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ABSTRACT

Optimal planning for multi-target rendezvous missions consists of a combinatorial optimization problem for debris
target sequencing, coupled with a continuous, nonlinear optimization problem for trajectory planning. The problem is
formulated as a variant of the time-dependent travelling salesman problem, whereby the objective function to minimize
is the total mission AV provided a set of mission constraints. A three-stage framework is developed to perform this
optimization for low-thrust active debris removal missions targeting debris objects in both circular and elliptical orbits.
The first stage generates a two-dimensional approximation of the time-dependent search space for each departure-
arrival debris pair using a combination of analytical estimation methods and a Q-law inspired guidance scheme. The
second stage employs a genetic algorithm to search the discretized problem space and optimally sequence the debris
object list. Finally, the last stage implements a gradient-based time-varying controller to tune the gains in the Lyapunov
candidate function to refine the trajectory optimization, provided the converged debris object sequence. The debris
sequence, maneuver epoch, thrust vector time history, and total AV cost to remove select debris objects considering the
Jo perturbation are outputs of this optimization framework. The validity of the proposed framework is demonstrated
through three ADR case studies. The outcome of this research is a flexible tool for the optimal planning of low-thrust
active debris removal missions.

1. INTRODUCTION

Numerical studies on the evolution of space debris population in low-Earth orbit (LEO) have indicated that even in
the absence of future launch activities, the population is unstable, making its growth inevitable [1]. As the rate of
naturally decaying debris objects is slower than the stabilizing 5-10 debris removal rate [2], active debris removal
(ADR) missions will perform a vital function in sustaining the space environment for ongoing and future operations.
Spacecraft-based debris remediation strategies that remove multiple objects with a single mission are of considerable
interest due to their high utility and economic feasibility. Further reduction in mission costs can be achieved by
optimizing the debris sequencing and rendezvous trajectories to minimize propellant consumption. This problem,
coined the multi-target rendezvous problem (MTRV), thus consists of 1) a combinatorial optimization for debris target
sequencing, and 2) a continuous, nonlinear optimization for trajectory planning [3].

The duality of the MTRYV problem is made complex by the presence of J,. The Earth’s oblateness perturbation changes
the orientation of an orbit over time, doing so at a rate that depends on the semimajor axis, eccentricity, and inclination
of the orbit. As a result, the maneuver cost for the chaser spacecraft to transfer from one target to another largely
depends on the departure and arrival epoch. In efforts to simplify the problem and render it more computationally
tractable, some researchers have optimized ADR sequences using the assumption of static transfer costs. This as-
sumption is valid if the debris targets of interest reside in very similar orbit planes [4], or if the transfer maneuvers
are executed after the chaser spacecraft drifts to an orbit that satisfies a predefined criteria bounding the AV required
[5, 6, 7]. This simplification is appropriate for ADR missions designed to remove the maximum number of objects
from a large catalog of debris options, as would exist in debris clouds. However, one may be interested in designing
an ADR mission to maximize the stabilizing impact on the LEO population by removing specific, high-priority debris
targets. Optimal planning for these missions would require a different transfer strategy whose maneuver costs evolve
with time, as close alignment of orbits may only occur between some debris objects with variable frequency within
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the mission window. As a result, the MTRV problem for these ADR missions is necessarily formulated as a variant of
the time-dependent travelling salesman problem (TD-TSP) [8].

Due to their superior I, a measure of propellant efficiency, using low-thrust propulsion for ADR missions can enable
the removal of a broader range and larger volume of debris objects. Despite this performance advantage, only a
handful of studies have considered optimizing the MTRV problem with low-thrust maneuvers. This is because low
thrust orbital maneuvers in LEO require many-revolution transfers, which alone, present a challenging optimal control
problem for trajectory optimization. Zuiani and Vasile approached the MTRYV optimization problem for ADR missions
that use low thrust propulsion with a simplified many-revolution transfer model [9]. This model is based on the 1st
order solution of perturbed Keplerian motion, in which spacecraft thrust was the only perturbation assumed and the
effect of J, was neglected. The study conducted by Di Carlo et al. accounted for the contribution of the J, zonal
harmonic in their low-thrust transfer model but assumed transfer time independence [4]. Li et al. [10] re-derived
Edelbaum’s analytical AV estimation for low-thrust maneuvers to include the J, perturbation and RAAN changes.
Cerf also used this analytical formulation for their low-thrust propulsion ADR case study [11]. However, Edelbaum’s
work assumes continuous thrusting, which corresponds to minimizing transfer time rather than AV [12]. To the author’s
knowledge, no studies have proposed to optimize the MTRV problem with low-thrust propulsion with a J>-perturbed
dynamic model under a framework that accounts for the time-dependent nature of trajectory optimization and applies
a transfer strategy that minimizes AV instead of transfer time. Furthermore, the debris orbits in previously conducted
MTRYV studies have largely been circular.

Both deterministic and stochastic algorithms have been used to optimize the debris sequencing aspect of the MTRV
problem. Of the deterministic approaches, Braun et al. explored fixed-length rendezvous sequences using a brute-
force approach [13] and Yu et al. pursued a hybrid optimal control framework, in which the sequence optimization
was performed using an exhaustive search [14]. These methods can work reasonably well to optimally sequence the
4-5 objects that were considered in the studies, but quickly become computational impractical at solving large-scale
cases. Tree search algorithms such as the brand-and-bound method used by Berend et al. [5] and Yang et al. [15] can
reduce the computational load required by pruning nodes at each level of the search process, retaining only those that
look promising. However, it is possible to prematurely prune excellent solutions during the search process. Relaxation
of the pruning condition can be used to decrease this risk, but the computational load increases accordingly. To
contrast deterministic approaches, stochastic metaheuristics are more efficient at finding near-optimal solutions for
large-scale optimization problems. These methods avoid enumerating through all feasible combinations, and instead
search the solution space using random variables and probability functions guided by a higher-level convergence
procedure. This allows stochastic metaheuristics to explore the solution space efficiently and approximate the global
optimum with high probability. It is possible to hybridize a metaheuristic with deterministic algorithms to improve
local search procedures. Hybridization of the two broad optimization techniques have been used by Zuiana et al. [9]
and Chen et al. [7] in their optimal mission planning studies. Other optimization algorithms used include Simulated
Annealing (SA) [11], Genetic Algorithm (GA) [16], Ant Colony Optimization (ACO) [17, 7, 3], and Particle Swarm
Optimization (PSO) [18]. SA is a single-solution metaheuristic approach that focuses on modifying and improving a
single candidate solution. This is in contrast with the latter three listed methods (GA, ACO, PSO), which maintain
and improve multiple candidate solutions, using either collective behavior or population characteristics to guide the
search. As the solution space grows factorially with the number of debris objects to sequence, a population-based
metaheuristic is employed in this research to globally optimize the MTRV problem.

In the present paper, a modular framework is presented to optimize the MTRV problem for ADR missions targeting de-
bris in both circular and elliptical orbits using low-thrust chaser spacecraft. The methodology consists of three stages.
The first stage generates a two-dimensional approximation of the time-dependent search space for each departure-
arrival debris pair using a combination of analytical estimation methods and a Q-law inspired guidance scheme. The
second stage employs a genetic algorithm to search the discretized solution space and optimally sequence the debris
object list. Finally, the last stage implements a gradient-based time-varying controller to tune the gains in the Lya-
punov candidate function to refine the trajectory optimization, provided the converged debris object sequence. Mission
window constraints, transfer strategy, and an upper bound on object-to-object transfer times are identified to bound
the optimization problem. The trajectory optimization will be conducted for long-range rendezvous maneuvers, while
the time required for proximity operations are accounted for. The effects due to J, perturbation are included in the dy-
namic description of the problem. The debris sequence, maneuver epoch, and thrust vector are established as problem
variables, while the total maneuver cost (AV and transfer time) is the design objective to minimize. The convergence
performance, robustness, and validity of the framework is demonstrated with 3 distinct ADR case studies. The results
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demonstrate that the proposed transfer strategy and the use of low-thrust propulsion systems can enable the removal
of a broader range of debris objects, at a lower $ cost per kg. The final product is an optimal mission planning tool for
ADR missions targeting debris in low-Earth orbit.

The organization of this paper is as follows. A description of the global optimization problem is presented in Section
2. The methods used to estimate the AV of a variety of low-thrust transfer strategies are outlined with the dynamic
model in Section 3. The optimization approach and algorithms will then be explained in Section 4. Finally, the results
of three ADR case studies is provided in Section 5 to demonstrate the effectiveness of the developed framework.

2. GLOBAL OPTIMIZATION PROBLEM DEFINITION

Optimization of this problem is defined as minimizing the total AV required to completely remove a defined set of
debris objects in LEO within the allocated mission window. For the purposes of designing this framework, the debris
set shall be considered as an arbitrary collection of debris objects, as the debris target selection is outside the scope of
this study. The ADR mission concept is modelled after the overall concept for the Deorbiter CubeSat mission [19].
This ADR mission uses a mothership chaser spacecraft to carry and deploy several debris-removal nanosatellites,
called Deorbiter CubeSats. The mothership spacecraft is responsible for transporting the Deorbiter CubeSats near
the vicinity of predetermined debris objects and for characterizing the dynamical state of these target debris prior to
Deorbiter deployment. This is achieved via two sets of maneuvers: a long-range maneuver and formation flying. As
the AV required to perform formation flying is largely independent of the debris sequence, only its duration and the
AV required by the long-range maneuver is accounted for in this framework.

There are a variety of low-thrust transfer strategies available, and their comparative optimality depend on the shape
and relative orientation of the initial and target orbits [12] [10] [20] [21] [22]. To avoid reducing the solution space
prematurely and lose potential optimums, let @ denote the family of functions {@;, ¢, ...¢; } corresponding to k viable
low-thrust transfer strategies considered in this study. The given MTRV problem can thus be represented by the
directed graph G = (V, A) where V = {1,2,3... n} is the set of nodes corresponding to n debris targets and A is the
set of arcs defined by Eq. 1, representing all the possible transfer maneuvers between each ordered debris pair.

A={aix=0(ij) |ijEVXV,i#£j} Ve ()

As a result, there exist four sets of decision variables for this problem. There is the binary variable x;; € x that
takes the value of 1 when the chaser transfers from debris i to debris j and 0 otherwise; there is the discrete variable
k < |®|, k € N* that selects the transfer strategy ¢ € ® to rendezvous with debris j from debris i; and there are the
variables t,; € T, and t;; € 74 denoting the arrival and departure epochs to and from target i, respectively. The variable
representing the transfer costs, c;jk(t4,i, ta,j, @k), is thus a function of the transfer strategy, the departure and arrival
epochs from and to targets i and j, summarizing the dynamic nature of this TSP variant.

The specifics regarding mission window, maneuver duration, and spacecraft specifications shall be made adjustable to
accommodate different mission scenarios. Let the start of the mission correspond with the time when the mothership
arrives in near the vicinity of the first debris in the sequence. Then, the constraints bounding this problem are:

1. All debris targets € V shall be removed by a Deorbiter CubeSat deployed by the mothership
2. They should all be removed within the specified the mission window [To, Tf] .

3. The flight time for each long-range rendezvous transfer leg shall not exceed ToF;,4;.

4.

The duration between contiguous transfer maneuvers shall be at least the time required for formation flying,
Atsery, an interval defined by that required to achieve sufficient dynamical characterization of the target debris.

5. There is an upper limited on the total achievable AV,,,, for each mission, as determined by a maximum mass
ratio - for the chaser spacecraft.

min

As the group of permutations of V, S(V), represents the set of solution candidates of the MTRV problem, the optimal
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solution of the MTRYV problem is thus defined as the rendezvous sequence S* with transfer trajectories that achieves:

x,frfirf,’@c - ,e; ,; Ciji(lais ta,j; Pi) Xij (2)

subject to inj =1, Vjev 3)
i€V

Y xi=1, VieV “)
jev

xij € {0, 1} VijeVxV,i#j (5)

tai+ Mgery <14 VieV (6)

ta,j —1ai < ToFax VijeVxV, i#j (7)

M(tai) — m(tai + Msery) = Macorbirer VieV (8)

tar =Ty ©)

m(To) =my (10)

tan + ANgery =ty < Ty n=|V| (11)

m(ty) > my,, (12)

3. SYSTEM DYNAMIC MODEL

To remain flexible to the volume and type of debris this framework can optimize, the methods used to describe the
dynamics shall be general, yet computationally efficient. As a result, it is desirable to use an analytical model to
approximate the minimum AV required, wherever possible, and to use an efficient guidance algorithm where it is not.
In this study, four transfer strategies are implemented in the optimization framework, corresponding to |®| = 4 for the
global optimization problem.

3.1 Analytical Methods for Circular Orbits

Most analytical models for low-thrust transfers build off Edelbaum’s work [10], which ultimately provide a minimum
time solution rather than minimum AV due to the necessary assumption of constant thrust. As the objective of the
trajectory optimization scheme is to approximate a minimum AV solution, the transfer strategy for this framework
should be based off an analytical model that does not require constant thrust to estimate the transfer cost. Luckily,
Di Carlo and Vasile have proposed such a model in their 2021 study [20]. In this paper, the researchers derived
analytical solutions for the two-point boundary value problem (TPBVP) of a low-thrust transfer between two circular
Earth-centered orbits under the effect of J,. In this derivation, it is assumed that the perturbing force provided by
the propulsion system is sufficiently low “fo produce negligible variations in the orbital elements over one orbital
period”. This enables the use of constant orbit averaged values in their formulations. The result of this referenced
work are analytical formulations that, when initialized as a feasible TPBVP, accurately estimate the AV required by
three different low-thrust long-range transfer strategies. Each of the transfer strategies are split into 2 phases, in which
different sets of orbital elements are modified. Adopting the notation in [20], these strategies are summarized below.

Strategy 1, ¢1: [AQ,,,(Aa,Ai)]. First, exploit the effects of J> on the evolution of the orbital plane and drift to a
RAAN that is closer to the target debris orbit. Then, low-thrust is applied along two thrust arcs that span an angle of
2\ with a constant elevation angle 3. These thrust arcs are centered at the nodal points of the orbit. The change in Q
in the first phase is tuned such that additional Q variation as a result of the second phase achieves the target Q. It was
observed that for a given time of flight, the TPBVP is a nonlinear function of ¥ alone. A nonlinear solver was used to
calculate this parameter and the solution is fed into Equation 13 to find the AV of the transfer.

_(JE_ [E 492 iy — o)’
AVo, = ( do a"f) \/1 + sin® l;'/logz(df/do) (13)

Strategy 2, ¢,: [(Aé,AD,AQB]. The second strategy reverses the order of which the sets of orbital elements are
varied. Additionally, rather than using a drift orbit to achieve the desired AQ, the RAAN is adjusted with a low-thrust
maneuver in the second phase as well. The first phase of this transfer strategy is identical to the second phase of
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¢1. This maneuver proceeds for a duration of ToF]. In the second phase, thrust is applied entirely out-of-plane over
another two constant 2V, arcs for ToF, to arrive to the destination Q. Unlike the first transfer strategy, this transfer
strategy possesses two independent control variables to solve for, requiring two inputs to bound the nonlinear problem.
Thus, the control parameters of this strategy, { ¥, ¥} are solved numerically via time-discretization. The AV of this
transfer is highlighted in Eq. 14, where € refers to the spacecraft acceleration due to thrust.

4 - 2 I _ I 2 _
AV, = (1/‘_‘_ ‘_‘) [ (lf2 ) 26V 0p, (14)
do ay sin” yh log”(dy/dy) T

Strategy 3, ¢3: [(Aa,AQ,,),Ai]. In this transfer strategy, tangential thrust (B = 0) is applied over two constant arcs
of 2 centered at the nodes to achieve the desired Aa. In the second phase, thrust is applied entirely out-of-plane to
arrive at /7. The variation in Q is entirely due to the J, effect, so the AQ; realized in the first phase must be compatible
with the AQ; in the second phase. Thus, if a total ToF is provided as an input, the problem is fully constrained and
the control parameters {{;, ¥} can be solved for. The final expression for AV from [20] for this transfer strategy is

presented in Eq. 15.
U K Vo R - -
AV =)= — ] = \/ - 15
Yox ap dy + siny, \/ dy (lf lO) (15

3.2 Guidance Algorithm for Elliptical Orbits, ¢,

While the methods in the previous section were effective at estimating AV for low-thrust transfer between circular
Earth orbits, they are not applicable for transfer to, from, and between elliptical orbits. As a result, the implementation
of a computationally efficient guidance law is warranted. When nonconservative perturbations such as thrusting are
involved, one common method for describing the effects of perturbations on the evolution of an orbit is through
Gauss’ variational equations (GVE). These equations express the rate of change of the classical orbital elements
{a, e, i, Q, ®, v} as a function of the perturbing accelerations f = [f, fr, fv]’, where f is expressed in the radial-
transverse-normal (RTN) reference frame of the satellite. Using the GVEs however, present numerical issues as they
become singular for circular and equatorial orbits. To overcome these issues, it has been common to adopt the set
of modified equinoctial elements {p, f, g, h, k, L}, defined in [23], and describe the dynamics by differentiating
those expressions in terms of time [24]. The outcome of this is a dense dynamic model structure comprised of a set
of highly coupled differential equations, where the evolution of each modified equinoctial element is a function of
the true longitude L [24] and all, but the semiparameter p, are affected by the normal component of the perturbing
acceleration. For these these reasons, we are motivated to replace the use of modified equinoctial elements to with a
set of nonsingular ideal elements proposed by Leomanni et al. [22] to describe orbital motion. This set of elements,
inspired by use of Hansen’s ideal frame, is defined by Eq. 16.

p =p/Re

oc=L—s

ex = fcos(o) +gsin(o)

ey, = —fsin(c) + gcos(o) (16)

hy =hcos(o) +ksin(o)
hy = —hsin(c) + kcos(o)
o=L—s
As demonstrated through their study [22], employing this set of elements possesses the following numerical benefits:

* The proposed ideal anomaly, s, is observed to be the fictitious time from the Sundman transformation dr = o ds
of the form n =2, and o = 1/h in the unperturbed case. As the dynamics of s are not affected by perturbing
accelerations, it is an attractive basis for regularization.

¢ Regularizing the equations of motion can increase the accuracy and speed of the numerical integration [25].

e The resultant dynamic model structure with ideal elements exhibit a high level of sparsity when compared
to other element sets, reducing the computational load required to solve or approximate the optimal control
problem.
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For these reasons, the dynamic model employed for this work will follow the J, perturbed regularized formulation
introduced in [22] and adopt the Q-law inspired Lyapunov guidance scheme in Eq. 17 to resolve the transfer maneuvers
involving elliptical orbits. In contrast to the Q-law quantifying the best-case quadratic time-to-go”, this candidate
Lyapunov function attempts to quantify the AV required to bring the spacecraft orbit to the desired target [22], making
it an attractive strategy for the global optimization problem. This method makes use of three orbital parameters
Y, A1, A2 introduced in [26] to describe the relative inclination, and relative angles between the chaser spacecraft and
target debris orbit periapsis with respect to point in which the two orbit planes intersect, respectively. The Lyapunov
candidate function can therefore be defined as:

2
ke 7 g
=45 (i) e e (]

T
where y:{a e v A 12} (18)
B [ecos(lg)—écos(/h)]

= (19)
esin(Ay) —esin(A;)

with @ and ¢é representing the semimajor axis and eccentricity of the target orbit, respectively. This guidance law is
used in two stages of the framework. It is selectively called in the first stage for the AV and time estimation of transfers
involving elliptical orbits, and once again in the last stage to refine the optimization of the trajectories in the converged
sequence. When it is used in the first stage of optimization, the weighting parameters k., k., ky > 0 are static, with
values informed by the relative magnitudes of the terms in Eq. 17. When this guidance law is revisited in final stage
of the framework, these weighting parameters are dynamically tuned using a gradient-based method.

4. SOLUTION PROCEDURE

4.1 Time-Dependent Cost Generation

The first stage generates a two-dimensional approximation of the time-dependent search space for each departure-
arrival debris pair ij. To provide an account for the effect of the departure epoch and transfer duration on the transfer
cost, an array of sample departure epochs 7; with a user-defined time resolution is used to generate a set of ephemerides
for each debris object. For each 1, ; € 74, the state vector of both departure and arrival targets are fed into the transfer
cost module, containing implementations of the transfer strategies {@1, @2, ¢3, ¢4}, for cost estimation. The output of
this transfer cost estimation is a 2-dimensional description of the maneuver cost in a space spanned by 7; and 7, for
each departure/arrival debris pair. Saving this discretized representation of the problem space concludes the first stage
of the optimization framework.

130

125

120

AV [kmy/s]

110

105

B0 %0 100 110 120 130 140 150
TOF [days]

Fig. 1: AVy, = f(ToF)
From an intermediary result shown in Figure 1, it is observed that the AV costs decrease asymptotically as the time

of flight increases. This represents a region of diminishing returns, as the chaser spacecraft will only save a marginal
amount of fuel despite adding weeks to the total transfer time. Consistently choosing the absolute minimum AV of all
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the transfer options and transfer times can be problematic as this can lead to a violation of the overall mission time
constraint. One can select the upper bound on the flight time to be sufficiently small to mitigate this, but asserting
a uniform constraint for all possible transfer pairs can over-constrain the TPBVP for some transfer pairs, resulting
in a loss of optimal solutions. Thus, there is a need to assess the trade-off between flight time and AV within the
transfer module. A simple method to accomplish this is with a linear weighting function. A weighting function uses
coefficients to determine the relative contribution of one parameter with respect to another in the overall objective
function. Adjustments to these coefficients reflect a change in relative preference of priority. The cost of a transfer
is therefore calculated with the weighting function presented in Equation 20. w can be thought of as a scaling factor
for AV such that AV and time of flight ToF =1, j —t,; are of similar magnitudes. The user can initialize w to their
preference, and the optimizer will adjust this value if the relative emphasis leads to a violation of overall mission
constraints.

cije(tais tajs O) = WAV (tais taj) + [ta,j —1a,i] (20)

4.2 Global Optimization with the Genetic Algorithm

As the search space grows factorially with the number of debris objects to sequence, the second stage employs a
genetic algorithm (GA) to search the discretized problem space and optimally sequence the debris object list. GA
draws inspiration from the natural selection process, using biologically inspired operators to improve the fitness of a
population over time. The genetic algorithm begins with a randomly generated population containing m trial solutions,
where m is an integer defined by the user. The fitness of each trial solution is negatively correlated with the total
maneuver cost of that mission sequence, such that sequences that have higher AV requirements will have a lower
fitness value. Each major iteration of the GA instance is called a generation. In a generation, the population is first
passed through a parent selection operator, crossover operator, and lastly the mutation operator. The output at the end
of each generation is a new set of individuals to constitute the population in the next generation.

Evaluating the trade-offs between solution space exploration, exploitation, computational complexity, and overall sim-
ulation convergence, the rank selection operator was chosen for this implementation of the GA. With this operator, the
probability for selecting an trial sequence to construct the next generation is proportional to their rank in fitness, nor-
malized by the size of the population. The benefit of this operator over its alternatives is that a rank-based probability
prevents highly fit sequences from saturating the fitness pool, thereby providing a consistent method to distinguish
the fitness of trial sequences in a population. The balance between solution exploration and fitness exploitation is
also constant with each successive generation. This property is a shortcoming of the rank selection operation, as it is
desirable to value exploration more than exploitation early on in the optimization procedure. This effect will be offset
through an adaptive mutation operator.

The crossover operator key to the optimization process as it prescribes how new trial solutions are generated from the
previously selected sequences. In effort to increase the fitness of the next generation, information regarding the effects
of certain segments on the parent’s overall fitness and the sensitivity of the segment’s cost with respect to time must
advise the crossover process. A departure/ arrival debris pair can have a transfer cost of ¢;j, if the transfer maneuver
was initiated at z;; = epoch; but can have an entirely different cost c;ji, if the transfer was initiated several weeks
later. To capture the magnitude and sensitivity of a given departure/ arrival debris pair’s transfer cost as it effects the
overall fitness of the sequence, a proprietary crossover algorithm was developed using the statistical properties of the
transfer cost to construct new trial sequences.

4.3 Optimization Execution

The fitness for each trial solution, a debris sequence, is assembled through a series of searches in the hash table
generated by the optimal trajectory estimation scheme. The first transfer maneuver occurs at the start of the mission
window and the state vector describing the chaser spacecraft is equivalent to that of the first debris object. The function
finds the departure/arrival debris pair using a corresponding key, then keys in the departure epoch to obtain the optimal
cost, AV, and time of flight associated with that segment. The time of flight and minimum service time is added to
the current mission time to set the departure epoch for the next transfer segment. As the range of departure epochs are
sampled discretely, the program will select the next closest sample epoch. The state vector of the chaser spacecraft is
subsequently updated to reflect that of the arrival debris at the current mission time. The arrival debris becomes the
departure debris and the next object in the sequence is the arrival target. This process continues, accumulating the
cost of each segment until the sequence has been enumerated. As the GA maximizes fitness, the fitness value is some
ceiling number minus the total cost of the segment. If at any point in this process, constraints on the total mission
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time or total AV expenditure are violated, the function will adjust the weighting value w of the cost function, and
call the trajectory optimization module with the adjusted w to find new optimal solutions. If the GA optimization is
determining the fitness of the last generation, the guidance control law is called in the loop to refine the final optimized
trajectories and departure epochs. This is the third and final stage of the optimization framework. The spacecraft
mass is adjusted after the completion of every segment to reflect the decrease in total mass due to the deployment of
a de-orbiting kit and propellant expenditure. This update to the spacecraft mass will increase the thrust acceleration
in subsequent transfers, decreasing the AV requirement when compared to first-stage estimates. Figure 2 is a flow
diagram illustrating the execution process of this optimization framework.
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. Mutation
Query Transfer Strategies Population ) (Generation) ( ooy,
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Epoch g J e
Resolution —L
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Fig. 2: Diagram of the optimization framework developed for optimal ADR mission planning

5. SIMULATION AND RESULTS

The results of three case studies are presented to demonstrate the validity of the proposed optimization framework.
The first two case studies replicate the mission scenarios investigated by two other researchers. The results obtained
from running cases on these mission scenarios are compared against the published research results. The last case study
considers the optimization of an arbitrary set of debris targets with a reasonable Ai range and e variability amongst
the target orbits. The purpose of this case study is to demonstrate the optimization framework’s ability to sequence
debris target lists with a variety of orbit inclinations, a capability that is not prevalent in the solution methods found in
literature. The optimization of these cases were performed on a machine with an Intel Core i7 CPU processor and 16
GB RAM under the 64-bit Windows 11 operating system.

5.1 Case 1: Comparing Optimal Results with a Low-Thrust MTRV ADR Study

The first case study compares the results obtained from the developed optimization framework with that from another
study considering the optimal planning of a low-thrust ADR mission in LEO [4]. The carrier spacecraft in this
reference study is 2750 kg and equipped with a 100 mN thruster capable of 1600s of I;,. Each deorbiting kit has a
mass of mgeorpirer=175 kg. Table 1 tabulates the list of debris objects to sequence, along with the relevant classical
orbital elements at the beginning of the mission window. It is noted that the selected debris objects are in very similar
orbits. The GA was initialized with a population size of 200, iterated over 50 generations, with adaptive mutation
probabilities between 30% and 75%. 10 independent GA instances were executed to confirm the reliability of the
optimized sequence.
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Best Solution Fitness vs. Generation
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Table 1: List of debris objects for Case 1 [4]

NORAD  a[km] e i [deg] Q [deg] w972
39011 746835 0.0083 63.3835 237.2911
39012 7468.35 0.0083 63.3824 237.3044
39013 7468.34 0.0083 63.3851 236.4881
39015 7472.54 0.0095 63.3828 246.1591
39016 7471.19  0.0097 63.3825 240.6863
40338 746831 0.0010 63.4108 239.8075
40339 746831 0.0010 63.4097 239.8082
40340 746832 0.0010 63.4084 240.6788
40342 747324 0.0019 63.4096 240.8979 0 & ] era =
40343 7471.88 0.0020 63.4093 2453040

4970

4968 1

4966 1

Best Solution Fitness

4962 4

4960 +

Fig. 3: 10 independent GA instances for Case 1

0.05 km/s 0.05 km/s 0.04 km/s
108.1 days 107.7 days 107.9 days 98.9 days 106.7 days 133.2 days

Fig. 4: Optimized sequences from 7 of 10 independent GA runs

The progression of the best solution’s fitness during each of the 10 independent GA instances is summarized by Figure
3. It is observed that majority of the improvements in fitness occur within the first 10 generations before saturating at
a maximum. With several independent runs, the program can evolve different initial populations to try and reach the
same objective. Figure 4 details the final sequence obtained by the GA for 7/10 independent runs. It is observed that
for 10/10 of the runs, the first two transfer segments are identical. Indicated by the blue boxes, 6/10 runs sequenced
the first 4 transfer segments consistently, while 4/10 runs produced the same final sequence with minor variation on
the total AV and mission duration. The champion result (second to the right) is very similar to those of these 4 GA
instances, with the exception of the two circled segments. Swapping 39011 with 39013 saves one day for the mission,
which is not a significant difference since the total mission duration allocated is 365 days. These results demonstrate
that the framework is effective at consistently converging to the global optimum.

The champion result is detailed on the left half of Table 2 below. The corresponding AV and time of flight for each
transfer segment of the mission are also presented. The right half of this table summarizes the solution results from the
reference study. It can be observed that with the adopted transfer strategy, the solution framework outputs a sequence
that requires 88% less AV and completes the mission in almost 1/3rd of the time when compared with the published
result. The difference in final spacecraft mass, my, between these two results indicates that 208.1 kg of propellant is
saved with the devised optimization strategy. In addition to using a minimum AV scheme, another explanation for
the discrepancy between these two results is that the reference study assumed that the transfer costs were independent
of time. Although the orbits of the debris objects are very similar, the solution framework may have detected certain
transfer segments for which the AQ is reduced after some passage of mission time due to the J, perturbation.
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Table 2: Comparison between the proposed framework result and the published result for Case 1

‘ Solution framework results ‘ Published results [4]

‘ Departure  Arrival AV [km/s] ToF [days] ‘ Departure  Arrival AV [km/s] ToF [days]

1 40343 40342 0.0023 2.58 39013 39011 0.010 51
2 40342 40340  0.0103 45 39011 39012 0.004 10
3 40340 40339 0.0021 45 39012 39016  0.093 27
4 40339 40338 0.0045 45 39016 40342 0.044 31
5 40338 39013 0.0050 9.1 40342 40340  0.013 32
6 39013 39011 0.0009 45 40340 40339 0.024 43
7 39011 39016  0.0051 45 40339 40338  0.003 2
8 39016 39012 0.0090 5.0 40338 40343 0.114 52
9 39012 39015 0.0021 45 40343 39015 0.042 54
Total 0.0413 106.7 0.3470 302
mo = 2750 kg ms =1170 kg mo = 2750 kg ms =961.9 kg

5.2 Case 2: Comparing Optimal Results with a High-Thrust MTRV ADR Study

The second case study compares the results obtained using the devised solution framework with that from a study
considering the optimal planning of a high-thrust ADR mission in LEO [3]. The carrier spacecraft in this reference
study is 7000 kg and each deorbiting kit has a mass of 30 kg. To evaluate the performance of this ADR mission with a
low-thrust propulsion system, the thruster is assumed to produce 449 mN of thrust and 2219s of I;,. Table 3 tabulates
the list of debris objects to sequence, along with the relevant classical orbital elements at the beginning of the mission
window. These objects were randomly selected from the Iridium 33 debris cluster by the researchers of this study, and
thus like Case 1, share very similar orbital elements.

The GA parameters are identical to those used to optimize Case 1, demonstrating the robustness of this algorithm.
The sequence that yields the highest fitness is detailed on the left half of Table 4 below. The corresponding AV and
time of flight for each transfer segment of the mission are also presented. The right half of this table summarizes the
solution results from the reference study. The highlighted results indicate that the use of low-thrust propulsion for
this ADR mission can reduce the propellant consumption by 43.8% while only adding 1.5 months to the total mission
time frame. In terms of absolute values, switching to low-thrust propulsion can allow for 2048 kg of mass savings in
propellant alone. If one were to use the current (2022) Falcon 9 launch prices of $2938 per kg [27], the significance
of this mass saving is a $6 million reduction in launch costs.

Table 3: List of debris objects for Case 2 [3]

NORAD ID a [km] e i [deg] Q [deg]
33886 7153.0 0.0012 86.3810 265.1455
33773 7133.0 0.0011 86.3999 261.0980
34160 7088.0 0.0055 86.4029 241.5819
33870 7148.0 0.0022 86.3770 262.0968
34367 7125.0 0.0026 86.4112 241.1697
33878 7181.0 0.0104 86.3073 239.4547
34378 7122.0 0.0055 86.3530 237.7939
33953 7143.0 0.0024 86.3905 261.3071
35297 7161.0 0.0016 86.3867 266.6037
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Table 4: Comparison between the proposed framework result and the published result for Case 2

‘ Solution framework results ‘ Published results [3]

‘ Departure  Arrival AV [km/s] ToF [days] ‘ Departure  Arrival AV [km/s] ToF [days]

1 33878 33870 0.0302 9.56 33773 34378 0.2912 0.6
2 33870 33953 0.0147 5.0 34378 33886 0.0581 0.56
3 33953 33886 0.0126 3.0 33886 33878 0.0603 1.29
4 33886 35297 0.0031 1.63 33878 34367 0.1528 1.33
5 35297 34367 0.0234 14.56 34367 33953 0.0348 0.4
6 34367 34160 0.0055 9.56 33953 33870 0.0554 0.76
7 34160 34378 0.0228 4.56 33870 34160 0.1973 1.22
8 34378 33773 0.0060 4.56 34160 35297 0.0366 0.32
Total 0.1192 524 0.8865 6.48
mp = 7000 kg my = 6723 kg mp = 7000 kg my = 4675 kg

5.3 Case 3: Optimizing a Set of Debris in LEQ, MEO, and GTO

Lastly, as the other two case studies only considered the sequencing of debris objects in very similar orbits, this
case considers optimizing the removal sequence of a set of debris objects in LEO, MEO, and GTO to showcase the
true flexibility of the developed optimization framework. Table 5 tabulates the list of debris objects to sequence,
along with the relevant classical orbital elements at the beginning of the mission window. The mission scenario is
modeled according to the Deorbiter Cubesat mission [19]. The mothership for this ADR mission is a mid-sized 1000
kg spacecraft equipped with a BHT-8000 hall-effect thruster that can produce 449 mN of thrust with an average I,
of 2219s. The Deorbiter CubeSats onboard the mothership have a total wet mass of 16 kg. The maximum mission
duration is 2 years, and the minimum time allocated to characterize the dynamical state of the target debris is 7
days. Table 5 tabulates the list of debris objects to sequence, along with the relevant classical orbital elements at the
beginning of the mission window. The GA was initialized with a population size of 100, iterated over 100 generations,
with adaptive mutation probabilities between 30% and 75%. Again, 10 independent GA instances were executed to
confirm the consistency of the optimized sequence.

Table 5: List of debris objects for Case 3

NORAD ID a [km] e i [deg] Q [deg] o [deg]  Orbit Type
20323 7096.8611 0.0075 97.1936 69.4811 265.7741 LEO
22970 7563.8736  0.0020 82.6128 156.0112 358.5592 LEO
27463 24477.577 07177  4.5672  286.7717  89.0267 GTO
43248 28790.512 0.0095 55.6052  0.8142 14.2856 MEO
39081 17877.497 0.6272 6.4476 168.5245 12.6117 MEO
28379 25930.027 0.7321  7.3560 113.9091 110.3966 GTO

The progression of best solution fitness over the generations for each of the 10 independent GA instances is summa-
rized by the plot presented in Figure 10. It was observed that the final fitness value of the best solution is consistent
across all 10 independent GA instances. The case is seen to converge very rapidly, with all of the improvements oc-
curring within the first 2 generations before stagnating at the final fitness value of 4113. This indicates that the search
space for this debris set either contains few local optimums or contains local optimums that all possess the same fitness
value. As can be observed in Figures 5 through 9, the genetic algorithm identified that the most efficient way to visit
the 2 distinct GTOs is done not by visiting them consecutively. Rather, it is to start at the orbit of 27463, leverage the
orbit evolution of the elliptical MEO of 39081 caused by the J2 perturbation to finally achieve a closer alignment with
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the other GTO (28379). The chaser spacecraft then begins visiting successively lower altitude orbits, reaching another
MEO target, and finally, deorbiting the 2 debris targets in the low-earth orbits. The result of this novel ADR case study
is that 6 debris objects with an altitude range of 7097 km to 28,790 km, inclination spread of 4 degrees to 97 degrees,
and eccentricity values of 0.00 to 0.73 can be removed in 593 days with 13.6 km/s of AV.

—— Start Orbit —— Start Orbit — Star‘t Orbit
Orbit transfer Orbit transfer Qrblt trar?sfer
Final Orbit —— Final Orbit —— Final Orbit

—40000 -40000

20000 R _
X 0000 20000
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i ~40000 (kmy 20000 " 40000 Xtkmy 20000
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Fig. 5: (GTO) 27463— 39081 (MEO) at

020101 Fig. 6: (MEO) 39081— 28379 (GTO) at  Fig. 7: (GTO) 28379— 43248 (MEO) at
fa,1 =2022-01-0 ta,1 = 2022-04-20 t4.1 = 2022-08-15
—— Start Orbit —— Start Orbit
Orbit transfer Orbit transfer
Final Orbit —— Final Orbit

—40000
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Fig. 8: (MEO) 43248— 22970 (LEO) at  Fig. 9: (LEO) 22970— 20323 (LEO) at
tq1 = 2022-11-22 141 = 2023-04-08

To contextualize the significance of this result, the first transfer segment, 27463— 39081, alone can require up to 11.3
km/s of AV if it were initiated 560 days into the mission. The second transfer segment, 3908 1— 28379, would require
4x the amount of AV and over 2x the transfer time — 4.25 km/s and 187 days, respectively— if it were the first transfer
planned in the debris removal sequence. Table 6 displays the AV and time of flight for each transfer segment of the
optimized sequence when contrasted against the highest possible transfer cost in the mission window. It shall be noted
that these worst-case transfer costs are only associated with the segments of the converged optimal sequence. Other
possible departure/arrival debris pairs likely possess even greater transfer costs and variability with time.

The results from this case study demonstrate the novel accomplishment of the proposed optimization framework — that
it can effectively optimize an arbitrary set of debris objects without any restrictions placed on the properties of the
target debris’ orbits, enabling substantial reduction in terms of propellant requirements and mission duration.
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Table 6: Solution framework results for a variety of orbits not limited to LEO

‘ Solution framework results ‘ Worst-case transfer

‘ Departure  Arrival AV [km/s] ToF [days] ‘ AV [km/s] ToF [days] Days into Mission

1 27463 39081  2.2872 96.3 11.277 406.6 560
2 39081 28379  1.6078 85.8 4.2480 187.5 0
3 28379 43248  3.0193 111.2 3.6423 133.7 100
4 43248 22970 44615 187.2 4.4660 187.7 332
5 22970 20323 2.2395 77.6 2.2734 79.0 116
Total 13.62 593.2 25.91 994.5
mo = 1000 kg mys =510 kg

Best Solution Fitness vs. Generation
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Fig. 10: Best solution fitness vs. Generation of 10 independent GA runs for Case 3

6. CONCLUSION

In this research, a framework to optimize the MTRYV problem for low-thrust ADR missions that remove several specific
debris objects of interest was developed. This framework relaxed the coupling of the nonlinear trajectory optimization
from the combinatorial optimization by decomposing the problem into three stages. The first stage was aimed at
estimating the transfer cost of the optimal long-range rendezvous trajectory between a given departure/arrival debris
pair, as a function of time. The estimation of the optimum was performed by considering 4 distinct transfer strategies,
and their variations as a function of departure and arrival epoch. Another account for time dependency was the
consideration on how these costs vary with different departure epoch, and identifying which transfer pairs were more
sensitive to this effect than others. The AV for a given transfer maneuver was seen to asymptotically approach a
minimum for longer permitted transfer times, demonstrating a case of diminishing returns. A weighted cost function
was thus introduced to evaluate the trade-off between these competing objectives. The output of the first stage was a
hash table containing AV and flight time for the lowest cost transfer for all departure/arrival debris pairs at all departure
epochs. The second stage of the framework employs a Genetic Algorithm to optimize the debris sequence. Information
regarding the sensitivity of the departure/arrival debris pairs on departure epoch are embedded in the crossover scheme,
and the fitness value is calculated by accumulating the cost of each transfer segment and subtracting the total from
some bounding value. The mission window constraints and total AV constraints trigger the program to automatically
adjust the weighting parameter and re-evaluate transfer optimums. The last stage takes the final sequence from the
genetic algorithm and refines the transfer trajectories and maneuver epochs by resolving each transfer segment with a
Lyapunov-based guidance law. The gains in the Lyapunov candidate function are tuned dynamically with a gradient-
based method to refine the transfer trajectories and maneuver epochs in order to better resolve the optimal solution.
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It was demonstrated that this framework required relatively low computational resources as the optimization of a 10
debris object case with a 1 year mission window and 4 day epoch resolution could be completed within 45 minutes.
The outcome of this work is a modular, adaptive framework that can optimize the debris removal sequence of a variety
of ADR mission scenarios utilizing low-thrust propulsion.
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