectively; and

• investigated Monte Carlo (MC) dropout as a method for approximating model uncertainty.
To evaluate satellite drag coefficients, satellite drag for a number of reference satellites was computed over the span 
of ~10 years. These observed drag values were compared with modeled drag using a number of drag coefficient 

Fig. 1. HASDM database at 400 
km on 2003/10/30 00:00 UT. 
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models. The ratio of observed to modeled drag was then computed as a function of altitude to determine which drag 
coefficient model resulted in values that were closest to unity across the widest range of altitudes. A drag correction 
model is fit to the ratios and when applied to drag computation using META-HASDM, results in an unbiased drag 
estimate. 

Fig. 2a-f. The range of error in the HASDM database from 2000-2005. 
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Fig. 2g-l. The range of error in the HASDM database from 2006-2011. 
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Fig. 2m-r. The range of error in the HASDM database from 2012-2017. 
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3. RESULTS
Dominant Modes of Variation. 
Principle Component Analysis (see for example [5]) was performed on the 3D density grids between 2000 and 2019 
(Fig. 3). The first three coefficients (α1 – α3) show parallels between the largest sources of variance in JB2008 and 
HASDM. The HASDM higher order coefficients (α4 – α10) show a much weaker signal. In Fig. 4, we show a summary 
of the energy (signal) captured in the first 20 PCA modes for the two density datasets. The term “energy” is the 
variance corresponding to eigenvalues, not physical energy. The first mode for JB2008 captures more energy than that 
of HASDM (left panel) and the cumulative energy (right panel) shows that the first ten modes capture 98% of JB2008 
energy compared to only ~90% of the energy captured in the first ten modes in HASDM. 

Fig. 2s-t. The range of error in the HASDM database from 2018-2019. 

s t 

Fig. 3. The first ten coefficients of the HASDM dataset and JB2008 model density outputs for 2000–2019. 
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These results indicate that HASDM is a more complex system than JB2008; it captures additional dynamics that are 
not modeled by JB2008. This is because HASDM is a data assimilative system that has incorporated information 
content from dozens of calibration satellites at any given epoch compared to the deterministic core JB2008 (JBH09) 
model using only solar and geomagnetic drivers. 

Model Performance 
We used several architectures to understand how to model both HASDM and JB2008 densities and quantify their 
error. These architectures included: a) dense model using PCA coefficients or from other nonlinear dimensionality 
reduction techniques as outputs, e.g., Convolutional Autoencoders; b) dense model using reshaped density vectors as 
outputs; and c) combined dense-convolutional model using 3D density grids as outputs. In Fig. 5, we show results for 
feedforward neural networks as the Mean Absolute Error (MAE) for the two density databases. 

We trained the HASDM-ML model and used the current optimal architecture to develop the JB08-ML. With identical 
architectures, hyperparameters, and inputs, JB08-ML is able to regress on its dataset much more effectively than 
HASDM-ML. The poorer performance with HASDM-ML is because of additional physical processes existing within 
the HASDM dataset that are not represented using the current set of inputs. We think these unmodeled physical 
processes may be related to inputs lacking for solar wind connectivity to the magnetosphere (including high-speed 
streams) that lead to increased Joule heating and particle precipitation. In addition, NO cooling on geomagnetic storm 
timescales, CO2 thermospheric cooling that is pronounced during solar minimum periods, oxygen (O) and helium (He) 
abundance changes at high altitudes from solar minimum to maximum, as well as dynamics such as winds, waves, 
and tides are not modeled with input drivers. 

Fig. 4. Individual (left panel) and cumulative (right panel) energy captured by the first 20 PCA modes. 
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It is this modeling deficit for HASDM-ML that we will correct during ongoing efforts. For example, when looking at 
MAE with respect to altitude, we noticed that there were distinct trends common between the models. Fig. 6 shows 
the altitude error profiles for both HASDM-ML and JBO8-ML during different solar activity levels. There is a 
pronounced peak in the lowest solar activity level (F10.7 ≤ 75 sfu) that resides around 500 km, and it rises in altitude 
with increasing solar activity. We hypothesize that this is likely the models' inability to capture the He/O transition 
effectively with the current set of inputs. 

Another example is the uncertainty in HASDM during large solar storm conditions. Fig. 7 presents the density (kg m-

3) during the 7-day 2003 Halloween storm period at 400 km altitude and 3-h time granularity.

The HASDM database values, the mean value, and the 3σ bounds are shown. By manipulating dropout layers in the 
Monte Carlo method, the initially deterministic method is able to make probabilistic predictions for the density grids. 
MC dropout has been shown to function as a Bayesian approximator for method un-certainty and was applied to 
HASDM-ML. In theory, an infinitely wide layer with MC dropout estimates a Gaussian Process [6]. The 3σ bounds 
for the HASDM-ML prediction capture the SET HASDM database densities for nearly the entire 7-day period. A key 
observation is how the uncertainty grows with increased geomagnetic activity. 

Error Characterization  
The principal component analysis revealed the similarities between the first three modes, resulting in largest variance, 
but the higher order coefficients require further investigation and an inclusion of added drivers. 

The performances of JB08-ML and HASDM-ML indicate a stronger correlation between the input set to the simpler 
JB2008 densities than that of the more complex HASDM densities. To remedy this, we will acquire added indices in 
Phase II for capturing more of the physical processes represented in the dataset. We will optimize the architecture and 
hyperparameters with tools such as AutoKeras [7]. 

We also investigated Gaussian process regression (GPR), which is an accurate and robust supervised machine learning 
technique, as a possible alternative ML method.  The GPR method has been successfully applied to satellite drag 
coefficient [8] and neutral thermosphere mass density [5,9] modeling. In the process of evaluating GPR in the context 
of HASDM density analysis, we learned the following: 

Fig. 5. Progression of mean absolute error with training (left panel) and for each time step (right panel) 
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• the GPR method is not as well suited for training models with multiple outputs. For example, if we needed 10
PCA scores to represent the data cube, we would need to train 10 different GPR models. The GPR modeling
cannot be used when the model output is the full 3D density grid as is the case with the HASDM data;

• the complexity of training a GPR model is O(n3), where n is the number of data points. Therefore, cost of training
a GPR on two solar cycles worth of data is extremely high. We trained a model on 10 years of HASDM data. We
also trained a neural net model on the same 10 years of data; and

• the neural network model outperformed the GPR in terms of error and model size. The total size of the saved
model for GPR was over 6 GB while that for the neural network model was merely a few MB.

Model-Consistent Drag Coefficient 
One of the goals of this study is to evaluate ballistic coefficient that were consistent with META-HASDM below and 
above 500 km altitude. The ballistic coefficient is the product of satellite cross sectional area, its drag coefficient, 
divided by the mass (CD ´ A/m). Two types of drag coefficient models were evaluated, (a) the model used within 

Fig. 6. Altitude error profiles for both HASDM-ML and JBO8-ML during different solar activity levels 
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HASDM when assimilating satellite drag, (b) the Semi-Empirical Satellite Accommodation Model (SESAM) [10] 
applied to a Diffuse Reflection with Incomplete Accommodation (DRIA) CD model [10].  

The HASDM ballistic coefficients are based on fits of 30-y ballistic coefficients (B30yr) and the range of documented 
A/m agrees with these values to ±10% (Bowman et al., 2004, i.e., AAS 04-173). The CD used within HASDM is 
convolved with the B30yr and is therefore consistent with any biases in the background atmospheric model. HASDM 
uses a fixed CD value below 500 km and a CD model presented by Afonso et al. [11] above 500 km. The CD criteria 
by altitude are: 

Depending on whether the orbit eccentricity is above or below a threshold value (emax=0.01), the daily average CD is 
then computed using the daily average value of the CD along the orbit or the periapsis CD value. These CD criteria by 
eccentricity are: 

Fig. 7. HASDM density vs. time from epoch in days and with a 3-h time granularity 
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The parameters of the Afonso drag coefficient model, CD,Afns, are described fully in reference [11]. The model is 
dependent of the thermal velocity, VT, relative to the satellite velocity, VS. 

SESAM+DRIA bases the energy accommodation on the pressure of atomic oxygen and applies this to a diffuse 
reflection model [10]. 

Calibrated A/m values (Table 1) can be used to evaluate CD model compatibility with HASDM along a range of 
effective densities / altitudes. These values are applied to energy dissipation rates calculated using mean mean-motion 
changes in an 8-day moving analysis of two-line element data. Details of energy dissipation rate (EDR) calculations 
can be found in work by Picone et al., Bernstein et al., and Pilinski et al. [12,13,10]. We then compare energy 
dissipation rate ratios (observed vs. modeled) using the HASDM and SESAM+DRIA CD models by averaging all data 
between 2000 and 2011. The resulting averages of the observed to modeled EDR ratios are illustrated in Fig. 8. The 
error bars represent the variability of the annual average ratios. Correction functions that make the drag computed 
using each CD model “compatible” with HASDM are shown below their respective panels. The HASDM CD model 
(left panel of Fig. 8) results in the best long-term stability but exhibits an altitude-dependent bias below 500 km (where 
this CD model uses a fixed value). A likely explanation for this bias is that the A/m values used internally by HASDM 
when performing drag assimilation are offset from the calibrated values in Table 1 in a way that compensates for this 
low-altitude offset. The SESAM+DRIA model (right side of Fig. 8) has relatively low amounts of altitude variability 
but results in higher inter-annual variability for the estimated drag computation.  

Table 1: Calibrated A/m values 
NORAD 

ID Name
Perigee 

Alt. [km]
Apogee 

Alt. [km] i Apriori A/m
HASD Calibrated 

A/m
MSIS Calibrated 

A/m
Combined 
Calibration 30-yr A/m

6073 Venus Lander (COSMOS 482) 200 2172 52 0.00140 (±93%) 0.00179 (±1%) 0.00188 (±5%) 0.00181 (±2%) 0.0016

22 Explorer VII 506 678 50 0.01065 (±2%) - - - -

7337 KOSMOS 660 (Taifun Cal Sphere) 373 1146 83 0.00541 (±11%) 0.00534 (1±%) 0.00532 (±2%) 0.00534 (2%) 0.0050

8744 KOSMOS 807 372 1184 83 0.00541 (±11%) 0.00531 (±2%) 0.00528 (±1%) 0.00530 (2%) 0.0050

12138 KOSMOS 1238 390 1426 83 0.00541 (±11%) 0.00535 (±1%) 0.00524 (±1%) 0.00531 (2%) 0.0050

14483 KOSMOS 1508 385 1476 83 0.00541 (±11%) 0.00537 (±1%) 0.00536 (±3%) 0.00537 (2%) 0.0050

20774 KOSMOS 2098 387 1587 83 0.00541 (±11%) 0.00545 (±1%) 0.00546 (±2%) 0.00546 (2%) 0.0050

23278 KOSMOS 2292 395 1700 83 0.00541 (±11%) 0.00538 (±1%) 0.00522 (±1%) 0.00531 (2%) 0.0050

12388 KOSMOS 1263 395 1338 83 0.00541 (±11%) 0.00532 (±1%) 0.00530 (±1%) 0.00531 (1%) 0.0050

2909 SurCAL NRL 150B / Calsphere 4 749 755 70 0.0834 (±2%) - - - -

2826 SurCAL NRL 160 / Calsphere 3 775 787 70 0.0815 (±1%) - - - -

11 Vanguard 2 556 2937 33 0.0213 (±7%) 0.02237 (±4%) 0.02148 (±5%) 0.02196 (5%) 0.0224

4382 DFH-1 428 2034 68 0.0045 (±10%) 0.00511 (±1%) 0.00493 (±3%) 0.00504 (3%) 0.0050

Interim Reference Satellites:

26929 Starshine III 67 0.00776 (±1%) - - - -

29664 ANDE RR, MAA 52 0.00352 (±2%) - - - -

29667 ANDE RR, Fcal 52 0.00251 (±2%) - - - -

35694 ANDE 2, Castor 52 0.00386 (±2%) - - - -
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We can validate these results using satellites not used in the calibration and launched after the calibration period. We 
used the DANDE and POPACS spheres [14] along with four other satellites listed at the bottom of Table 1 and 
compared their observed drag with the values resulting from HASDM and the calibrated CD between 2014 and 2017. 
The orange symbols in Fig. 8 represent these shorter-lived calibration spheres (interim reference satellites in Table 1). 
Note that these objects have well documented as-flown A/m ratios with low uncertainty but were not used in the 
derivation of the correction functions. We see that these generally agree with the model correction functions within 
2%-5%. Based on this result, when computing drag using the HASDM database or the META-HASDM model, we 
recommend the use of the HASDM CD model with the altitude-dependent drag correction function shown in Figure 
8. Figure 9 demonstrates the use of the correction function by comparing the EDR computed using HASDM and the
corrected CD model with TLE-derived EDR’s for the DANDE spherical satellite [14].

Fig. 8. CD fits for HASDM and SESAM+DRIA with the associated calibration functions, f, indicating 
corrections needed. 

 

Fig. 9. Calibration of DANDE satellite in 2014 with HASDM EDRs (blue) and the TLE-derived EDRs (black). 
Day of Year 2014

HASDM (std=4%)
Obs
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4. CONCLUSIONS

In this paper we demonstrated the feasibility of an empirical model based on 20 years of HASDM outputs, taking 
advantage of nearly two solar cycles of satellite drag observations from ~70 calibration satellites. The resulting model, 
META-HASDM, does not yet outperform leading empirical models such as Jacchia-Bowman 2008. However, we 
have identified several methods for enhancing META-HASDM including additional parameters such as location 
relative to the Oxygen-Helium transition. In addition to this, we have published the HASDM-compatible drag 
coefficient model along with an altitude dependent correction function. Using this model along with the publicly 
released HASDM database or with the new META-HASDM density model presented here, results in drag predictions 
that are unbiased on average with respect to observations. 
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