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ABSTRACT

Many fundamental questions remain regarding algorithmic performance of reachable estimates for electric propulsion
spacecraft in multi-revolution cases, Cartesian coordinate frames, and what additional information maneuver envelopes
(an extension of reachable estimates) can provide. This paper explores these three topics using a combination of
theoretical explanation and numerical simulations. We find that the algorithm performs well in multi-revolution cases
but the thrust-to-weight ratio is a key driver of when the algorithm can “fail.” Cartesian coordinates are, surprisingly,
a good choice and performed well. Using maneuver estimates provides additional flexibility and information over
reachability estimates at the expense of increased computational cost.

1. INTRODUCTION

We examine the performance of our reachability algorithm for various problems. In particular, we focus on reacha-
bility of electric propulsion spacecraft. We consider multi-revolution cases, the benefits and limitations of Cartesian
coordinates, and finally the utility of maneuver envelopes.

Reachability is an important concept in astrodynamics and for a broad range of space missions. For spacecraft, the
reachable set is defined by the maximal ”distance” that can be obtained at a given time for a given initial condition[8].
Spacecraft reachability is difficult to estimate due to the complicated dynamics and the need to solve an optimal
control problem for each point on the reachable set. Electric propulsion further complicates the problem due to the
large number of controls[6]. Reachability estimation is an active area of research because it is a basic research problem
that cuts across a wide range of areas from safety, space situational awareness (SSA), path planning, and others.

Reference [6] derived the reachability boundary conditions with Gaussian level set initial conditions, which supports
SSA estimates. Reference [1] applied reachable sets to automate spacecraft custody and maneuver detection. This
demonstrated the utility of reachability to SSA applications. References [1, 6] leveraged a continuous indirect for-
mulation, which required solving a two-point boundary value problem[2]. The two-point boundary value problem
generally requires a good initial guess, which can limit the ability to generalize this approach. Reachability is also
used as a part of path planning problems[3, 4]. References [3, 4] use reachability analysis in their algorithms to solve
for fuel optimal trajectories.

Reachability estimation is fundamental to many space problems. Recently, [10] developed a fast and automated reach-
ability estimation algorithm that uses an indirect multi-stage formulation. This approach incorporated the Gaussian
level set conditions found in [7] and introduced other potential boundary conditions. Reachable trajectories are also
fuel-optimal trajectories. This was exploited in [11] by eliminating the distance-based cost function and using a fuel-
based cost function. The result was an algorithm similar to [10], but one that recovered the maneuver envelope (fuel
optimal trajectories and reachable set). The formulation provided unifying approach between fuel-optimal trajectories
and reachable sets.

Copyright © 2023 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) – www.amostech.com 



This paper explores three topics. The first is how well our reachable set algorithm[10] performs on multi-revolution
trajectories. The second issue we explore is how well Cartesian coordinates perform and the tradeoffs with using them.
Finally, we discuss the additional information gained by using maneuver envelopes[11]. The paper layout follows the
issues we are investigating: multi-revolution cases, Cartesian formulation, and information gained through maneuver
envelopes.

2. MULTI-REVOLUTION INVESTIGATION

Prior work[10] demonstrated good performance in estimating reachable sets for multi-body cases. However, the cases
were limited to low revolution cases and the thrust-to-weight ratios were small. In this section, we examine both, the
number of revolutions and the thrust-to-weight ratio, to better understand how they drive the results of the algorithm.
Our analysis consists of fixing the initial conditions and changing the terminal time by a multiple of the orbital period.
This allows us to observe how the algorithm performs for 1,2,3,..N revolutions. We further assume that there are
100 stages per revolution; therefore as the number of revolutions increases, so do the number of stages. Finally, we
rerun this base case at different thrust levels. This approach allows us to see how number of revolutions (time) and
thrust-to-weight ratio interact.

The Cartesian initial conditions we use are, [−16371, 0, 0, 0, −4.19421, 0]. The position coordinates are in km and
velocity components are in km/s. The initial mass is equal to 1. The specific impulse is ∞. The last assumption ensures
that propellant fuel consumption is 0, which helps us isolate the variables of interest. We then run this case for 1 to
16 revolutions in increments of 1 revolution. Fig. 1 shows that the algorithm is able to estimate the reachable set for
the multi-revolution cases. As we increase the number of revolutions we see that the estimated reachable set remains
bounded and the points are well distributed. The results in Fig. 1 illustrate that the performance of the algorithm is not
simply driven by number of revolutions (or time) and that other factors play a critical role.

Our next step is to investigate how thrust levels effect the performance of the algorithm. We will use the initial
conditions and revolution counts from Fig. 1 and increase the maximum thrust level of the spacecraft. The thrust
values we use are 1E − 6km/s2 and 1E − 5km/s2 and the resulting trajectories are shown in Fig. 2 and Fig. 3,
respectively. What we notice in these two figures is that the estimated reachable set becomes less well defined as
it becomes larger. In particular, as the reachable set encapsulates the entire non-thrusting trajectory, we see that the
ability of our algorithm to accurately map out the contours of the reachable set diminish. What these cases highlight
is that the algorithm’s performance is determined by a combination of duration and acceleration levels.

This raises the possibility that other coordinate systems may achieve better results. In additional testing we found
that the rotating Hill Frame did not address this issue but shifting to a polar or spherical coordinate system can[5]. In
discussions, the authors of [5] showed unpublished cases, which showed that for two body cases spherical coordinates
alleviate this issues.

We also test multi-body interactions to help understand when the algorithm can fail in multi-body cases. During testing
we observed that if the gravitational body is within the reachable set, then the algorithm fails to properly estimate the
reachable set. Fig. 4 shows an Earth-centered trajectory with a lunar flyby. This is the same trajectory as shown in [10]
but with a higher thrust level (0.1 N). The higher thrust level results in the reachable set encompassing the moon during
the flyby. In Fig. 4 the black outline represents the first order estimate of the reachable set and the purple xs represent
the non-converged results from attempting to identify the exact reachable set. These points are valid and dynamically
consistent trajectories, but they do not necessarily represent trajectories on the reachable set. As we can see many of
the purple xs (non-converged solution) are outside the estimated reachable set (dashed black line), which means that
the estimate (dashed black line) is not valid. These two methods diverge because maximizing the reachability, in this
case, involves passing through the gravitational center.

These simulations show that time combined with thrust-to-weight ratio are important factors that drive the perfor-
mance of the algorithm. In particular, we see that the algorithm performs fairly well until the reachable set almost
encompasses the reference trajectory or a gravitational center. Other conditions may also exist. However, at a mini-
mum users of the algorithm from [10, 11] should cross-check the validity of the results if the reachable set is close to
encapsulating the orbit or if the reachable set encompasses a gravitational center.
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3. VALUE OF CARTESIAN COORDINATES

In this section we explore if our choice of Cartesian coordinates is a good/lucky choice and what are the possible
alternatives. Cartesian coordinates were originally chosen [10] because they work well with the Jet Propulsion Lab’s
ephemerides[9]. This allows for straight forward implementation of multi-body dynamics used in Fig. 4 and [10].

We begin by reviewing the dynamical information the reachable set algorithm requires, how choice of coordinate
frame influences computation, then considering use cases to better inform practitioners of the available trade space.

The reachable [10] and maneuver envelope [11] estimation algorithms require the dynamics, state transition matrix,
and partials with respect to the controls. The state transition matrix and control partials are computed on the non-
thrusting trajectory. For the purposes of these discussions, we limit ourselves to ideal two-body mechanics.

The state transition matrix, in Cartesian coordinates, is constantly changing over the trajectory and is not close to
the identity matrix. For non-thrusting trajectories, the state transition matrix in classical orbital elements (or variants
thereof) are close to the identity matrix. Usually, classical orbital elements and their variants involves only one state
changing over time; thus, the state transition matrix is close to the identify matrix. Having a state transition matrix that
is close to the identity matrix can be useful as it potentially simplifies calculations used to estimate reachable sets.

The second issue we need to explore is how the coordinate frame effects which use cases we can readily compute.
This issue is important because the reachable sets that can be readily computed depend on the coordinate frame. This
occurs because the algorithm sweeps over a subset of the co-states in order to map out the associated reachable set.
Therefore, the coordinate frame and the use cases will be linked.

The first use cases we consider is positional reachability. In this use case we care about the maximal reach of the
spacecraft and do not care about the velocity. This use case maps to SSA or conjunction analysis. In this case, we
want to use current or prior spacecraft location information to predict where it might be in the future. In Cartesian
coordinates, polar coordinates, or spherical coordinates[5] positional reachability is straightforward to compute as we
can randomly draw the co-states associated with x, y, and z coordinates from the unit ball to generate the positional
reachable set. The mapping between positions and classical orbital elements is highly nonlinear. This means we do
not have a trivial method for directly computing the positional reachable set for classical orbital elements (or variants).

The second possible use case is orbital reachability, where we care about both position and velocity. This use case
maps to orbit reconstruction or path planning. In these cases, we want to map out the maneuver set. In Cartesian
coordinates this involves sweeping over the position and velocity co-states. For other coordinate systems we can
similarly sweep over the non-mass co-states to generate the maneuver set. For this case, the reachable set should be
invariant to choice of coordinate frame.

The choice of coordinate frame depends on the use case. If positional reachability is required, then a coordinate frame
that has distinct position and velocity states is required. For these cases, Cartesian, spherical, or polar coordinates are
a good choice. If only maneuver sets are needed then classical orbital elements or similar coordinates can potentially
provide performance gains. If both cases may be required then Cartesian, spherical, or polar coordinates can simplify
code development and testing.

4. INFORMATION GAINED IN MANEUVER ENVELOPES

We now explore possible ways that the additional information contained in maneuver sets can be used. Maneuver
envelopes include the reachable set and non-reachable feasible trajectories. As part of the estimate of maneuver
envelopes we also obtain the near-optimal control laws[11].

We begin by using the same initial conditions and thrust level as case 2 from [10]. We then use the algorithm from
[11] which allows us to generate the maneuver envelope, shown in Fig. 5. In Fig. 5, the maneuver envelope is a series
of concentric shells where each shell represents the positions that can be reached for a fixed fuel costs. The center
represents zero fuel costs and the outer points are the reachable set, where the thruster is always on. Therefore, as
we move from the center to the outer edge, the fuel consumption increases in a monotonic manner that can be readily
extracted from the algorithm. This highlights that state observations can be used to estimate fuel consumption.
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5. CONCLUSIONS

In this paper we examined how time (orbital revolutions) and thrust-to-weight ratios effect the performance of our
reachable set algorithms. We see that multi-revolution cases are not a limitation in and of themselves. In numerical
testing we saw that the algorithm failed when the reachable set encompassed the orbit, which was driven by the thrust
to weight ratio and time. This suggests that reference frames with a coordinate that measures along track changes might
be better suited for these cases. We will explore this in future work. In multi-body cases the algorithm can generate
poor estimates of the reachable set when the set encompasses a gravitational center. We also find that Cartesian
coordinates work well for many use cases and that other coordinate frames may offer benefits for special use cases
but are less generalizable. Finally, the use of maneuver envelopes can allow users to estimate fuel usage based on
spacecraft position/velocity observations.
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Fig. 1: This represents a ‘low thrust case’ with max acceleration = 1e-7 km/s2, which is equivalent to 50 mN of thrust
for a 500 kg spacecraft. The figure shows that over 16 revolutions the reachable set remains well defined and estimated
by the algorithm.
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Fig. 2: This represents a ‘medium thrust case’ with max acceleration = 1e-6 km/s2, which is equivalent to 500 mN of
thrust for a 500 kg spacecraft. The figure shows that for 13-14 revolutions the reachable set remains well defined and
estimated by the algorithm. On revolution 15 it becomes less well defined.
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Fig. 3: This represents a ‘medium thrust case’ with max acceleration = 1e-5 km/s2, which is equivalent to 5 N of thrust
for a 500 kg spacecraft. The figure shows that for 4 revolutions the reachable set remains well defined and estimated
by the algorithm. On revolution 4 it becomes less well defined.
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Fig. 4: Reachable set encompasses a gravitational body during transit which causes a subsequent failure in the algo-
rithm.
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Fig. 5: Fuel optimal positional maneuver envelope.
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