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ABSTRACT

A novel multi-objective Monte Carlo Tree Search (MO-MCTS) algorithm is developed and implemented for use in
architecture design problems. This algorithm is implemented on two well-known problems with known solutions
in order to verify its performance. It is then used in a highly nonlinear cislunar architecture design problem with no
known analytical solutions. The results of this implementation display the ability of MO-MCTS to effectively navigate
the state space of mixed integer nonlinear programming problems and emphasize the versatility of MO-MCTS for
designing critical cislunar architecture.

1. INTRODUCTION

With the ever-increasing interest in cislunar space from commercial, military, and scientific entities alike, it is imper-
ative that space domain awareness architecture occupying this region is sufficiently capable of providing operators
with effective support for their missions [8]. It is equally important that the cost of installation and maintenance of
such an architecture is realistic given a budget and specific mission goals. This problem is exponentially more difficult
than designing near-Earth architectures given the complex non-Keplerian dynamics governing the region [15]. All
these factors combine to create an intractable mixed integer nonlinear programming problem (MI-NLP) for which
sophisticated numerical methods must be used to generate a solution near the global optimum [3].

Work done by [29] proposed placing satellites in periodic orbits near Earth-Moon Lagrange points to provide near
theoretical near global coverage of the Earth and Moon. In [26], the authors analyzed the performance of satellites
in Earth-Moon synodic period resonant periodic orbits observing space objects within a specified volume of cislunar
space. Other work in this area including [19], [11], and [9], places repeated emphasis on the importance of space-
based observers in cislunar periodic orbits to provide coverage within the cislunar region. Gaps within the literature,
however, occur in the process of designing said observer architectures. Given the immense cost and vast complexities
associated with missions within cislunar space, architecture in the region must be able to meet certain performance and
cost objectives with great confidence. The cislunar region is the new frontier in space. As such, traditional intuition
surrounding space architecture design must be reevaluated considering the expanse of unknowns to be encountered in
future research and exploration.

Monte Carlo Tree Search (MCTS) methods have been successfully applied to a multitude of MINLP design problems,
including optimal wind farm layouts [2], structural design [22], stream processing instance placement [16], interplan-
etary mission design [14], and numerous others. Results from these works have displayed MCTS’s performance as
competitive with and even outperforming other state-of-the-art numerical methods. While in most of these design
problems there are multiple competing objectives to be considered in an optimal solution, the standard MCTS al-
gorithm is not fully equipped to handle them. Rather than looking at a linear combination of objectives as a single
objective, [27] proposes a multi-objective (MO) approach using the hyper-volume indicator to guide action selection
in the exploration vs. exploitation step of MCTS.

To approximately solve nonlinear mixed integer programming problems, we propose a novel implementation of a
multi-objective Monte Carlo Tree Search (MO-MCTS) algorithm that effectively and efficiently explores the feasible
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state space of architectural design problems and returns a set of approximate Pareto-optimal solutions. This contribu-
tion builds on the MO-MCTS algorithm proposed by [27] while adding mechanisms specific to architecture problems
with large branching factors. We validate our approach by looking at two well-known “toy” problems, and present a
solution to a representative cislunar architecture problem to demonstrate the utility of the method.

2. MONTE CARLO TREE SEARCH AND MULTI-OBJECTIVE OPTIMIZATION

2.1 Markov Decision Processes

A Markov Decision Process (MDP) is a discrete-time stochastic process in which the probability of each state in the
process depends only on the previous state. An MDP is defined by the tuple (S, A, T, R, γ), with state space S, action
space A, state transition probability function T , reward function R, and discount factor γ . The goal of an MDP is to find
a policy function π(s) : S → A that maximizes some function of the cumulative future rewards. MDPs are by definition
fully observable, and thus can be solved using a variety of algorithms when no time constraint is given. However, for
MDPs with large state and action spaces, solving for the optimal policy, π∗(s), quickly becomes intractable due to
the so-called “curse of dimensionality.” Numerous methods have been developed that use random sampling combined
with heuristics to find sufficiently good approximations to these problems.

2.2 Monte Carlo Tree Search

Monte Carlo Tree Search is a reinforcement learning algorithm that combines the structure of trees with the random-
ness of Monte Carlo methods to obtain an approximate solution to an MDP with guarantees of convergence to the
global optimum over time [18]. In the tree iteratively generated by the MCTS algorithm, states are represented by
tree nodes and actions are represented as tree edges. MCTS methods have gained increasing popularity in recent years
due to its implementation in AlphaGo that beat a human in a game of computer Go [23], and its proceeding successes
across numerous other domains.

The steps of MCTS have been heavily covered in many publications [6], [5], [25]. For brevity, only a brief description
is provided here. MCTS consists of four distinct steps: selection, expansion, simulation, and backpropagation. These
are visualized in Fig. 1 from [25], and are described as follows:

Selection Starting from the root node, the algorithm traverses the tree using some exploration vs. exploitation policy
until it reaches a node that has not yet been expanded (a leaf node).

Expansion Unless the leaf node is a terminal state, from the leaf node a single (or multiple) child node is created
from a chosen action (uniformly or heuristically).

Simulation From the new child node, a Monte-Carlo simulation is run using a rollout policy until a terminal state or
some other condition is reached.

Backpropagation The resultant reward of this simulation is used to update the statistics of all the nodes visited during
the tree traversal. These statistics include the node’s estimated value and visit counts.

Arguably the most powerful aspect of MCTS is its ability to efficiently explore new parts of the tree while also relying
on previous solutions in a process called exploration vs. exploitation, performed in the selection phase. While there
are many methods used to balance this trade off, the most common algorithm used is the upper confidence bound for
trees (UCT) algorithm [18]. UCT guides exploration vs. exploitation by treating the selection process as a multiarmed
bandit problem, with the value of a node being the expected reward as approximated by the simulation phase. UCT
selects a child node by choosing an action a that maximizes

Q(s,a)+C

√
lnN(s)
N(s,a)

(1)

where Q(s,a) is the action value estimate of taking action a at state s, N(s) is the number of times s has been visited,
N(s,a) is the number of times a has been selected at s, and C is a constant typically chosen as

√
2 for rewards defined

in the interval [0,1]. The first term in this equation represents the exploitation aspect of UCT, where the likelihood of
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Fig. 1: Visualization of the Monte Carlo Tree Search steps from [25].

revisiting a child node is proportional to its expected value. The second term gives weight to child nodes that have
not often been visited. Typically, when N(s,a) = 0, this term becomes infinite leading to the default policy of always
selecting actions that have not yet been selected [25].

2.3 Multi-Objective Optimization
Multi-objective optimization (MOO) is the process of optimizing a collection of objective functions subject to some
pre-defined constraints. Typically, there is no globally optimal solution to a MOO problem and thus a set of points
must meet a predetermined definition to qualify as an optimal solution. Pareto-optimality is a common approach for
characterizing solutions as optimal. It is how we will determine an optimal set of solutions for the duration of this
work. Pareto-optimality is defined as follows from [20]:

Definition 2.1 (Pareto-optimal) Given a MOO problem with objective function F(x) = [F1(x),F2(x), ...,Fk(x)]T a
solution x∗ is Pareto-optimal iff there does not exist another point x, such that F(x) ≤ F(x∗), and Fi(x) < Fi(x∗) for
at least one Fi ∈ F. The set of Pareto-optimal solutions is referred to as the Pareto set (P), and x∗ is said to be
non-dominated in P.

2.4 Multi-Objective Monte Carlo Tree Search
Multi-objective Monte Carlo Tree Search leverages the power of MCTS to return a set of Pareto-optimal solutions.
Since UCT relies on action value estimates defined in R, we implement the method described by [27] that modifies
UCT such that the action selected maximizes the hyper-volume of the union of the most recently updated Pareto set
solutions with the action value estimate, summed with the typical UTC exploration term:

U(s,a) = HV (Q(s,a)∪P)+C

√
lnN(s)
N(s,a)

. (2)

Here, HV (·) is the hyper-volume indicator function from [4] and P is the Pareto set. As summarized in [21], the
hyper-volume indicator, also known as the Lebesgue measure, is a metric that measures the size of the objective space
covered by a set of solutions with respect to a reference point. In this work all objectives are formulated as reward
functions in the interval [0,1] to be maximized. Thus, the hyper-volume reference point for each objective is 0. As
MO-MCTS progresses through its iterations and new Pareto-optimal solutions are found, the hyper-volume indicator
of the Pareto set will increase, as visualized in Fig. 2.

Furthermore, since the hyper-volume indicator does not decrease with the union of dominated point, a penalty d(·) is
added to equation (2) for a dominated Q(s,a) with respect to P defined as the Euclidean distance from Q(s,a) to the
piecewise linear envelope of the points in P:

W (s,a) =

{
U(s,a) if Q(s,a) is non-dominated in P
U(s,a)−d(Q(·)) otherwise

(3)
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Fig. 2: In this representative example, the inclusion of new non-dominated (Pareto-optimal) solutions found during
MO-MCTS increases the hyper-volume indicator of the Pareto set.

Without the addition of this penalty, MO-MCTS would end up exploring the state space near non-dominated points
more often than it likely should.

A critical aspect of this method is consistently updating the solutions within the Pareto set to ensure that equation
(3) can properly function. For the sake of computational efficiency, especially in the case of problems with a high
branching factor, we typically update the Pareto set anywhere from every 100 to 1,000 MCTS iterations. We have
found that varying this value does not significantly impact the quality of solutions returned by the algorithm. Fig. 3
describes the steps of our implementation of this algorithm.

Fig. 3: Block diagram of the MO-MCTS algorithm.

2.4.1 MO-MCTS for Architecture Design

For architecture design problems dealing with the placement of assets in specific locations, actions that determine the
evolution from one state to another are better interpreted as proxies for the states themselves. Put another way, in
architecture problems where the order of placement is not critical, a designer does not care about the value of specific
actions as discovered throughout the tree [14]. Rather, they care about the quality of a state that represents a specific
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architecture design. In applications of single objective MCTS to games, the expected output of a run is an optimal
action to be taken at the root node based on the traversal performed by the algorithm in a specified amount of time.
This action is performed at the root node (by a user or in a simulation), and the process continues until a terminal
constraint is met.

In architecture problems where the state represents a certain layout, each state visited throughout the tree has a de-
terministic value. That is, the immediate quality of an architecture design at any depth during the tree traversal can
be directly determined through evaluation of the objective functions. Furthermore, since the goal of a multi-objective
architecture design problem is to obtain a set of Pareto-optimal solutions (as layouts), we can ignore the action values
completely and search through every visited node during the MCTS run and chose those that are Pareto-optimal. With
this in mind we are relying on the modified UCT algorithm to reach quality and unique states from which we can
determine our Pareto set.

It is often the case with MO-MCTS that once a good enough solution has been reached through selection, the algorithm
may become trapped near this locally optimal solution. This seems to happen with greater frequency in problems that
have a large branching factor and sparse Pareto-optimal solutions such as those considered in this work. Inspired
by [28], we introduce a process by which the root node is resampled after some number of MCTS iterations. By
randomly choosing a new state from the most recently updated Pareto set, we see dramatic increases in the hyper-
volume indicator. Practically speaking, resampling the root node from the Pareto set is a way of pseudo-pruning the
search tree by forcing the algorithm to ignore for some time parts of the tree that do not appear to be successful. Tests
have shown this method to be consistent in generating diverse sets of solutions faster than otherwise. We describe this
method in the following conjecture, to be proved in future work:

Conjecture 2.1 Given a tree with sparse Pareto-optimal nodes, randomly resampling the tree’s root node from the
current set of Pareto-optimal nodes allows MO-MCTS to quickly reach new Pareto-optimal nodes, while maintaining
the asymptotic convergence guaranteed through MCTS with UCT.

Fig. 4 visualizes how this method allows MO-MCTS to diversify the set of Pareto-optimal solutions, and explore new
areas of the tree.

(a) MO-MCTS has decided to explore
nodes near the left optimal node rather
than looking at other parts of the tree.

(b) Choose the right optimal node as the
new root node and continue MO-MCTS
from there.

(c) MO-MCTS is able to find a new
Pareto-optimal node from the new root
node.

Fig. 4: Visualization of root node resampling method.

3. VALIDATION

3.1 Problems with Known Solutions

As an initial test of the MO-MCTS algorithm, we looked at two “toy” problems: the placement of satellites in geosyn-
chronous (GEO) orbits to provide maximal coverage of the Earth’s surface, and the combination of orbital elements
for an orbit that maximizes time-averaged coverage of the United States and Russia. These problems both have known
solutions. The solution to the former is three satellites equally spaced in a geosynchronous orbit and the solution to
the latter is a Molniya orbit. We expect the output of the MO-MCTS algorithm to include these known solutions.
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3.2 The GEO Problem

We begin with the following simple problem: what is the optimal placement of a number of satellites in geosyn-
chronous orbit that maximizes coverage of the Earth’s surface while considering the cost of each satellite? This
problem has a well-known and simple solution: three satellites equally spaced in the GEO belt will provide near full
coverage of the Earth’s surface (save for a small area of land around each pole).

3.2.1 MDP Formulation

To begin, we formulate the GEO problem as a Markov Decision Process. First, the position of a satellite in any orbit
exists in a continuous state space and as such must be discretized to be used in our MO-MCTS algorithm. For our
implementation, the GEO belt is represented by a tuple of length 360 representing 360 equally spaced “slots” in the
belt. Each element of the tuple can be 1 or 0 indicating that a slot is either occupied by a GEO satellite (hereby referred
to as a “GEO”) or is empty:

[

GEO︷︸︸︷
1 , 0, . . . ,

Empty︷︸︸︷
0 ]︸ ︷︷ ︸

360 Slots

Actions are defined as adding a GEO to a slot that is unoccupied, until either full coverage is reached or a maximum
number of GEOs has been placed. The reward function takes the current state tuple as input and returns a two-
dimensional reward vector containing the instantaneous coverage of the Earth’s surface within ±60◦ latitude and the
inverse of the number of GEOs in the state. Both rewards lie in the interval [0,1] and both are to be maximized.

Fig. 5: MO-MCTS HVI vs iterations for the GEO prob-
lem.

Fig. 6: Resultant approximate re-scaled Pareto front for
the GEO problem.

3.2.2 Results

With the problem initialized as a single GEO occupying an arbitrary slot, we run MO-MCTS for 20,000 iterations,
updating the Pareto set every 500 iterations, and resampling the root node every 1,000 iterations. Running on a single
thread on a 2021 Apple MacBook Pro with an M1 Pro processor (hereby referred to as the M1 Mac), the algorithm
completes running after approximately 9 minutes. Fig. 5 clearly shows that the hyper-volume indicator increases
rather steadily over time. This is a clear indication that the solutions within the Pareto set are improving with respect
to our objective functions over time. Furthermore in this plot, we see that the hyper-volume of the Pareto set quickly
increases and plateaus around 7,000 iterations, at which point little progress is made since a sufficiently optimal set of
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solutions have been found. Fig. 6 shows the resultant approximate Pareto front with one point representing the well-
known solution of three equally spaced GEOs providing 100% coverage of a selected portion of the Earth’s surface.
Furthermore, Fig. 6 also includes an optimal placement of two GEOs providing approximately 90% coverage of the
selection region of interest. Finally, we plot these placements in Fig. 7 to further verify that the solutions returned are
as expected.

Fig. 7: Approximate Pareto-optimal GEO layouts.

3.3 The Molniya Problem

The Molniya orbit is well known for the amount of time it spends over the Earth’s northern hemisphere. It is charac-
terized by its inclination, argument of periapsis, radius of periapsis, and radius of apoapsis, as seen in Table 1. It was
named after a series of Russian satellites that were first launched into the orbit in the early 1960s intending to provide
effective communication to eastern parts of the Soviet Union. The Soviet Union also found this orbit to be highly ef-
fective for military purposes [17], and possibly used some of the early Molniya satellites to scout for cloud-free zones
for its Zenit spy satellites [13]. Therefore, for this toy problem we aim to use MO-MCTS to find a combination of
orbital elements that maximizes the time averaged coverage of the United States and Russia over a 48-hour time span
using basic Keplerian dynamics. To make this problem multi-objective, we introduce an estimate of the ∆v necessary
to maneuver a spacecraft from a circular parking orbit at an altitude of 400km with an inclination of 0◦ to the state’s
current orbit.

Table 1: Characteristic orbital elements for a typical Molniya orbit.

Inclination (◦) ω (◦) rper. (km) rap (km)
63.4 270 600 39,700
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3.3.1 MDP Formulation

Once again, we begin by formulating the Molniya problem as a Markov Decision Process. We represent the state as a
tuple with orbital elements we wish to alter:

[rperiapsis,rapoapsis, i,ω,Ω]

where i is inclination, ω is argument of periapsis, and Ω is right ascension of the ascending node. Actions are defined
as altering a single orbital element such that all orbital elements are within their defined ranges, rper,rap ∈ [400,46000]
km, and rper ≤ rap. Because these orbital elements take on continuous values, we discretize them to reduce the action
space to a reasonable size. The reward function takes the current state tuple as input and returns a two-dimensional
reward vector containing a scaled time-averaged coverage of the United States and Russia, rc̄, and a scaled ∆v reward
both in the interval [0,1] to be maximized. Since 100% time-averaged coverage is impossible given the position of the
United States and Russia, we scale the coverage by a theoretical maximum of 21%. Like in the GEO problem, since
we wish to minimize ∆v, it is also scaled by a theoretical maximum value, here chosen as ∆vmax = 7 km/s. Then the
∆v reward to be maximized is defined as

r∆v = 1− ∆v
∆vmax

. (4)

The ∆v’s calculated for this implementation are merely representative of the actual ∆v needed, and as such are not
optimized specifically for each individual transfer.

3.3.2 Results

We discretize the Molniya problem action space into 100 equally spaced orbital element alterations, and run MO-
MCTS for 50,000 iterations, updating the Pareto set every 100 iterations, and resampling the root-node every 500
iterations. The algorithm completes running after approximately 8 hours on the M1 Mac. Fig. 8 shows the improve-
ment of the hyper-volume indicator over iterations. Once again, we see an initial steep increase in the hyper-volume
followed by an eventual plateau. This behavior indicates that either a sufficient amount of Pareto-optimal solutions
have been found, or that the algorithm is unable to determine the remaining solutions.

Fig. 8: MO-MCTS HVI vs iterations for the Molniya
problem.

Fig. 9: Resultant approximate re-scaled Pareto front for
the Molniya problem.

Looking at the approximate Pareto front in Fig. 9, we see a multitude of solutions deemed Pareto-optimal by the
algorithm, showing the trade off between percentage coverage and ∆v needed to access the orbit. Having an abundance
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of solutions to a problem may be useful for some applications. However, if we are looking to the MO-MCTS algorithm
for high-level assistance for designing architecture, we may not be as interested in the minuscule differences between
optimal states. If anything, such a crowded Pareto set may be negatively affecting the ability of MO-MCTS to obtain
a diverse set of solutions in an allowed amount of time. For this problem, crowding could be reduced by reducing the
discretization factor, thus reducing the size of the action and state space. We will investigate the effect of crowding in
future work.

Table 2 lists a sample of the resultant Pareto-optimal solutions with a Molniya-esque result in bold. Looking at the
solution in bold, we see many similarities to the known Molniya orbit orbital elements. Of importance is that the MO-
MCTS algorithm chose to raise inclination, raise apoapsis, and rotate the argument of periapsis such that the satellite
spent as much of its simulation time over the United State and Russia as possible. Furthermore, in every other Pareto-
optimal solution returned, the algorithm maintained this pattern of low periapsis, high apoapsis, high inclination, and
argument of periapsis around 270◦.

Table 2: Sample of outputs from MO-MCTS run with Molniya-esque orbit in bold.

rperiapsis (km) rapoapsis (km) Inclination (◦) ω (◦) Ω (◦) % Coverage ∆v (km/s)
400.00 40933.33 59.09 269.09 7.27 18.45 2.56
400.00 39551.52 57.27 269.09 7.27 17.86 2.54
400.00 39551.52 50.91 269.09 7.27 15.86 2.52
400.00 34945.45 63.64 269.09 149.09 14.86 2.48
400.00 28957.58 66.36 269.09 116.36 13.03 2.37
400.00 24351.52 70.00 269.09 120.00 12.07 2.26
400.00 12836.36 66.36 269.09 101.82 9.05 1.75
400.00 9151.52 70.91 269.09 98.18 8.34 1.49
400.00 6387.88 75.45 269.09 116.36 7.26 1.21
400.00 5006.06 70.91 269.09 283.64 6.61 1.02
400.00 1321.21 75.45 269.09 116.36 4.92 0.34
400.00 860.61 28.18 269.09 152.73 0.64 0.13

4. CISLUNAR ARCHITECTURE DESIGN

4.1 Problem Formulation

Finally, we define a basic architecture design problem within the cislunar region. We define the problem as follows:
what layouts of up to five observers in cislunar space provide maximal custody maintenance of a space object (SO) in
a predefined Earth to Moon transfer reference trajectory while minimizing a total cost? There are numerous factors
that go into custody maintenance, including sensor specifications, mission goals, SO properties, maneuver detection,
solar phase angle, and many others. Thus, for this implementation, we will make a number of assumptions. First,
circular restricted three-body problem (CR3BP) dynamics are used to propagate the reference trajectory and observer
orbits. Second, SO in the reference trajectory is assumed to be spherical with specular and diffuse reflection constant
for all wavelengths as in [26]. Third, each observer uses an off-the-shelf Finger Lakes Instruments Kepler KL4040
camera. Finally, it is assumed that each observer has perfect tracking of the SO with no streaking, and that on average
the SO occupies the same amount of pixels in the sensor during each exposure.

4.1.1 Observer Orbits

In [26] it was found that periodic orbits in the CR3BP with periods resonant with the Earth-Moon synodic period
(about 29.5 days) had significant advantages for observing cislunar space. As such, in this formulation we choose
candidate observer orbits that have periods approximately resonant with the synodic period. We consider orbits with
1:1, 1:2, 1:3, 1:4, 2:1, 3:1, 3:2, 4:3, 5:2, 5:3, 5:4, and 6:5 resonance with the synodic period. These candidate orbits
include Lyapunov, Halo, Axial, and Vertical orbits near the L1 and L2 CR3BP equilibrium points, Axial, Planar, and
Long orbits near L4 and L5, Earth-Moon Distant Retrograde orbits [24], and a single GEO orbit.
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As important as the resonance of the observer orbit selected, [26] also found that initial observer orbit phasing played
a significant part in observation quality. Combined with the initial epoch date of the simulation, this phasing describes
the relative geometry between the observer and the solar phase angle. In a configuration with multiple observers
in orbits with varying degrees of resonance with the synodic period, we expect to generate a vast set of observing
geometries.

To ensure that we consider as many relative geometric layouts as possible, it is helpful to calculate how long a con-
figuration would take to return to its initial layout. For a configuration with three observers in orbits with 1:2, 3:2,
and 5:3 resonance with the synodic period, as seen in Fig. 10, we must propagate the system for six synodic periods
for each observer to return to its initial position at the same time. In general, with for a configuration with j observer
orbits of resonance m1 : n1, ...,m j : n j, the period of the layout is lcm(n1, ...,n j) synodic periods, where lcm(·) is the
least common multiple. Of all the orbits considered in this work, the longest possible layout’s period is 60 synodic
periods. As such, we consider the state history of each observer for 60 synodic periods in order to effectively and
equally compare the performance of each configuration.

Fig. 10: Resonance of a cislunar architecture configuration consisting of three observers with 3:2, 1:2, and 5:3 reso-
nance with the Earth-Moon synodic period. Every other synodic period the architecture configuration is evaluated at a
different epoch, each separated by 24 hours relative to the synodic period. The pattern repeats for 60 synodic periods.

4.1.2 State Representation

We define an observer with the following tuple:

Observer = [Orbital Family, Orbit Index, Initial Phasing, Telescope Aperture]

where Orbital Family is the name of the periodic orbit family the observer occupies, Orbit Index specifies the orbit
within the family that the observer occupies, Initial Phasing ∈ [0,1] specifies the initial position of the observer along
the orbit as a fraction of its period, and Telescope Aperture ∈ {200mm,300mm,500mm} specifies the size of the
observer’s optics. Then, a state representing a configuration is defined as a tuple of observers:

State = [Observer1, Observer2, . . .]

Therefore, a state represents a particular architecture configuration and provides all the information necessary to
simulate its effectiveness.
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4.1.3 Actions

Once again with the idea in mind that actions are merely a means of getting from one state to another, we define the
action space for this problem much like that from the GEO problem. We define an action as adding a new observer
to the architecture configuration in a specific orbit, with a specific initial phasing, and a specific telescope aperture.
We place no restrictions on observers occupying orbits within the same families, nor occupying the same orbit with
different phasings. Restrictions like these could be easily implemented by limiting the action space at each node but
were not considered for this demonstration.

4.1.4 Objective Functions and Rewards

Finally, we define two metrics with which to determine the quality of a particular architecture. First, we define a cost
metric that takes into account the number of observers in the layout and the size of their respective apertures. We
define the cost of each telescope apertures as follows:

C200mm = 1
C300mm = 2.25
C500mm = 6.25

We then define the reward in the interval [0,1] to be maximized as follows:

1− C200mmn200mm +C300mmn300mm +C500mmn500mm

C500mmnmax
(5)

where n200mm,n300mm, and n500mm are the number of observers with telescope apertures of 200mm, 300mm, and
500mm, respectively, and nmax is the maximum allowed number of observers in the constellation, here chosen to be 5.

Next, we define a process by which we determine average custody of the SO in its reference trajectory as launched at
multiple epochs during the Earth-Moon synodic period. To start, we obtain solar phase angle history in the CR3BP
frame for approximately 60 synodic periods from JPL’s SPICE Toolkit through SpiceyPy [1]. We also pre-propagate
each observer candidate orbit to obtain a state history with time step size matching that of the SO reference trajectory
and the solar phase angle history.

Fig. 11: MO-MCTS HVI vs iterations for the cislunar
architecture problem.

Fig. 12: Resultant approximate re-scaled Pareto front for
the cislunar architecture problem.
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We consider approximately 30 different initial epochs throughout the total 60 synodic periods of simulation time,
with each separated in the synodic period by about 24 hours as seen in Fig. 10. By doing this we can evaluate
the performance of a configuration with varying degrees of SO illumination and occlusion by the Earth and Moon.
Then during each reference trajectory propagation we calculate the photometric SNR [7] obtained by each observer
and determine if any reach the minimum SNR for detection, here chosen to be 6. So, for each reference trajectory
propagation at each epoch, a total percentage custody maintained is returned. We take the average of percentage
custody from each simulation and define this as our second reward. Thus, an optimal layout may be one that maximizes
the custody maintained at various epochs during the Earth-Moon synodic period.

4.2 Results

We run MO-MCTS with the cislunar architecture design formulation for 65,000 iterations, updating the Pareto set
every 100 iterations, and resampling the root node every 500 iterations. The algorithm takes approximately 8 hours to
complete running on the M1 Mac. Fig. 11 shows the change in hyper-volume indicator over iterations, showing that
after about 10,000 iterations, solutions found are only slightly improving with respect to the objective functions. Fig.
12 shows a fairly crowded approximate Pareto front, with many solutions past scaled cost of 5 showing only slight
improvement in custody maintained over the simulation epochs. This behavior is reminiscent of the GEO problem
Pareto front in Fig. 6, where a point came when improvement in coverage was small compared to the relative cost
increase.

(a) Configuration statistics from Fig. 13a

Total Custody (%) Total Cost Min. Custody (%) Max. Custody (%)
99.198 12.75 96.203 100

Epoch 2023 NOV 02 23:00:00 2023 JAN 01 23:00:00

(b) Configuration statistics from Fig. 13b

Total Custody (%) Total Cost Min. Custody (%) Max. Custody (%)
70.801 2.0 56.962 89.873

Epoch 2023 MAY 03 23:00:00 2026 JUL 06 00:00:00

(c) Configuration statistics from Fig. 13c

Total Custody (%) Total Cost Min. Custody (%) Max. Custody (%)
98.819 11.5 91.139 100

Epoch 2025 SEP 04 00:00:00 2022 MAR 02 23:00:00

(d) Configuration statistics from Fig. 13d

Total Custody (%) Total Cost Min. Custody (%) Max. Custody (%)
91.055 5.0 82.278 98.734

Epoch 2024 JAN 02 23:00:00 2025 NOV 03 23:00:00

Table 3: Configuration statistics from Pareto-optimal outputs in Fig. 13.

Fig. 13 shows a sample of the Pareto-optimal solutions found from the MO-MCTS algorithm. These solutions are
further detailed in Table 3, including the epochs at which minimum and maximum custody of the SO in the reference
trajectory is maintained. Of initial interest is the overwhelming tendency of the algorithm to pick multiple GEO
observers in all solutions providing custody maintenance for the initial portion of the reference trajectory. This result
is as expected, since observers in Lagrange point periodic orbits will have difficulty observing a space object as it
starts its trajectory in a near-Earth orbit. Fig. 14 further displays this behavior and demonstrates the ability of the
MO-MCTS algorithm to piece together observers in different orbits to maintain maximal custody of the space object
in the reference trajectory.

Copyright © 2022 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) – www.amostech.com 



(a) (b)

(c) (d)

Fig. 13: Four resultant Pareto-optimal cislunar architecture layouts with trajectory starting at the initial simulation
epoch.
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(a) (b)

(c) (d)

(e)

Fig. 14: SNR history for all epochs from architecture layout in Fig. 13a
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Fig. 15: Frequency of orbit families used in solutions in the Pareto set returned by MO-MCTS.

Fig. 15 presents a histogram of the types of orbits found optimal to be used in the Pareto-optimal configurations.
Interestingly, MO-MCTS finds that in only one case is it Pareto-optimal to include an observer in an L4 orbit, and in
no cases does it find it optimal to place an observer in an L5 orbit. This is somewhat expected given this particular
reference trajectory and the assumptions made about perfect tracking. In general, many of the Pareto-optimal solutions
returned from MO-MCTS place observers in the same orbital families while making slight variations to the initial
phasing and telescope aperture. In future implementations where perfect tracking may not be assumed, we might
expect to see a greater frequency of including observers in L4 and L5 orbits. Observers in these orbits would intuitively
provide an architecture configuration with a more diverse set of viewing angles to the SO, thus increasing the amount
of information needed for custody maintenance or maneuver detection [12], [9]. Our current formulation, however,
does not include metrics to account for the quality of a detection by an observer.

As a representative cislunar architecture problem, these results serve mainly to demonstrate the ability of our MO-
MCTS implementation to obtain approximate solutions to a highly nonlinear mixed integer programming problem. As
such, there is significantly more nuance that goes into characterization, custody maintenance, and maneuver detection.
Future work with the MO-MCTS algorithm applied to cislunar architecture design will consider more of these nuances,
including the diversity of viewing angles and angular rates, full state observability, and others inspired by the literature
[26], [9], [12], [10].

5. CONCLUSION

As the development of cislunar space continues, it becomes increasingly important to develop effective and optimal
architecture for conducting space domain awareness throughout the region. However, given the breadth of complexities
associated with cislunar space, and the necessity of considering multiple design variables and objectives, the problem
quickly becomes intractable. To obtain approximate Pareto-optimal solutions to these problems, we introduced a novel
multi-objective Monte Carlo Tree Search algorithm. This algorithm was validated through two problems with known
solutions, and then used in a representative cislunar architecture design problem. In this final problem, MO-MCTS
returned a Pareto-optimal set of configurations of observers in cislunar space that maximized percentage custody
maintained of a space object on a known trajectory while minimizing a total cost. The versatility of this algorithm
opens up various avenues for future research, including implementation with more highly dimensional architecture
design problems. Furthermore, by implementing methods such as multiprocessing in future work we expect to make
significant progress on minimizing computation time and resources.
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