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ABSTRACT 

Space  objects with poor position estimates are particularly important to observe, especially if they experience 

unpredictable perturbations or perform maneuvers. If an object's position uncertainty grows larger than a sensor's field 

of view (FOV), a search pattern is likely necessary to find the object. Search patterns are often simple rasters, spirals, 

or fences designed to cover a defined area of space. However, even if the object is within the searched area, these 

patterns don’t guarantee an opportunity for detection. A leakproof search pattern is a sequence of sensor boresight 

vectors that kinematically guarantees a chance to detect an object within its searched area. We present a new leakproof 

search pattern, the bullseye, consisting of overlapping concentric rings of discrete dwells. A bullseye search pattern 

solution must meet a set of five constraints in order to guarantee that it is leakproof. They are parameterized in terms 

of the object's maximum angular rate across the sensor's field of regard (FOR), along with the sensor's slew capability, 

dwell duration, and FOV. We arrive at the leakproof constraints through kinematic arguments, and prescribe a method 

for determining solutions that expand the search's leakproof area with each successive ring. The solution space is 

complex. We discuss how the solutions change with design parameters, particularly the integration time and maximum 

angular rate of the object, and comment on potential optimization strategies. Finally, we examine a ratio involving the 

object’s maximum angular rate and the sensor’s FOV, dwell time, and slewing capability, and show that there is a 

“point of futility” – bullseye patterns cannot be created beyond the point of futility. Below it, they can establish a 

leakproof area larger than a single FOV. The certainty provided by the bullseye comes at the expense of speed: 

conventional search patterns can cover the same area more quickly. This may be a valuable trade in searches on high 

priority objects.  

1.  INTRODUCTION 

Space Domain Awareness (SDA) involves detecting, tracking, identifying, and cataloging some 27,000 

known satellites or pieces of debris, a number which is only growing [1]. Maintaining each object in the catalogue 

requires tasking a sensor to look for it at its predicted position, taking a measurement, and updating the existing state 

and uncertainty estimate to account for this new observation. Sensor time is very valuable due to the limited number 

of SDA sensors. Resources must be tasked efficiently to maintain high quality catalogue estimates.  

For well-behaved, predictable objects, occasional observations are sufficient to maintain custody. High 

priority, highly maneuverable, or unpredictably perturbed RSOs (such as HAMRs or asteroids) may require frequent 

revisits, however. It is possible that some objects won’t be where they are expected, or that their covariance covers a 

larger region of space than the field of view (FOV) of the sensor. In this case, a search pattern may need to be 

implemented. A search pattern covers some defined area or volume of space by moving the boresight and FOV of the 

sensor, with the aim of observing known (or finding previously unknown) objects [2, 3]. Throughout this paper, a 

dwell is used to refer to the sensor’s FOV while it is making an observation. 

The majority of search patterns are designed to do either general search or specific object detection. A general 

search pattern covers some region of space in a defined amount of time, monitoring the states of RSOs in the region. 

In a specific search pattern, successive dwells of the sensor are arranged to cover an object’s uncertainty area when it 

is too large to fit within one FOV. There is an inherent trade between better sensitivity (for optical sensors) or 

decreased range ambiguity (for radar sensors) and scan speed. Scanning faster increases the chance of at least one 

detection, but decreases the sensitivity (optical) or range unambiguity (radar). Ideally, the scan speed is chosen to 

optimize this trade, and successive dwells are tiled such that there are no “gaps” between them. Examples of 

conventional search patterns include rasters and fences. 

Even without gaps, a search pattern is not guaranteed to have a chance at detecting the RSO, which could 

potentially move from an unsearched area into a previously searched area, potentially being missed by the scan. This 

could create a harmful scenario where sensor operators believe they have confirmed that the object was not within the 
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searched area when, in fact, it was. Leakproof search patterns prevent such scenarios. A search pattern is leakproof if 

the RSO is kinematically guaranteed to be detected if it is within some area when the search begins. The leakproof 

area is generally smaller than the total area covered by the search. For high priority objects, especially those with poor 

position estimates or irregular maneuvers, leakproof searches will either observe the RSO or exclude the searched 

region with certainty. 

In the literature and in this paper, leakproof is assumed to encompass kinematics only. That is, given bounds 

on the RSO’s maneuverability, as well as constraints on the SDA sensor’s slew and dwell times, the RSO is guaranteed 

to be within at least one of the sensor’s dwells. We do not consider the probability of detection within a particular 

dwell. This is tantamount to assuming that the sensor is well-designed, and has sufficient sensitivity for detecting 

objects at the expected range and rate of the RSO. It is therefore critical to apply any scan time constraints imposed 

by sensitivity or range unambiguity requirements.  

At least one other leakproof pattern, the “bowtie”, does exist [4]. It is a fence-type pattern that will detect 

objects as they cross it, provided the heading of the RSO is known within some uncertainty. It is particularly well-

suited to the low-earth orbital (LEO) regime. Spiral or other circular search patterns are occasionally seen in the 

literature [3], but to the best of our knowledge, there has been no attempt to determine if they are leakproof, or provide 

a precise method for determining the actual sensor boresight vectors that comprise the pattern. For the special case of 

searching the entire geostationary (GEO) belt visible from the sensor’s location on the ground, a leakproof search 

strategy is presented in [5]. 

In this paper, we present a novel, sensor-agnostic search pattern, the “bullseye”, which consists of concentric 

rings of discrete dwells. It guarantees leakproof detection of an RSO moving in any direction with angular speed less 

than some assumed maximum in the sensor’s frame, provided it is within a particular angular radius when the search 

begins. In Section 2, we provide an overview of the bullseye and introduce the notation used throughout the rest of 

this paper. In Section 3, we make kinematic arguments to arrive at the leakproof constraints, and parameterize the 

solution space. In Section 4, we provide our method for finding a solution that satisfies constraints, and explicitly 

show one method for determining the sequence of sensor boresight vectors comprising the solution. Section 5 presents 

numerical results from applying our solution method to a realistic SDA scenario. We first show results from a Monte 

Carlo simulation validating that the pattern is indeed leakproof. Then, we highlight the challenges encountered in 

finding optimal solutions and illustrate how the solution changes with different choices for parameters and 

optimization strategies. Section 6 concludes this work, discussing the contexts in which conventional scan patterns 

may not be adequate and implementation of the bullseye would be beneficial.  

 

2.  BULLSEYE DESCRIPTION AND NOTATION 

 

 The bullseye search pattern is comprised of 

concentric rings of dwells, as illustrated in Fig. 1. The 

dwell FOV is defined by cone angle Ψ. The sensor 

remains at each dwell for an integration time 𝜏, and 

moves between dwells according to its movement 

capabilities. An electronically steered radar array may 

need virtually no movement time, whereas an optical 

telescope may take longer to slew and settle between 

dwells. We abstract these details into the term 𝑡𝑠(𝛽) – the 

time for the sensor to slew through an angle 𝛽 between 

dwells.  

The center of the first dwell in the middle of the 

bullseye is marked by the point 𝒪, which lies on a unit 

sphere with the sensor at its center. The radius of each 

ring is measured from 𝒪 to the centers of the ring’s 

dwells, and is denoted 𝑅𝑛 for ring 𝑛. This is illustrated in 

Fig. 2. The RSO of interest is assumed to have a predicted 

position and velocity at the beginning of the search, along 

with associated uncertainties. The state of the RSO is 

Fig. 1. The Maui_GEODSS_xx3 sensor has just 

completed the central dwell and first ring of dwells of 

a bullseye search pattern. The search is centered on the 

predicted position of the RSO, with uncertainty 

ellipsoid shown in orange.  
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projected into the spherical coordinate system centered on the sensor, since we are only interested in whether the RSO 

is within the sensor’s FOV. The scan is also constructed in this coordinate system. While not strictly required, typically 

the point 𝒪 would coincide with the predicted position of the RSO at the start of the search. We define 𝜔max to be the 

maximum angular speed of the RSO in the sensor’s reference frame. It is assumed to include the velocity uncertainty, 

such that it is truly the maximum possible speed of the RSO.  

For convenience, the notation used throughout the rest of the paper is defined in Table 1. A few derived 

quantities which will be useful in later sections are also defined.       

 

 

3.  LEAKPROOF CONSTRAINTS 

 

 Each bullseye search is designed for a particular RSO, and establishes a certain leakproof area. If the RSO 

resides within this area at the beginning of the search, it is kinematically guaranteed to be detected by the time the 

search finishes. A single dwell is therefore leakproof, since if the RSO is in the FOV during a dwell, it will be detected. 

An area larger than a single FOV can be made leakproof by overlapping subsequent dwells with previously searched 

areas, to ensure that the RSO has not moved into that area since it was last scanned. The amount of overlap must be 

greater than the maximum possible distance the RSO could have moved in the time between dwells. This is the basic 

principle used to construct the bullseye search.  

 The bullseye begins with a single dwell, considered to be “Ring 0” of the bullseye. Each subsequent ring 

must enlarge the area of the search while maintaining leakproofness. To accomplish this, we first establish the 

leakproof area of a ring of dwells, which is shaped like an annulus. Any RSO within this annulus when the ring begins 

will be detected by the time it completes. By overlapping the ring’s annulus with that of the previous ring in a particular 

way, the leakproof area of the search pattern can be enlarged.  

 An RSO with a velocity component in the pattern’s azimuthal direction against the direction of the scan could 

potentially move from an unsearched area to a previously searched area, causing a leak. Referring to Fig. 3, consider 

an RSO which starts either at point 𝐷− or 𝐷+ at the end of the dwell centered on 𝐶1. If the RSO is given sufficient 

time to reach point 𝑃− or 𝑃+ before the dwell centered on 𝐶2 begins, it will not be seen by the second dwell. 𝐷+ and 

𝐷− are thus chosen such that the shortest distance from the boundary of the first dwell to the boundary of the second 

exceeds the largest distance the RSO can move between dwells – that is, 𝐷𝑃̂± ≥ 𝛿𝑑𝑤. Inner and outer radii, 𝑟𝑛
− and 

Fig. 2. Diagram illustrating the basic geometry of 

a bullseye pattern. Dwells in the first ring have 

boresights that lie on the dashed circle, and dwells 

in the second ring lie on the solid circle. Two 

representative dwells are shown, in addition to 

the central dwell. Subsequent rings are omitted 

for clarity. 

Table 1. Bullseye pattern notation conventions. 
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𝑟𝑛
+, are defined at the saturation of these 

bounds: 𝑟𝑛
± = 𝒪𝐷̂± such that  𝐷𝑃̂± =

𝛿𝑑𝑤. We cannot make leakproof 

guarantees in the region outside of the 

inner and outer radii, and are only 

interested in the region between them. 

There, we will show that the ring is 

leakproof to azimuthally moving RSOs 

and that they are related to the radii of 

the ring’s leakproof annulus.  

 An interesting case arises at the 

closure of the ring, between the first and 

last dwells. In Fig. 4, dwells proceed 

counterclockwise, beginning with the 

dwell labeled 𝐶1 and ending with the 

dwell labeled 𝐶𝐽𝑛
. Consider those RSOs 

on the trailing boundary of the first 

dwell. In the time 𝑇𝑛 it takes to complete 

the ring, RSOs can cover an angular 

distance 𝛿𝑛 = 𝜔max𝑇𝑛. If the RSO can 

make it from the trailing edge of the first 

dwell to the leading edge of the last 

dwell by the time the ring completes, it 

may not be seen by any dwell. Thus, the 

overlap must be such that the distance 

between points 𝐷𝐽𝑛
−  and 𝐷1

− is at least 𝛿𝑛.  

With the three conditions 

𝐷𝑃̂± ≥ 𝛿𝑑𝑤 and 𝐷𝐽𝑛
𝐷1̂

−
≥ 𝛿𝑛, the 

region between the inner and outer radii 

of a ring is leakproof to RSOs moving in 

the pattern’s azimuthal direction. We 

now turn to the radial direction, 

reminding the reader that “radial” here 

is really an angular distance denoting 

the great circle arc between a point and 

the point at the center of the bullseye. 

Consider RSOs that begin at the outer 

radius of the previous ring, and therefore 

may have been missed by the dwells of 

that ring. Those traveling radially 

inward may reach a distance of 𝛿𝑛 by the 

time the current ring completes. So, if 

the inner radius of the current ring is 

arranged to overlap the outer radius of 

the previous ring by at least 𝛿𝑛, these 

RSOs will be seen by at least one dwell 

of the current ring. Similarly, radially- 

outward traveling RSOs will be seen as 

long as the difference between the outer 

radii of the current and previous ring is 

at least 𝛿𝑛. This is illustrated in Fig. 5. 

Fig. 3. Diagram showing the geometry of two adjacent dwells in ring 𝑛. 

The first and second dwells are shown, with centers at points 𝐶1 and 𝐶2, 

respectively. Both centers lie along the circle of radius 𝑅𝑛 centered on 

𝒪 at the center of the bullseye pattern. RSOs located at 𝐷− and 𝐷+ at the 

end of the first dwell travel to points 𝑃− and 𝑃+, respectively, before the 

second dwell begins. The inner and outer radii are defined as  𝒪𝐷̂− =

𝑟𝑛
− and 𝒪𝐷̂+ = 𝑟𝑛

+, respectively. 

Fig. 4. Diagram showing the required overlap between the first and final 

dwells of a ring, with centers at 𝐶1 and 𝐶𝐽𝑛
, respectively. Successive 

dwells proceed in the counterclockwise direction. To avoid missing 

RSOs on the trailing edge of the first dwell between the inner and outer 

radii, and traveling counterclockwise, the shortest distance between 

points 𝐷𝐽𝑛
−  and 𝐷1

− must be at least the distance the RSO can travel during 

the ring, 𝛿𝑛.  
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If, at the beginning of ring n, the RSO started at a radius 𝑟 such that 𝑟𝑛
− ≤ 𝑟 < 𝛿𝑛 + 𝑟𝑛

−, it would have already 

been seen by the previous ring. If it started at radius 𝑟 such that 0 ≤ 𝑟𝑛
+ − 𝑟 < 𝛿𝑛, it may not be seen by the current 

ring, but it will be seen by the next ring. Of course, if the current ring is to be the last one, we can’t rely on the next 

ring. But, we will define the leakproof area of the complete scan such that it does not include this region. 

There are thus five leakproof constraints: 

 𝑟𝑛
− = 𝒪𝐷̂−    𝑠. 𝑡.     𝐷𝑃̂− ≥ 𝛿𝑑𝑤, 1 

 𝑟𝑛
+ = 𝒪𝐷̂+    𝑠. 𝑡.     𝐷𝑃̂+ ≥ 𝛿𝑑𝑤, 2 

 𝑟𝑛−1
+ − 𝑟𝑛

− ≥ 𝛿𝑛, 3 

 𝑟𝑛
+ − 𝑟𝑛−1

+ ≥ 𝛿𝑛, and 4 

 𝐷𝐽𝑛

− 𝐷1
−̂ ≥ 𝛿𝑛. 5 

Note that various time components are implicit in the leakproof constraints. For instance, 𝛿𝑑𝑤 depends on 

the time between successive dwells, and 𝛿𝑛 depends on the integration time, the time between dwells, and the number 

of dwells in a ring. A bullseye that satisfies these constraints will create a leakproof area such that any RSO beginning 

within the area will be detected before the search ends. The area is defined in terms of the leakproof radius, 𝑅𝐿𝑃. Given 

a total scan time Δ𝑇, the largest angular distance the RSO can cover is 𝜔maxΔ𝑇. If 𝑁 rings comprise the bullseye, the 

leakproof radius is illustrated in Fig. 6 and is given by 

 
𝑅𝐿𝑃 = 𝑟𝑁

+ − 𝜔maxΔ𝑇. 6 

Ideally, we would like to know how to find solutions satisfying the leakproof constraints that are “optimal” 

in some way. In addition to the location of the central dwell, a solution requires specifying the total number of rings, 

and for each ring, the radius, number of dwells, and angle of each dwell. That is, it is the set {𝑅𝑛, 𝜃𝑘 | 𝑘 = 1, … , 𝐽𝑛 ; 𝑛 =

1, … , 𝑁} where each radius and angle are measured relative to the central dwell. Changes in the leakproof radius with 

Fig. 5. Diagram showing the required overlap between successive rings in a bullseye. At the beginning of the second 

ring, any RSO that starts on 𝑟1
+ and travels radially inward will be seen by a dwell in the second ring, provided 𝑟1

+ −
𝑟2

− ≥ 𝛿2. Similarly, those traveling radially outward from 𝑟1
+ will be seen by the second ring if 𝑟2

+ − 𝑟1
+ ≥ 𝛿2. 
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variations between solutions are of 

primary interest to SDA applications. We 

may wish, for instance, to find the solution 

that maximizes the leakproof radius. Or, 

we may want to minimize the total search 

time while meeting some minimum 

leakproof area. Analytically, this is an 

extremely complicated problem that is 

often counterintuitive, because of non-

trivial couplings of the constraints to the 

problem’s time scales. For example, we 

may expect that a ring with a large outer 

radius would yield a large leakproof 

radius. But, because this ring would 

require more dwells and more time to 

complete, the RSO can travel further 

before the search completes, and the 

leakproof radius would be smaller. 

Furthermore, solutions inherently depend 

on the sensor’s slew capabilities, through 

𝑡𝑠(𝛽).  

 The problem is thus best 

approached numerically. This allows the 

bullseye designer to use any appropriate 

model for the sensor’s slew capabilities, 

and allows for 𝑅𝐿𝑃 to be optimized in the 

way that best suits the SDA mission. In 

the next two sections, we provide our 

numerical approach to finding a solution, 

and present results for a typical SDA 

scenario. We also comment on how the 

results change under changes to the 

bullseye design parameters.  

 

 

4.  BULLSEYE IMPLEMENTATION 

 

The parameter space containing 

bullseye patterns that satisfy the 

leakproof constraints is large and 

underdetermined. In order to reduce it, we 

first assume that dwell centers are evenly 

spaced in angle from the center 𝒪, as 

shown in Fig. 7. In this case, solutions can 

be defined by four parameters: the 

number of rings 𝛮, the radius of each ring 

𝑅𝑛, the number of dwells in each ring 𝐽𝑛, 

and the angle of the final dwell 𝜃𝐽𝑛
, which 

is a free parameter not restricted to be less 

than 2𝜋. 

 Next, we assume that the last 

dwell of a ring is coincident with the first 

Fig. 6. Diagram showing a bullseye’s leakproof radius. Each gray bar 

is a dwell, extending from each ring’s inner radius to its outer radius. 

The bar’s thickness indicates the time required for one dwell, and bars 

are separated by the time required to travel between dwells, which was 

quite short in this particular scenario. The dashed line indicates an 

RSO traveling radially outward at its maximum angular rate, so that 

𝑅 = 𝑅𝐿𝑃 + 𝜔𝑚𝑎𝑥𝑡 (converting from radians to degrees as 

appropriate). The last dwell just catches this RSO. So, 𝑅𝐿𝑃 is the 

intersection of the dashed line with the vertical axis. Since each ring 

is also designed to be leakproof to azimuthal motion, any RSO 

beginning the scan with 𝑅 ≤ 𝑅𝐿𝑃 will be seen by the time the last ring 

completes. 

Fig. 7. Diagram showing the arrangement of dwells within a ring in 

our specific implementation: the dwells are spaced evenly by 𝛥𝜃𝑛, and 

the last dwell centered on 𝐶𝐽𝑛
 is coincident with the first dwell 𝐶1. 
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dwell – that is, 𝜃𝐽𝑛
= 2𝜋. This is usually sufficient to satisfy the fifth constraint. It becomes insufficient as the dwell 

spacing shrinks: as Δ𝜃𝑛 → 0, the inner and outer radius 𝑟𝑛
± → 𝑅𝑛 ± Ψ, making 𝐷𝐽

−𝐷1
−̂ small. Furthermore, small Δ𝜃𝑛 

require a large number of dwells, so 𝛿𝑛 becomes large, and constraint 5 may fail. However, large numbers of dwells 

require long search times, and since the leakproof radius decreases with total search time, we are not interested in 

these potential solutions. 

 For the remaining parameters {𝑅𝑛, 𝐽𝑛|𝑛 = 1, … , 𝑁}, a Python tool was developed to find solutions that meet 

the leakproof constraints. By convention, the center dwell is 𝑛 = 0 with 𝑅0 = 0. For each ring, 𝜃1,𝑛 = 0, and 500 

values of 𝑅𝑛 together with 300 values of 𝐽𝑛 are tested, for a total of 150,000 possible combinations. Of those 

combinations that meet all of the leakproof constraints, the one that yields the largest leakproof radius is chosen, 

provided this radius is larger than the leakproof radius found with the previous ring. The search is terminated when 

no possible combination meets the leakproof constraints, or when all solutions yield a smaller leakproof radius than 

the one already found.  

 The two-dimensional diagrams of this section and the preceding section can be misleading. We remind the 

reader that straight lines in these figures are actually great-circle arcs on the surface of a unit sphere centered on the 

sensor (see Fig. 2). To avoid any confusion, we explicitly explain the calculations. Assume we are interested in 

searching for a particular RSO. We will position the first dwell to coincide with the predicted position of the RSO at 

the start of the search, and design the bullseye for a particular 𝜔max, which should include any uncertainty coming from 

poor state estimates, potential maneuvers, and so on. Accurate estimation of this rate is important. If it is too small, the 

bullseye will not be leakproof to the true RSO. If it is too large, the bullseye solution will cover a smaller area than it 

could with a better estimation.   

After positioning the center dwell, we then proceed to design each ring in succession. Each choice of (𝑅𝑛, 𝐽𝑛) 

defines the spacing between dwells for that ring: 

Δ𝜃𝑛 =
2𝜋

𝐽𝑛 − 1
. 

Fig. 8. Geometry for determining the 

inner and outer radii of a ring. 
Fig. 9. Geometry for calculating 𝐷𝐽𝑛

− 𝐷1
−̂, in order 

to check that the constraint in Eq. 5 is satisfied. 
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 The arc length, 𝐿𝑛 in Fig. 7, can be calculated with the aid of the spherical law of cosines (SLOC), 

𝐿𝑛 = cos−1(cos2 𝑅𝑛 + sin2 𝑅𝑛 cos Δ𝜃𝑛). 

Given a model for the sensor’s slewing capabilities, the time to slew between dwells is then determined by 𝑡𝑠(𝐿𝑛). 

The time for a ring is then completely determined, it includes the slew time from the last dwell of the previous ring to 

the first dwell of the current ring, and is given by 

𝑇𝑛 = 𝑡𝑠(𝑅𝑛 − 𝑅𝑛−1) + (𝐽𝑛 − 1) ⋅ 𝑡𝑠(𝐿𝑛) + 𝐽𝑛 ⋅ 𝜏. 

 We ensure the first two constraints (Eqs. 1-2) are satisfied by setting the inner and outer radii to the saturation 

of the bounds. The SLOC is again applied numerous times to calculate the inner and outer radii. Angles and arcs are 

defined as in Fig. 8. Geometry gives 

𝜙 = cos−1 (
cos Ψ − cos(Ψ − 𝛿𝑑𝑤) cos 𝐿𝑛

sin(Ψ − 𝛿𝑑𝑤) sin 𝐿𝑛

), 

𝜌 = cos−1 (
1 − cos 𝐿𝑛

tan 𝑅𝑛 sin 𝐿𝑛

), 

𝑟𝑛
± = cos−1(cos 𝑅𝑛 cos(Ψ − 𝛿𝑑𝑤) + sin 𝑅𝑛 sin(Ψ − 𝛿𝑑𝑤) cos(𝜌 ± 𝜙)). 

Constraint 5 can be checked by calculating the arc length 𝐷𝐽𝑛

− 𝐷1
−̂. This is quite straightforward, since the first and last 

dwell coincide. Any combination (𝑅𝑛, 𝐽𝑛) that does not satisfy the constraint is not leakproof, and excluded from the 

solution set. The geometry is shown in Fig. 9. 

𝜎 = 2 cos−1 (
cos Ψ − cos 𝑅𝑛 cos 𝑟𝑛

−

sin 𝑅𝑛 sin 𝑟𝑛
−

) , and 

𝐷1
−𝐷𝐽𝑛

−̂ = cos−1(cos2 𝑟𝑛
− + sin2 𝑟𝑛

− cos 𝜎). 

 The combinations (𝑅𝑛, 𝐽𝑛) that survive after checking the fifth constraint are arranged such that the overlap 

between the inner radius and the outer radius of the previous ring satisfy the third constraint. That is, the condition 

𝑟𝑛−1
+ − 𝑟𝑛

− = 𝛿𝑛 is enforced. The fourth constraint is then checked, so that any solutions with 𝑟𝑛
+ − 𝑟𝑛−1

+ < 𝛿𝑛 are 

excluded. We are left with a set of solutions that satisfy all of the leakproof constraints. Assuming the scan would end 

with this ring, the leakproof radius is 𝑅𝐿𝑃,𝑛, calculated from Eq. 6. The ring solution which yields the largest 𝑅𝐿𝑃,𝑛 is 

chosen, provided 𝑅𝐿𝑃,𝑛 > 𝑅𝐿𝑃,𝑛−1. If this cannot be satisfied, or there are no solutions, then no more rings can be 

created.  

 The only task remaining is to translate each ring’s solution (𝑅𝑛, 𝐽𝑛) into a boresight vector telling the sensor 

where to point, most conveniently written as a sequence of azimuth and elevation coordinates (𝛼, 𝜀) relative to the 

sensor. With 𝜃𝑗 denoting the angle of the 𝑗𝑡ℎ dwell in the ring, as in Fig. 7, and (𝛼0, 𝜖0) denoting the azimuth and 

elevation of the bullseye’s central dwell, 

𝜀 = sin−1(sin 𝜀0 cos 𝑅𝑛 + cos 𝜀0 sin 𝑅𝑛 cos 𝜃𝑗) 

𝛼 = 𝛼0 + tan−1 (
sin 𝜃𝑗 sin 𝑅𝑛 cos 𝜀0

cos 𝑅𝑛 − sin 𝜀0 sin 𝜀
). 

 In the next section, we show an example of our implementation with parameters representative of a realistic 

SDA mission, and describe results from a Monte Carlo simulation validating the leakproof nature of the pattern. We 

also comment on how the solution changes with different optimization strategies, and with different sensor parameters. 

 

5.  RESULTS & DISCUSSION 

 

Two python tools were developed to design and evaluate bullseye search patterns. The first numerically 

constructs solutions to the leakproof constraints as described in the implementation section above. The second 

validates the leakproof constraints in a Monte Carlo-type (MC) simulation. 10,000 points are randomly distributed 

inside the bullseye’s leakproof radius, each representing a possible state of the RSO of interest. When the search 
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begins, they immediately start traveling along randomly oriented great circle arcs at the maximum RSO angular rate 

for which the pattern was designed. As the search proceeds, a point is counted as detected if it is inside the sensor’s 

FOV during a dwell. Note that the percentage of points detected is not the same as the probability of detection, since 

the points are drawn from a uniform distribution rather than a probability distribution constructed from the state 

covariance of the RSO. The MC simulation only allows us to say whether or not a pattern is leakproof. It has not yet 

revealed a leak in any of the scenarios we have tested, further validating the arguments leading to the leakproof 

constraints. 

We created a realistic, representative example to illustrate a scenario in which a bullseye scan could be used. 

Consider an RSO in a GEO orbit inclined at 15°. Such an object has a maximum angular rate of about 3.5 arcsec/s 

relative to a point on the earth’s surface [6]. We use this value as a reasonable 𝜔max. The SDA sensor is assumed to 

be a telescope with a circular FOV of 0.5° diameter, and we use an integration time of 3 seconds. Longer integration 

times may be needed, depending on the requisite sensitivity – we will comment on this at the end of this section. The 

telescope is assumed to take 5 seconds total to move between dwells, including any necessary settle time.  

The bullseye pattern created by maximizing the leakproof radius of each ring consists of 5 rings for a total 

of 69 dwells, taking 547 seconds to execute. The resulting leakproof area has a diameter of 1.53°. The dwell pattern 

is illustrated in Fig. 10, with the solid black circle indicating the leakproof radius. The area of a circle of radius 𝜌 on 

the surface of a unit sphere is 𝐴 = 2𝜋(1 − cos 𝜌), so the leakproof area of the bullseye is 9.33 times larger than that 

covered by a single FOV. 

The strategy of choosing the combination (𝑅𝑛, 𝐽𝑛) yielding the maximum leakproof radius for each ring does 

not necessarily yield the largest leakproof radius for the overall pattern. For the bullseye illustrated above, Fig. 11 

shows each ring’s leakproof radius as a function of the number of dwells in the ring. For each 𝐽𝑛, there are multiple 

𝑅𝑛 that may meet the leakproof constraints. So, the curves in Fig. 11 are created by choosing the 𝑅𝑛 that yields the 

maximum leakproof radius for each 𝐽𝑛. The black star on each curve marks the chosen solution. Note, however, that 

each ring’s leakproof radius depends on the choice of solution for all the previous rings, since 𝑅𝐿𝑃 depends on the 

total time up to the current ring. Choosing a different solution e.g. for Ring 1 changes the curves for Rings 2-4. 

Table 2 shows the effect on the bullseye’s leakproof radius if different 𝐽1 are chosen for the first ring. 

Assuming we still choose the 𝐽𝑛 yielding the ring’s maximum leakproof radius for rings 2-4, choosing 𝐽1 = 11 gives 

Fig. 10. Notional bullseye scan showing the 

central dwell and 4 rings designed to capture the 

RSO in the scenario described in Section 5. The 

solid circle indicates the leakproof radius, and has 

a diameter of 1.53°.  

Fig. 11. For each discrete number of dwells 𝐽𝑛, the ring radius 

𝑅𝑛 that yields the largest leakproof radius is chosen. This 

maximum leakproof radius is shown as a function of 𝐽𝑛 for each 

ring. The black stars indicate the chosen solution (𝑅𝑛, 𝐽𝑛) for 

each ring. 
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the maximum leakproof radius for the first ring, 𝑅𝐿𝑃,1, while 

choosing 𝐽1 = 9 gives the maximum overall leakproof 

radius, 𝑅𝐿𝑃,4. This is somewhat intuitive: performing fewer 

dwells in the first ring saves time, allowing the scan to move 

more quickly to the next ring. In Fig. 11, the curvature near 

the maximum of each ring is small, and there  

appears to be an inflection point, markedly in the early rings. 

Beyond the inflection point, the scan time grows with each 

dwell added, but the ring’s leakproof radius is only 

marginally improved. The overall leakproof radius shrinks 

with increasing scan time. If such an inflection point exists 

for a ring, this suggests a better strategy for maximizing 𝑅𝐿𝑃 

than the approach we employed in Section 4. We intend to 

explore this further in future work.  

The bullseye is not a useful search strategy for every 

situation. For instance, if the RSO’s 𝜔max is too large 

compared to the sensor’s capabilities, the “bullseye” might 

at worst consist only of the single central dwell – rings cannot 

be created without violating the leakproof constraints. This 

might occur, for instance, if integration times need to be long 

to achieve a requisite sensitivity, or if the time to move and 

settle between dwells is long. Of course, if 𝜔max > Ψ/𝜏, the 

RSO could potentially be moving too fast for even a single 

dwell to capture it. This would indicate that 𝜏 needs to be 

shorter, or that a bullseye is simply infeasible in this scenario.  

Figs. 12 and 13 help to assess the range of scenarios in which a bullseye is both feasible and useful. Each 

point on the scatter plots represents a solution found through the method described in Section 4. The FOV and time 

Table 2. Variation in leakproof radius at the end of 

rings 1 and 4, with different numbers of dwells 

chosen for ring 1.  

Fig. 12. For each choice of RSO angular speed on the 

horizontal axis, each point represents a bullseye 

solution, with color indicating the integration time at 

each dwell. The vertical axis shows the ratio of the 

bullseye’s leakproof area to that of a single dwell. The 

FOV and slew time were held fixed at 2° diameter and 

2 seconds, respectively. 

Fig. 13. The same data as in Fig. 12 is shown, except the 

color axis represents the total time for the scan, in hours. 

Note here that very long scan times occur when the 

RSO’s 𝜔𝑚𝑎𝑥  is small, almost independently of 

integration time, because the small 𝜔𝑚𝑎𝑥  allows each 

ring to take more time and still meet Eqs. 3 and 4.  
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between dwells were fixed, at 2° diameter and 2 seconds, respectively. In both figures, the horizontal axis is the RSO’s 

𝜔max, and the vertical axis is the ratio of the solution’s leakproof area to that of a single dwell. In Fig. 12, the solutions 

are colored by the integration time of a single dwell. In Fig. 13, they are colored by the total time required to complete 

the search. Where the area ratio 𝐴𝐿𝑃/𝐴𝐹𝑂𝑉 = 1, the bullseye consists of a single central dwell – no solutions can be 

found that further expand the leakproof area. This occurs as 𝜔max increases, and also as the integration time increases 

at a fixed 𝜔max. Conversely, very large area ratios occur when 𝜔max is small, so that increasingly larger rings with 

more dwells can be created. Notice that all of the solutions in the upper left of the figure with 𝐴𝐿𝑃/𝐴𝐹𝑂𝑉 > 100 and 

𝜔max < 2.5 arcsec/s take upwards of 5 hours to complete. In practical scenarios, these solutions should probably be 

truncated at fewer total rings, which would somewhat decrease the leakproof area, but dramatically decrease the 

required time. Searches must balance the leakproof coverage with the time required to complete them. 

 One final, interesting result is shown in Fig. 14. There, we have constructed bullseye solutions according to 

the method in Section 4, and have allowed all of the parameters to vary. The RSO’s angular rate varied from 1 − 20 

arcsec/s, the integration time from 1 − 30 s, slew time from 2 − 5 s, and FOV beamwidth from 1 − 5°, for a total of 

7,200 parameter combinations. As in Figs. 12-13, the vertical axis shows the ratio of the leakproof area to that of a 

single FOV. On the horizontal axis is 𝜔max(𝜏 + 𝑡𝑠)/Ψ – that is, the ratio of the angular distance the RSO can travel 

during the time to move to and complete a dwell to the size of the FOV. The variance of data in the upper left is an 

artifact due to placing an upper limit on 𝑅𝑛 in the search for solutions, and the broken region in the vicinity of 0.04 on 

the horizontal axis is likely due to insufficient sampling resolution on 𝑅𝑛. Aside from these, solutions appear to lie on 

a curve. This provides a convenient "rule of thumb" for determining contexts in which the bullseye both is feasible 

and may provide a useful search strategy. If this criterion is satisfied, a bullseye that gives a larger leakproof area than 

a single dwell is generally possible. If it is not, the bullseye is a single central dwell, and other search strategies should 

be employed. We therefore call the saturation of the bound in Eq. 7 the “point of futility”. 

 
𝜔max(𝜏 + 𝑡)

Ψ
≲ 0.05 →

𝐴𝐿𝑃

𝐴𝐹𝑂𝑉

≳ 1. 7 

 

 

 

Fig. 14. 𝐴𝐿𝑃/𝐴𝐹𝑂𝑉 is shown as a function of 𝜔𝑚𝑎𝑥(𝜏 + 𝑡𝑠)/𝛹 

for 7,200 bullseye solutions. None of the parameters is held 

constant: 𝜔𝑚𝑎𝑥 , 𝜏, 𝑡𝑠, and 𝛹 all vary to create 7,200 different 

combinations. 
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6. CONCLUSIONS 

 

 The bullseye is a new, sensor-agnostic, leakproof search strategy consisting of concentric rings of discrete 

dwells. The size of the leakproof area that can be searched depends primarily on 𝜔max, the maximum angular rate at 

which the RSO could potentially move, and also depends on the SDA sensor’s slewing capability, required integration 

time, and FOV. In order to be leakproof, a bullseye solution must meet a set of constraints that are based on kinematic 

and geometric arguments. Constraints are written in terms of the RSO’s maximum angular rate in the sensor’s 

reference frame, the sensor’s slew capability, integration (or dwell) time, and angular size of the FOV. Solutions are 

parameterized in terms of the number of rings, radius of each ring, number of dwells in each ring, and azimuthal 

position of each dwell relative to the center of the pattern. Due to the complex nature of the solution space and 

couplings between the constraints, solutions are best determined numerically. This is easily accomplished through the 

method detailed in Section 4.  

 Bullseye solutions have a characteristic leakproof radius, used to define a leakproof area in which any RSO 

moving slower than 𝜔max is kinematically guaranteed an opportunity for detection. The size of the leakproof area 

grows as 𝜔𝑚𝑎𝑥  becomes smaller, as the dwell time and slew time between dwells shrinks, or as the size of a single 

dwell’s FOV grows. However, expanding the leakproof area comes at the expense of disproportionately increased 

time to complete the scan. Given the integration time required to achieve the requisite sensitivity or range resolution, 

the time required to move between dwells, the angular size of the FOV, and the RSO’s maximum angular speed, the 

“point of futility” defined by Eq. 7 demarcates parameter combinations for which useful bullseye solutions can be 

found. If leakproof guarantees are not required for a particular RSO, conventional scans can cover the same area much 

more quickly. The true value of the bullseye lies in its ability to either observe the RSO or exclude with certainty a 

particular region of space. 
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