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ABSTRACT

Event-based cameras are an emerging technology that measure changes in a field of view by recording data for each
pixel only when a thresholded change in log-light intensity occurs. We leverage the low volume of data produced to
develop a multiple hypothesis tracker (MHT) that processes time-series data as opposed to traditional image frames
with the intent to augment Space Domain Awareness (SDA) tracking operations. We implement measurement rejection
based on data attributes extracted from a training set of real event-based data. Our MHT with the data reduction
hypothesis test implemented identifies satellite tracks in 92.1% of the test data sets. Addition of a simple noise
filter, limiting the hypothesis test evaluation and subsequent track generation to higher frequency events, increases
the processing speed by 69.5%. However, the noise filter rejects more real signal information prior to the hypothesis
test which results in a decrease to 76.3% of the data sets producing satellite tracks. The initial success of the MHT
warrants further development of this promising technique to enable event-based sensing SDA operations.

1. INTRODUCTION

The process of maintaining awareness in space is growing in complexity with the exponential growth of trackable ob-
jects [9, 7, 16]. Increased congestion yields increased risk of conjunctions between objects in orbit. This risk is man-
aged with satellite state updates by means of external measurements. Increasing the frequency of measurements should
lower the conjunction risk; however, building additional radar sensing locations to increase measurement frequency
has proven to be an expensive process [12]. Alternatively, we can explore cheaper, novel sensors, such as event-based
cameras, to build a network of measurement sites to augment current Space Domain Awareness (SDA) operations [2].
In this paper, we evaluate the potential of event-based sensors to identify and track resident space objects (RSOs) with
a multiple hypothesis tracker (MHT) filtered with statistics derived from real sensor data. Demonstrated success of
this tracking ability will ultimately enable an event-based camera network.

In addition to their relatively low cost, event-based cameras offer additional benefits to SDA sensing. The event-based
cameras differ from traditional electro-optical sensors because each pixel in the focal array operates independently
and asynchronously. When the incident illumination on a pixel changes by a set threshold (corresponding roughly to
a fractional change in brightness), the pixel records an event. The resulting output format is known as address event
representation (AER), in which each event is identified by the pixel’s location on the focal plane (x,y), the timestamp (t)
with typically µsec resolution, and the polarity (p) indicating an increase or decrease in the pixel’s illumination level.
This sensing paradigm facilitates both high dynamic range and temporal resolution [11]. These advantages may expand
the range of viewing angles between the observer, object, and the Sun and provide rate information for fast-moving
objects such as those in low Earth orbit. In addition, a limited volume of data is collected due to the change detection
sensing paradigm and the relatively consistent background of the night sky. The sparse output and reduced power
consumption make these sensors ideal for a space-based SDA constellation where on-board computational power and
downlink bandwidth is limited. These promising characteristics have inspired demonstrations of the sensors for SDA
[19, 6, 15].
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However, for the same reason that it is novel, this different sensing paradigm should not simply replace traditional
electro-optical systems in classical recognition and tracking algorithms. Reassembling traditional frames to use with
standard processing methods negates the advantage provided by limited data production and adds computational com-
plexity. Ideally, the event-based data will be used to update satellite and star tracks in its disaggregated form. The
difficulty in using these sensors for online state updates is that they are inherently noisy, making it difficult to distin-
guish signals from true satellites, stars, and noise in the unaltered data stream. Hypothesis testing provides a means of
measurement rejection by assessing the probability that a certain measurement is a true detection. However, multiple
trackable objects can be in the field of view at the same time. Therefore, each detection that satisfies the hypothesis
test may not belong to the same track. The SDA community has implemented MHTs using both unfiltered and proba-
bilistically filtered event-based data to highlight satellite features [1, 5]. The latter assumes a Poisson distribution for
the likelihood of each event being a true detection without consideration of other characteristics that can be derived
from the data stream.

We theorize that inference of the signal’s origin can be informed by distributions of attributes in the data instead of
assuming a particular distribution a priori for the likelihood of a detection being from a satellite. For example, a
satellite signal produces a series of positive and negative polarity events as it transits a pixel, which likely differs from
the event pattern produced by a star. Section 2.1 covers the development of a process to establish a prior distribution
and choose relevant attributes. Then we apply a joint conditional probability filter to the batch data in Section 2.2.2
to find a threshold for the hypothesis test. Next, we outline the application of the threshold in a MHT framework in
Section 2.3. Sections 3 and 4 cover the performance results and make recommendations for further development.

2. METHODOLOGY

There are three main steps to reach a functional probability based MHT. First, collected data are processed to serve
as prior knowledge about the detection probability and its corresponding characteristics. Then the hypothesis test
threshold is developed to reject data that are unlikely to be true detection events. The threshold is refined on full
batches of data. Finally, the MHT algorithm is written to generate multiple hypotheses of tracks in the focal frame.
The MHT keeps track of the probability of the alternative hypothesis associated with each pixel. This probability
updates continuously as more information is collected. Once enough data reach the hypothesis threshold, a linear
estimate for the next pixel is created and compared to the subsequent observations.

2.1 Data Processing

In order to calculate a probability of detection given certain data attributes, such as a list of events, prior data sets are
classified into true positives and negatives of the alternative hypothesis. The alternate hypothesis, the rare case, is a
satellite detection. While this sounds generally straightforward, it is impractical to manually sift through thousands of
events per data set to label each as a true positive or negative. Therefore, we combine a clustering algorithm and a line
drawing algorithm to group the events together and subsequently gather information about specific attributes.

The data processed and shown in this paper was collected with a Prophesee Gen3 camera with a 85mm, f/1.4, lens
in Albuquerque, New Mexico from January to February 20211. The mount was set to a series of fixed azimuth and
altitude values. Each data set contains roughly 22 seconds of events after approximately 8 seconds are removed due to
high noise rates from the background change after the mount adjustment. Both satellite and star streaks are present in
the data because the sensor’s aim-point is rotating with the Earth.

2.1.1 Attribute Identification

An example data set is depicted in a reassembled frame over an approximately 22 second collection in Figure 1.
Polarity is expressed as blue for positive events and red for negative. From visual inspection, the streak in the upper
right hand corner is oriented in a different direction than those in the middle of the field of view. This is the satellite,
whereas the other lines are stars. Figure 1 provides some insight into what attributes distinguish a star from a satellite
detection. The individual pixel event profiles of the stars almost uniformly end in a negative event, while some of
the stimulated satellite pixels end in blue indicating a positive event. Therefore, the ordered event profile can help
discriminate between the two types of detected RSOs. The figure also shows the density of the star events leaves little

1Provided courtesy of Dr. David Monet of the Air Force Research Laboratory Space Vehicles Directorate.
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or no gaps between the pixels whereas the satellite track has gaps. The satellite may have a different flux and motion
with respect to the sensor than the stars. Therefore, the rate of travel and distance between events in a track also
differentiate the satellite from the star pixels. While it cannot be perceived in the two-dimensional format displayed in
this figure, the duration a pixel receives information from a satellite is also a discriminating characteristic.

0 100 200 300 400 500 600
x pixel

0

100

200

300

400

y 
pi

xe
l

Final Event of Each Pixel

negative events
positive events

Fig. 1: Example data set reassembled into a typical frame. Positive events are blue and negative events are red. A
satellite or star signal typically provides more photometric current than the background. Therefore, the first events are
typically positive and the final events are typically negative. This graphic shows the last event on a pixel and therefore,
is mainly red. The satellite track in the upper left-hand corner goes in a different direction from the stars.

The other events are presumed to be from hot pixels and noise. The previously derived attributes are sufficient to
discriminate these types of events. Hot pixels produce temporally long strings of events that surpass the length of all
other types of detected events. Noise events, on the other hand, have a lower frequency than those from true signals.
Neither of these types of detected signals traverse to multiple pixels sequentially, so they are easily identified when
spatially isolated. Invoking the distinguishing qualities, we create discrete conditional probability tables relating the
probability of a type of detection given each attribute: the event profile, average time between events on a pixel, total
time a pixel is active, average distance to the closest event, and rate that new pixels are added to the track. The creation
of these tables are further described in Section 2.2.1.

2.1.2 Clustering

Each data set has many thousands of events which would be tedious to manually attribute to a type of detected signal.
Instead of assigning each event as a true positive or negative, we leverage three-dimensional clustering algorithms
to separate the data into groups. Once clustered, the assignment of true detections is equivalent to the number of
satellites in the field of view, usually one or two per data set. The two clustering methods described below provide
distinct advantages to the user when separating the data and are, therefore, offered as a choice to the user.
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The first clustering method offered is the density-based spatial clustering of application with noise (DBSCAN) algo-
rithm. This algorithm groups regions of high density information which makes it adept at grouping clusters of arbitrary
shape and size. The algorithm calculates the number of events, Ne, in the data set of events, D, within a radius, r, of
each event

Ne = {e ∈ D < r}. (1)

If the number of events is greater than a minimum value, Ne > Nmin, then it is assigned as a core point [10, 13]. The
events within the radius are associated with the core point, but are not necessarily a core point unless they also meet
the minimum event requirement. The result is a cluster that is locally bound by a radius, but the full cluster of dense
points can take on any shape. We apply the algorithm in three dimensions by scaling the time dimension so that a
single radius bounds all three dimensions appropriately.

The DBSCAN algorithm works well when the data have adequate low-density areas in all three dimensions. However,
it only takes one dimension with insufficient separation to combine two unrelated signals. One common error results
from the spherical bounds extending past an event being checked as a core point to future time-stamped events. For
example, consider an event at the end of one cluster near another cluster in space but later in time. If the nearby, but
later, cluster provides enough events within the spherical radius to meet the minimum event requirement, the non-core
point will be assigned as a core point to merge the two clusters.
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Fig. 2: The final cluster output from the clustering algorithm mapped to different colors for each cluster. The black
dots are unclustered events assigned to noise. The separation in the satellite track creates multiple large clusters.

The second clustering method leverages the sequential nature of the time series data to eliminate the aforementioned
error. Instead of evaluating density of events within a spherical radius, the events are clustered only considering the
events that come before them in the time-series within a radius in the spatial dimension. The region considered is a
cylinder as opposed to the spherical volume of the DBSCAN algorithm. In addition, each event is only clustered to the
closest event within the cylindrical volume to prevent high noise data from being clustered together. The bounds must
still be constrained to prevent clusters being formed without a reasonably nearby event in space and time. Compared
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to DBSCAN, this method is more resilient to data sets with higher levels of noise where the regions of low density are
insufficient. However, the algorithm is slower to implement due to its sequential nature.

Figure 2 depicts the cluster labels, each with a different color, produced by the clustering algorithm. In this figure,
the clustering appears fairly successful with only a few noise events (shown in black) that have a slope similar to the
star tracks. Despite the demonstrated success, both algorithms have spatial limitations. In some of these data sets the
distance between different star tracks, noise, and satellite tracks is less than the distance between points that should be
in the same cluster. This either results in multiple clusters that should be together or multiple tracks combining into
one cluster. These two errors are addressed by the introduction of the Hough transform to detect lines within the data.

2.1.3 Line Formation

Due to the short collection period and small field of view, the true satellite and star detections in the analyzed data set
appear linear on the focal plane projection as seen in Figure 1. We leverage the linearity of the data to automatically
combine separate but co-linear clusters by way of a Hough transform which finds best fit lines in a data set. Typically
a best fit line is defined using the standard equation, y = mx+ b, where the the slope, m, is undefined for a vertical
line. To avoid any singularities, the Hough transform defines lines using an angle between 0 and π , θ , and radius, r,
from the origin, which translates the original equation to the form r = xcos(θ)+ ysin(θ). The points in the data set
are transformed to the sinusoidal space of the θ and r plane. A voting method in this plane identifies the most likely
lines [8] as selected by a threshold of the peak value.
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Fig. 3: The cluster output is adjusted with a Hough Transform. Co-linear, but separate clusters of the satellite track in
the upper left-hand corner are combined without merging with the two clusters in the vicinity of the location x = 150
and y= 400.

We are not the first to implement the Hough transform technique on event-based data. The transform is applied to
extract the linear trend in angles in a related effort. Consistent angles aid in star track identification and, subsequently,
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relative rotation is determined by changes in those angles. [3] proves linear trends in event-based data are extractable
through the Hough transform. However, we utilize the Hough transform with more caution. Due to the poor signal
to noise ratio in some of the data sets, Hough transform lines likely pass through more than true detections. Without
additional assessment, these techniques may produce spatially spread clusters with limited regard to the temporal
dimension.

Instead, we implement the Hough transform by defining a maximum distance and corresponding maximum time
difference along the lines between clusters. This maximum distance is more relaxed than the clustering radius, but
reserved enough to minimize the addition of noise events to the final cluster. If two co-linear clusters are within the
maximum distance and time, they are combined into one cluster. For example, the two satellite signals in Figure 2 are
combined into one cluster in Figure 3. After the co-linear combinations are complete, we assign each cluster to the
classes of satellite, star, noise, or hot pixel.

2.2 Hypothesis Test

Once the data is sorted into detection classifications, we develop a hypothesis test to reject unlikely satellite measure-
ments based on the attributes of the processed data sets. We utilize 70% of the processed data as the prior knowledge
to develop the hypothesis test. The remaining 30% is used to evaluate the MHT. We then convert the training data
into discrete conditional probability tables to apply in the evaluation of the joint conditional probability. Finally, we
choose a threshold on the joint conditional probability by testing the filtering on a batch data set.

2.2.1 Probability Tables

Each data attribute discussed in Section 2.1.1 provides information to infer the possibility the data comes from a satel-
lite. In order to leverage multiple data attributes, we employ Bayes theorem, which defines the conditional probability
of A given B as

P(A|B) = P(B|A)P(A)
P(B)

. (2)

The probability of B can be evaluated as

P(B) = P(B|A)P(A)+P(B| ∼ A)P(∼ A) (3)

where ∼ A is the possibility other than A. This can be further expanded for multiple pieces of information using

P(A|B∧C) =
P(B|A)P(C|A)P(A)

P(B|A)P(C|A)P(A)+P(B| ∼ A)P(C| ∼ A)P(∼ A)
(4)

with the assumption that the information in B and C are independent [18]. Therefore, we can calculate the probability
that the detection is a satellite, the alternative hypothesis, with the liberal assumption that our chosen data characteris-
tics are independent.

In order to implement the joint conditional probability, we must first generate conditional probability tables from the
clustered data classifications. Given that each pixel is assigned a class, counts of each class are discretely organized by
the values of the attributes. The continuous attributes, time and distance, are separated into discrete bins to enable this
organization. After binning, each class of detected events in an attribute is summed and the binned totals in each class
are divided by the total of that class. The resulting table represents the probability of each attribute’s profile or binned
values for a given class which is the conditional probability P(B|A). For example, Table 3 in Appendix B reports the
conditional probability of the four classes of detections given the pixel profile derived from the data set analyzed in
this paper.

2.2.2 Batch Hypothesis Filter

The next step in the hypothesis test development is to choose an appropriate decision threshold. We inform our choice
of a threshold by employing the joint conditional probability filter on the clustered data sets. Employed on this batch
form of the data, the filter calculates the probabilities with the greatest amount of information available in each data set.
This method provides a quick way to estimate final performance of the measurement rejection. Lower hypothesis test
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thresholds that isolate the satellite track in the batch method increase the chance that the online probability calculation
will reach the targeted threshold before the full 30 seconds of data are available. We accept the lower threshold may
also let true negatives, star tracks, noise, or hot pixels, register as satellites in the early data sets. We select the threshold
value from inspection of the batch joint conditional hypothesis filter plots that balance the rejection of true negative
measurements and retention of the true positive measurements.

Figure 4a depicts an implementation of the batch data filter that only considers the conditional probability due to the
event profile. Because events separate from the satellite track have the same polarity profiles as some of the satellite
data, the probability of the true positives and true negatives overlap. The threshold depicted is the maximum for any
data to pass the hypothesis test. Therefore, it is not possible to completely remove star detections with the conditional
probability hypothesis test that considers only the event profile on a pixel.

Consideration of multiple data attributes reduces the probability overlap, hence the improvement from Figures 4a to
4b. However, each attribute’s classifications are not unique between the true positives and negatives and, therefore,
some overlap still exists. As a result, the joint conditional probability in Figure 4b does not have perfect performance
in terms of null hypothesis measurement rejection.
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Fig. 4: a) Conditional probability based only on the event profile. This is the maximum threshold that allows data past
the hypothesis test. b) joint conditional probability considering other data factors reduces false positives in the data
association.

2.3 Multiple Hypothesis Tracker

The foundational idea of MHTs is to evaluate multiple hypotheses in tandem until enough data are available to infer
which hypotheses are true positives and which are true negatives [14]. A traditional MHT has four steps when a new
dataset is available: form new clusters, form new sets of hypotheses, reduce the number of hypotheses by elimination
or combination, and segregate confirmed tracks that have a probability of unity [17]. There are several ways to
organize MHT hypotheses in a multi-target and multi-measurement process. Measurement-oriented hypotheses list
every possible target for each measurement. Target-oriented hypotheses list every possible measurement for each
target [17]. Alternatively, a Bayesian method employs Gaussian mixtures to build probability density functions of the
joint distribution of the targets being tracked [4].

To simplify the MHT construction for this paper, we take a target-oriented hypotheses approach, but not every mea-
surement in the field of view is applied to each target hypothesis. As part of the clustering portion of the MHT process,
Algorithm 1 applies an initial Euclidean distance threshold to the most recent track pixels before assigning a measure-
ment to the closest hypothesis. In more complex algorithms, the measurements should be assigned to all targets within
a radius and only removed once the measurement has probability of unity association with one of the tracks. Our ap-
proach in Algorithm 1 reduces the need to aggressively prune hypotheses, but also degrades the algorithm’s robustness
by not representing all possible data associations.
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Algorithm 1 Track Creation
Require: distmax

while t ≤ tmax do
pixel = (x[t],y[t])
if t == 0 then

H1 {New Hypothesis}
else

for pixelprevious do
dist = pixel − pixelprevious

end for
if min(dist)≤ distmax then

Hmin(dist) {Add to Hypothesis}
else

Hnew {New Hypothesis}
end if

end if
end while

Algorithm 2 Probability Update
Require: probminimum

for pixelHcurrent do
probcurrent {Run Joint-Cond Prob}
if probcurrent ≥ probminimum then

count = count +1 {Threshold Count}
end if

end for
if count ≥ countprevious then

for pixelnew do
trackupdate = pixelnew {Update Track}
errorestimate = pixelnew − estprevious {Estimate Error}
y = m∗ x+b {Fit Data to Line}
estnew = m∗ xdi f f +b {Estimate Next}
countprevious = count {Update Count}

end for
end if

After the clustering is complete, the track hypothesis with new data enters Algorithm 2. In Algorithm 2 we implement
the joint conditional probability based hypothesis test developed on the batch information. We evaluate each pixel
in the track during the update step because the spatial attributes of the track are modified with the new information.
A running count of pixels satisfying the hypothesis test is maintained. A track update is triggered when the count
increases in value. The pixels above the threshold are considered part of the possible track and are added to a track
list. Essentially, the hypothesis test applies measurement rejection to the incoming data until the confidence in the
information is high enough to form or add to a track hypothesis. From the pixels in the track list, an estimate of the
next pixel is obtained by regressing a line and using the average Manhattan distance in the x direction to estimate the
next y value. We prune the MHT after the probability update for tracks that have not received updating information
within a chosen time frame and all of their pixels are below the probability threshold. Pruning reduces the size of the
maintained set of track hypotheses and is intended to remove tracks built of true negative detections.

We implement two versions of the MHT outlined above, one with and one without an additional noise filter prior to
the clustering step. The simple noise filter leverages the higher frequency of events on the detector from satellite and
star signals by comparing the previous event timestamp on a pixel to the current information. If an event occurs before
the maximum time threshold from the previous event, it is passed to Algorithm 1. Otherwise the event’s timestamp is
saved and the algorithm moves onto the next event. The first event on a pixel to pass the filter also retroactively passes
the previous event on that pixel to ensure its inclusion in the hypothesis test.

2.3.1 Mutliple Hypothesis Tracker Evaluation

We evaluate our MHT’s ability to remove star, noise, and hot pixel information while simultaneously identifying a
satellite track by calculating the online hypothesis true positive and true negative rates, the sensitivity and specificity,
respectively. We cluster and associate the test data with a detection class using the process outlined in Section 2.1.
Then, we compare the assigned detection class against the online assignment. We record a true positive, T P, for
each event assigned to the alternative hypothesis and identified as a satellite detection in the clustered data. Likewise,
true negatives, T N, correspond to the online null hypothesis and a star, noise, or hot pixel in the clustered data. We
calculate the sensitivity, T PR, as

T PR =
T P
P

=
T P

T P+FN
(5)

where the total positive assignments, P, to the alternative hypothesis is comprised of the total true positives, T P, and
total false negatives, FN, at each simulation step. Correspondingly, we calculate the specificity, T NR, as

T NR =
T N
N

=
T N

T N +FP
(6)

where the total assignments to the null hypothesis, N, is comprised of the total true negatives, T N, and total false
positives, FP.
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3. RESULTS

The multiple hypothesis tracker, with and without the initial noise filter, proves successful at rejecting many star
detections and their resulting tracks for some data sets. For example, the final time for one data set of the MHT is
depicted in Figures 5a and 5b for the non-filtered and filtered versions respectively. In these figures, the estimated track
is depicted in blue and the thresholded events are plotted in red. Comparing against the clustered data in Figure 3, the
MHT without the additional noise filter covers the full spatial extent of the original track cluster. The noise filtered
MHT, on the other hand, is missing portions of of the track. The missing events are a direct consequence of the noise
filter. These events did not have a corresponding second event and were never passed to the hypothesis tracker. Despite
the apparent downside to the noise filter, the rejection of single events also reduces the hypothesis tracks comprised
of star signals. This overall reduction still allows the satellite track to be identified from more active pixels, but with
fewer false track hypothesis from stars.
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(a) MHT without filter
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Fig. 5: a) The MHT at the final time without the initial filter removing lower frequency events has seven star tracks. b)
The MHT at the final time with the initial filter has two star tracks, but portions of the satellite track events were also
removed by the filter.
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Gaps in the satellite track hypothesis, identified by discontinuities in the estimated track, are another artifact of the
current MHT implementation, visible in both panels of Figure 5. Similar spatial and temporal boundaries are applied
in the MHT clustering and the offline clustering, described in Section 2.1.2, to prevent combining distinct non-satellite
clusters. As a result, the final track is not cohesive despite all sections of the track being identified in the non-filtered
MHT. One possible solution is to relax the clustering bounds in the region surrounding the linear estimate from the
last pixel added to the track hypothesis, but retain tighter bounds for tracks without events above the hypothesis test
threshold.

Fig. 6: The sensitivity of the hypothesis test updated over the course of the MHT runs.

We derive more insight on the hypothesis track production through examination of the true positive and true negative
ratios. The sensitivity over the course of the runs of the MHT, depicted in Figure 6, reflect the possible time required
to accrue enough information at the track level to evaluate a set of events as the alternative hypothesis. Signals with
higher frequencies and more events will reach the threshold more quickly. While poor signal to noise ratios may
require longer observations to have success with the hypothesis test. The subsequent drops in the true positive rate
after the initial rise are due to the addition of more true satellite events to the hypothesis test. These events require
additional information prior to association with the alternative hypothesis, especially if clustered separately from the
rest of the track. The drops in the sensitivity are greater for the filtered MHT because fewer events, including those
associated with the satellite designation, reach the hypothesis test stage of the algorithm.

Fig. 7: The specificity of the hypothesis test updated over the course of the MHT runs.
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Figure 7 shows the specificity over the course of the MHT runs. The initial drop in the true negative rate demonstrates
how the initial clusters of events derived from star signals have similar attributes to events derived from satellite
signals. As the star signals persist, their distinguishing profile of events and consistent temporal dynamics—discussed
in Section 2.1.1—drop the joint conditional probability below the selected threshold. The true negative rate stabilizes
with additional events having a minimal effect on the ratio. We attribute the improved true negative rate in the noise
filtered MHT to the removal of events that do contribute to the classic star signal characteristics. The remaining
data has a higher rate of evaluating below the hypothesis threshold and, therefore, fewer erroneous satellite tracks are
produced.

The noise filtered version of the MHT demonstrates its value when applied to noisier data sets as demonstrated by the
reduction of track hypothesis between Figures 8a and 8b. As long as the satellite signal produces pixel profiles with
greater than one event, it survives the filter. The result is a reduction of track hypotheses continuing to be evaluated
and maintained by the multiple hypothesis tracker and an increase in computational speed.
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(a) Noisy data MHT without filter
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Fig. 8: a) The noisier data set produces more track hypotheses which will have to be subsequently evaluated. b) When
the signal to noise ratio of the satellite is favorable, the preliminary noise filter effectively reduces the track hypotheses.
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4. CONCLUSIONS

We construct a MHT to process event-based time series data into satellite track hypotheses through implementation of
a measurement rejecting joint conditional hypothesis test. We derive the hypothesis test from attributes in the data that
we obtain by clustering then attributing to satellite, star, or noise detections. The MHT performs consistently on the
majority of the tested data sets. The unfiltered version identifies 92.1% of the satellite tracks during the course of the
algorithm. The noise filtered MHT is less successful with a rate of 76.3% of satellite track identifications. We attribute
the noise filtered version’s decreased success rate on the data sets where large portions of the satellite data has a single
event profile. The remaining events are too sparse to assemble a track hypothesis. However, with an appropriate
satellite signal to noise ratio, the noise filter provides a reduction to additional track hypotheses and an average 69.5%
decrease in the computation time when run on the same hardware. Our goal is to progress the MHT towards online
data association and track hypothesis maintenance. Therefore, reducing the computation time is a priority for future
refinements. Future work will also consider more sophisticated noise reduction techniques to improve performance
with a filter when the signal to noise ratio is unfavorable.

The success of the MHT is also dependent on the hypothesis test sensitivity and specificity. The average final true
positive and negative ratios are summarized in Table 1. The hypothesis test is particularly effective at rejecting the
null hypothesis measurements with a specificity above 0.9 for both implementations of the MHT. While the average
sensitivity is under 0.5, the MHT still had enough information to generate most of the satellite track hypotheses.
Ultimately, while our MHT serves as an effective demonstration of applying event-based time series data to SDA,
there is significant room for further improvements. We plan to implement alternative data association methods such as
support vector machines and maximum likelihood estimators in the MHT as they may yield improved sensitivity and
possibly improve processing times. We also intend to utilize track statistics to evaluate the generated track hypotheses
and inform more intricate pruning of the hypotheses generated.

Metric MHT Without Noise Filter MHT with Noise Filter

Yielded Satellite Tracks 92.1% 76.3%

Average Data Association TPR 0.473 0.393

Average Data Association TNR 0.901 0.972

Average Run Time [sec] 119.7 36.5

Table 1: Noise filtered and non-filtered MHT performance statistics.
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A. CLASS PROBABILITY TABLE

Hot Pixel Noise Star Satellite

0.005 0.464 0.506 0.024

Table 2: Probability of a class of detection occurring in the training data set.

B. CONDITIONAL PROBABILITY TABLES

Profile Hot Pixel Noise Star Satellite

(0) 0.85 0.02 0.07 0.03

(1) 0.05 0.02 0.15 0.25

(1,0) 0.02 0.004 0.04 0.05

(1,1) 0.01 0.02 0.09 0.14

(1,1,1) 0.002 0.02 0.06 0.08

(1,1,1,1) 0.001 0.02 0.04 0.05

(1,1,1,1,1) 0.001 0.02 0.03 0.03

(1,1,1,1,1,1) 0.001 0.02 0.02 0.02

(1,1,0) 0.003 0.001 0.03 0.05

(1,1,0,0) 0.0008 0.0002 0.02 0.02

(1,1,1,0) 0.0005 0.0003 0.02 0.03

(1,1,1,0,0) 0.0003 0.00008 0.02 0.03

(1,1,1,1,0) 0.0002 0.0002 0.01 0.02

(1,1,1,1,0,0) 0.0002 0.0002 0.01 0.02

(1,1,1,1,0,0,0) 0.0001 0.0001 0.009 0.01

(1,1,1,1,1,0) 0.0001 0.00008 0.008 0.01

(1,1,1,1,1,0,0) 0.0001 0.00008 0.008 0.01

(1,1,1,1,1,0,0,0) 0.0001 0.00008 0.008 0.01

Table 3: Profiles that have probabilities greater than 0.01 given a satellite detection has occurred. 1 is a positive
threshold change. 0 is a negative threshold change
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