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ABSTRACT

Fragmentation debris in the cislunar region creates enormous space situational awareness complications in an already
chaotic domain. With heightened international interest in spacecraft activities in the vicinity of the Moon, an expo-
nential increase in cislunar space debris is likely to follow. Even one fragmentation event can have catastrophic and
far-reaching consequences, which drives the need for appropriate debris characterization tools. This work investi-
gates patterns in fragment behavior as a function of energy level and orbit location, and explores emergent dynamic
structures in the vicinity of the Earth-Moon L, Lagrange point. A modified version of the NASA-developed Standard
Breakup Model is employed in the analysis of a realistic breakup event, and results are compared against the pattern
of behavior discovered in the earlier analysis.

1. INTRODUCTION

Cislunar space, the region beyond the geostationary belt of near-Earth objects up to the lunar sphere of influence, has
increasingly become of interest for mission designers and spacecraft operations [1]. Recent and prospective missions
include CNSA’s Chang’e series of orbiters, landers, and rovers, ISRO’s Chandrayaan-3 mission to the lunar south pole,
the CAPSTONE technology demonstration satellite to an L, NRHO, and NASA’s crewed Artemis program [2, 3, 4].
An increase in activity in this area heightens the risk of fragmentation events, through collisions, failed passivation
of propellant tanks, battery explosions, or deterioration of aging or damaged spacecraft, among other causes. Debris
generated from such events may be hazardous to the safe operation of active satellites, in not only cislunar orbits, but
near-Earth orbits as well, adding to an already precariously congested region [5]. The remoteness and large volume of
the cislunar domain introduces additional observation and tracking challenges which complicate crucial Space Domain
Awareness (SDA) activities. This, then, requires a comprehensive grasp of spacecraft breakup behavior and dynamics.

The challenge when evaluating breakup events in the cislunar region is that the parameter space is vast. This holds
true even when employing the circular restricted three-body problem (CR3BP), which is considered relatively com-
putationally inexpensive, and excluding other relevant forces such as solar radiation pressure and gravitational effects
of Jupiter and the Sun. Fragmentation events differ by: type and intensity; mass of the parent object; number, size,
and energy of generated fragments; the trajectory or orbital family on which the event takes place (planar, non-planar,
transfer, etc); and where on a given trajectory the event occurs, to name a few factors [6]. Because of the immense
scope of this problem, researchers have tended towards exploration of single instance fragmentation cases, such as
events occurring on select members of the Lyapunov or Halo orbital families [7, 8, 9]. This first series of papers show
impressively how widespread the impacts of a single collision can be and that fragments may easily migrate onto
trajectories that interact with the near-Earth region, including Low and Medium Earth orbits and Geosynchronous
orbits.

Tremendous computational resources have been expended to even glimpse at a subset of possibilities in a single orbital
family [8]. However, given the chaotic nature of the system dynamics in this region, nearby cases may exhibit entirely
different behavior. Thus, many of the relevant scenarios remain unexplored and no method so far exists to survey the
parameter space or to extrapolate from a given set of initial conditions to a different, even neighboring, set of initial
conditions.
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In this paper, we introduce methods to characterize the behavior of debris fragments over a range of parameters
near the Earth-Moon L; region of cislunar space without the need for extensive propagation. Section 2 provides a
brief review of CR3BP dynamics and some of the key related topics drawn upon in this study. Section 3 describes
modifications made to the NASA Standard Breakup Model for the following investigation. Section 4 discusses results
of case studies on constant energy breakup events, the influence of location within an orbit on fragmentation outcomes,
and a physically realistic explosion scenario. Finally, we will offer some conclusions extracted from the results of this
study.

2. DYNAMICAL MODEL

2.1 Circular Restricted Three Body Problem

When describing the dynamics of objects in cislunar space, it is insufficient to employ near-Earth two-body orbital
mechanics, as gravitational effects of both the Earth and Moon must be considered. The Circular Restricted Three
Body Problem (CR3BP) is a simplified model that enables computationally efficient insight into cislunar trajectory
dynamics [10]. Expressed in a non-dimensional, rotating reference frame, the CR3BP reflects the motion of an in-
finitesimal particle under the gravitational influence of two massive primary bodies which rotate in circular orbits
about their mutual barycenter at a constant rate. The governing second-order, coupled, nonlinear equations of motion
for a spacecraft under these conditions are
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where x,y,z and their derivatives represent the coordinates associated with the Earth-Moon rotating frame, such that
the x-axis is directed along the vector from the Earth to the Moon, and the z direction is normal to the Earth-Moon
rotating plane. U™ is the gravitational pseudo-potential associated with the system, defined as
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Parameters d and r represent the distances between the Earth and the spacecraft, and the Moon and the spacecraft,
respectively, while pt is the non-dimensional mass constant of the system. The non-dimensional distance between
primaries is set to unity.

Although the CR3BP does not admit a general closed-form analytical solution, it is possible to seek out particular
solutions, by identifying locations with zero initial velocity or acceleration with respect to the rotating frame, such
that gravitational and centrifugal forces cancel. This yields five equilibrium positions, known as Lagrange or libration
points L; for i = 1,...,5, which all lie in the rotating plane of motion of the primaries. The CR3BP does additionally
concede a single integral of the motion, a constant energy-like quantity referred to as the Jacobi constant JC, defined

as
JC=2U*— /X2 +y2+ 22, (3)

where the second term represents the magnitude of the spacecraft velocity in the rotating frame, and the value of JC is
inversely proportional to the energy of the orbiting third body. This constant restricts the motion of the third body to
physically accessible regions of travel, such that the magnitude of the velocity in the rotating frame is not imaginary.
When the velocity is reduced to zero, this yields a continuous surface that defines a boundary that cannot be crossed
ballistically, given the energy of the spacecraft. This forbidden boundary is known as a Zero Velocity Surface (ZVS),
or Zero Velocity Curve (ZVC) in the planar case. As energy increases, ZVS volumes are reduced and objects are able
to move more freely through cislunar space. The JC values that correspond to the ZVCs that pass through each L; are
listed in Table 1. In other words, these values indicate the JC at which a given Lagrange point ‘gateway’ opens and
becomes accessible for a spacecraft to pass through.

Table 1: Nondimensional Jacobi constants associated with the Earth-Moon libration points.

| L Ly Ly Lys
JC[nd]‘3.1883 3.1722  3.0121 2.9880
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2.2 Libration Point Orbits

Around each of the respective Lagrange points, there exist families of periodic or quasi-periodic libration point orbits
(LPO) which can be advantageously leveraged in cislunar mission design. A periodic orbit is one that consistently
repeats itself over a constant time period, while quasi-periodic orbits reside on invariant tori about their corresponding
periodic orbits. In the Earth-Moon domain, LPOs include Lyapunov and Distant Retrograde Orbits (DRO), which lie
entirely in the plane of the two primary bodies, as well as Halo, Vertical, Axial, and Lissajous orbits, among others,
which contain out-of-plane components. Orbits revolving the collinear libration points L, Ly, and L3, which lie along
the line connecting the two primaries, are considered dynamically unstable, in that even small deviations from an
equilibrium state grow continuously over time. Equilateral LPOs (around L4, Ls), on the other hand, are deemed
stable, and do not require station-keeping to remain in the Lagrange point vicinity.

Earth-Moon L, orbits have emerged as attractive destinations for space station and lunar surveillance orbits: an L,
southern halo orbit has been used by the Chinese Queqiao relay satellite to enable communication with their Chang’e
4 lunar lander on the far side of the Moon [3], while the CAPSTONE mission operates in a southern Near Rectilinear
Halo Orbit (NHRO) as a precursor and validation mission for NASA’s Artemis Gateway lunar orbital platform [4].
Additionally, the existence of manifolds in the L, vicinity offers natural arrival and departure pathways, convenient
for low-cost travel to this region. For simplicity, this investigation is focused on members of the L, planar Lyapunov
orbit family, a subset of which are shown in Figure 1, along with their associated Jacobi constants.
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Fig. 1: L, Lyapunov family members in the non-dimensional Earth-Moon system, color-coded by Jacobi constant.
The arrow indicates the orbital direction of motion.

2.3 Poincaré Maps

Because the phase space dimensionality is vast, lower dimensional visualizations can enable us to extract more mean-
ingful information from a trajectory. Poincaré maps are a method of reducing the dimensionality of a state space by
converting a continuous flow to a discrete-time representation, in order to enable identification of patterns or structures
in the emergent behavior. Poincaré sections are defined transverse to the flow of the system, such that the trajectory has
some component normal to the hyperplane X, and returns to X are recorded from one of either the positive or negative
directions (one-sided) or both directions (double-sided). Poincaré maps tend to exhibit certain properties unique to
periodic and quasi-periodic orbits and provide clarity regarding the global dynamics of a system. Note that Poincaré
maps track points that may not necessarily return to the map at the same time; however, a different class of maps,
known as stroboscopic maps, exist where the sampling frequency matches the period of a given orbit. Poincaré maps
may be further reduced in dimension by restricting the Jacobi value.
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3. DEBRIS BREAKUP MODEL

Collision and explosion breakup prediction models are a crucial component of any debris environment tool. The
NASA Standard Breakup Model (SBM) [6] is the most commonly embraced breakup model. This semi-empirical and
statistical application, developed in the late 1990s, was modeled around existing on-orbit collision and explosion data
at the time, as well as controlled ground-test data. The SBM provides three fundamental outputs for each generated
fragment: size L., area-to-mass ratio AM, and relative velocity AV distributions.

While the main procedures, formulas, and distribution functions are publicly available through published documen-
tation, the descriptions are not entirely comprehensive, and attempts in this work to fill in the gaps are speculative.
Although the original publication does not provide mass or momentum conservation controls, a later update describes
a mass conservation technique [11]. Momentum conservation is assured in the present work through the application
of a scale factor to each fragment velocity vector. The delta-v direction for each fragment is another unknown, which
is assumed here to be determined via a uniform distribution of unit vectors on a sphere. This assumption therefore
implies that the model does not consider non-isotropic explosions or asymmetrical collisions. The customized ver-
sion employed in this work additionally includes some modifications implemented by ESA’s MASTER-8 version of
the SBM [12]. These include the addition of a bridging function between the large and small particle area-to-mass
ratio models, clarifications on the area-to-mass and velocity probability density functions, and a correction to the
area-to-mass distribution for spacecraft particle sizes below 1 mm. Finally, when computing the number of generated
fragments in explosion cases, the original estimation does not consider the mass of the exploding object but rather
relies on a scaling factor s, such that the number of explosive fragments of size L. or larger is N = s-6- L%, In the
documentation, the only value provided for s is 1 for rocket bodies with masses between 600 to 1000 kg [6]. However,
this value is not always appropriate for all objects of this type or objects of other masses. If s is too large, the sum of
the produced fragments can be greater than the mass of the original spacecraft, and conservation of mass will yield
fragments with negative masses. If s is too small, the model will produce a few fragments with overly large masses.
Other works empirically determine appropriate s values on a case-by-case basis, but do not provide values for purely
numerical cases [12]. Therefore, the modified model used here has implemented an optimization scheme to determine
the appropriate scaling factor for any given mass, such that the sum of the generated fragments is less than, but reason-
ably close to (within 15%) the mass of the original target object. This represents an explosion with a relatively uniform
fragment dispersion, although the optimization parameters may be updated in the future to examine nonuniform cases.
Further details on the optimizer are discussed in Section 4.2.1. The SBM version used in the following analysis was
adapted by the authors of this work specifically for this investigation, and will hereafter be referred to as the ‘modified
SBM’.

4. CISLUNAR FRAGMENTATION PATTERNS

Given the extensive parameter space involved in fragmentation analysis, the isolation of certain key characteristics can
be leveraged to evaluate their individual influences on fragment dynamics and feasible regions of travel. The first part
of the study explores theoretical constant Jacobi fragmentation events, such that every generated fragment possesses
the same energy. The second investigation employs the modified SBM to explore a parameter sensitivity study and
simulate a realistic explosion event.

4.1 Constant Energy Analysis

Although a fragmentation event that solely produces debris with fixed energies is physically unrealistic, evaluation of
such theoretical simulations can provide insight into the behavior of objects with those energies in a practical scenario.
We consider a hypothetical satellite traveling along a given Earth-Moon L, Lyapunov orbit, subject to an isotropic
explosion, such that all generated fragments are ejected symmetrically in all directions. If the energy of each fragment
is constrained to a constant Jacobi value, the final velocity of each fragment can be determined from equation 3. Note
that not every fragment direction will be feasible, given the forbidden regions associated with the chosen JC.

4.1.1 Single fragmentation location cases

For an object with an initial nondimensional position and velocity state of [1.2187 0 0 0 -0.4232 0], traveling on an
orbit with JC equal to 3.0165, and a period of around 18.54 days, as illustrated in Figure 2(a), we can examine the
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outcome for fragments with constant energy levels in a few different cases. 998 equidistant ejection directions around
a sphere are considered, and those fragments that cannot achieve the Jacobi constant of interest are eliminated. JCs
of 2.99, 3.015, and 3.12 are selected to represent values near those associated with the Earth-Moon libration points,
as given in Table 1, while maintaining L, accessibility. Recall that based on the notation used in this work, a higher
Jacobi constant indicates a lower orbital energy, and thus a more limited region of travel. Fragments are generated at
the selected location on the orbit and are propagated over a 30-day duration, as shown in Figure 2(b).
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(a) Originating orbit and location of frag- (b) Fragment trajectories over 1 month. Green marker indicates Earth; gray shaded area
mentation event. indicates forbidden region from the ZVC; red outline represents original orbit.

Fig. 2: (a) Single location of fragmentation event on an L, Lyapunov orbit with JC = 3.0165. (b) Fragment trajectories
over a 30-day propagation.

Two-dimensional, double-sided, y-z Poincaré maps in positional space are placed at the L, Lagrange point (x = 1.1557
nd), the Moon (x = 0.9878 nd), and the halfway point between L, and the Earth (x = 0.5718 nd) to investigate emergent
patterns in those regions. Figure 3 shows the results of a comparison between the fragment patterns on each hyperplane
for the same event, for fragments with a Jacobi constant of 3.015. This JC indicates that both L; and L, are open
and accessible, while L3 remains closed for travel. As seen in Figure 2(b), after generation, fragments either travel
to the ‘left’ or ‘right’ of the original L, Lyapunov orbit, along what appear to be invariant manifolds or conduits that
transport objects between primary bodies [13]. In two-dimensional space, manifolds have been mathematically proven
to act as a separatrix or boundary between domains with distinct dynamical behavior. In three-dimensional space,
invariant manifolds are empirically observed to act in a similar manner [13, 14], and this is seen here. Additionally,
we observe that fragments that pass through the ZVC opening, through L, and then L;, are unable to traverse through
the boundaries of the shaded ZVC, as expected.

The purple markers in Figures 3(a)-(c) indicate the first time a fragment trajectory intersects with the respective maps,
while the magenta markers indicate all subsequent returns to the maps. We observe three distinct neighborhoods in
each map, shown in the left images of Figures 3(a)-(c), which represent (i) trajectories trapped inside the ZVC, referred
to here as inner fragments, (ii) those that travel around and beneath the ZVC, hereafter referred to as outer fragments,
and (iii) those that return to the map above the ZVC, which we will call returned fragments. Note that the returned
fragments are the same objects as the outer fragments, but have simply traveled far enough to return to the map. Within
those regions, fragments appear to form recognizable egg-like shapes symmetric about the y-axis. We can infer from
this that the fragments are traveling along unstable invariant manifold tubes, consistent with our understanding of
object dynamics in the vicinity of Lagrange points. From this perspective, it is clear that fragment movement is not
confined to the plane of the original planar Lyapunov orbit, but expands in the z-direction as well. Compared to when
the outer fragments first hit the map, when they reappear as returned fragments, their manifold is almost double in
size, giving a clear image of the widespread impacts of such an event.

Zooming in on the maps, as shown in the right-side images of Figures 3(a)-(c), to the smaller manifold regions showing
only the inner and outer fragments, we see that the percent of fragments that return to the map varies depending on
where the map is located. Very few fragments (around 12.83%) return to the map between the Earth and L,, although
based on the pattern of the manifold, more fragments are likely to return given a longer propagation. Most of the
returns appear to occur outside of the ZVC. The most returns occur at the Moon, at a percentage of around 73.35,
while around 58.72% of fragments return to the hyperplane located at L,.

Figure 4 illustrates the difference between fragment patterns of different constant energy levels, on a hyperplane

Copyright © 2023 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) — www.amostech.com



3
*+  Initial crossing s
5 - Retumns to map

Z [nd]

7 [nd] 3 [nd

(a) Hyperplane at halfway point between Earth and L, (x = 0.5718 nd).

15
* Initial crossing
*  Retumsto map

2 [nd]

(b) Hyperplane at Moon (x = 0.9878 nd).

+ Initial crossing 5
- Retums to map

2 [nd]

4 05 o0 0s

2 s
3 o

(c) Hyperplane at L, (x = 1.1557 nd).

Fig. 3: Comparison between Poincaré map intersections for fragments with JC = 3.015 at different locations along
the Earth-Moon x-axis. Images on the right represent zoomed in portions of the map.

located at the halfway point between the Earth and L,. With such a narrow gateway open at L, for a JC of 3.12, very
few fragments are able to make it through the ZVC corridor, which we can see clearly in the trajectory plot on the far
left in Figure 4(a) and maps in the middle and right in Figure 4(a). This, once again, signifies that the energy is too low
to traverse through the ZVC region. Additionally, many fragment directions of travel at this energy level are infeasible,
and only 124 out of a possible 998 can be physically realized. In contrast, fragments with Jacobi constants of 3.015
or 2.99 are all viable, given the larger ZVC gateways, as seen in Figures 4(b) and (c). Furthermore, the qualifying
fragments with JC equal to 3.12 in Figure 4(a) appear to travel on a much narrower manifold tube than the other two
cases. While it may not look like much from the plots, a non-dimensional distance of 1 is equal to the distance between
the Earth and the Moon. Therefore the higher energy fragments can spread up to 384,400 km farther than the lower
ones. Once again, we observe fragments in Figure 4(b) with JC of 3.015 become trapped within the ZVC, while those
in Figure 4(c) with JC of 2.99 can travel virtually unimpeded by forbidden regions. While ZVCs are a great tool for
limiting the available pathways of fragment travel in debris prediction analysis, so too are manifolds, as Figure 4(c)
shows a clear structural corridor even without a large restrictive ZVC boundary.
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Fig. 4: Comparison of fragments with Jacobi constants (a) 3.12, (b) 3.015, and (c) 2.99 on a Poincaré map located at
the halfway point between the Earth and L, at x = 0.5718 nd. The rightmost figured provide a zoomed in view of the
center figures.

4.1.2 Multiple fragmentation location cases

Advancing further in the investigation, the influence of the location of breakup on a given orbit is examined. Fragmen-
tations at twenty equally spaced locations around the same orbit, as shown in Figure 5(a), are evaluated. The locations
are defined based on their arc angle, or ‘true anomaly’ 0, relative to the L, point, in degrees. As the spacecraft travels
clockwise around the orbit, it traverses through negative 8 angles first, which indicate a negative y-location in the
Earth-Moon rotating system. Each location is color-coded according to 6, as demonstrated in Figure 5(a). We can
again compare fragments with different Jacobi constants, and additionally different initial orbits. We consider two
different originating L, Lyapunov orbits, shown in Figure 5(a), and three sets of constant fragment JCs, whose associ-
ated ZVCs are displayed in Figure 5(b). Figure 6 examines fragments originating on an orbit with a JC of 3.0165 that
have three different constant energy levels. Through Poincaré maps and bar plots indicating the number of fragments
from each starting location in each manifold, the figure enables a correlation between energy levels. Figure 7 displays
a similar scenario but for fragments on a starting orbit with a JC of 2.99. These figures together enable a comparison
between disparate orbits. Figures 6(a) and 7(a) reveal hyperplane crossings at the halfway point between L, and the
Earth for each of the orbits and prescribed locations. Returns to the map are not recorded this time.

We observe that the location of the fragmentation event around an orbit plays a significant role in dictating the regions
of cislunar space that objects can traverse. Naturally, we can distinguish that as both the energy of the original orbit
and the energy of the fragments increase, the fragment trajectory distances correspondingly increase as well. The
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Fig. 5: (a) Originating orbits and locations of breakup events and (b) ZVC boundaries associated with the fragment
Jacobi energies of interest.
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(a) Poincaré maps for fragments with constant JC values of (left) 2.99, (middle) 3.015, and (right) 3.12.
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(b) Fragment counts indicating the number of fragments in either the larger manifold (yellow) or smaller manifold (maroon),
corresponding to the plots in (a) for constant fragment JC values of (left) 2.99, (middle) 3.015, and (right) 3.12.

Fig. 6: Comparison between (a) Poincaré map intersections for fragmentation events with three different constant JCs

values on twenty locations around an orbit with JC = 3.0165, and (b) the corresponding number of fragments that
travel to either the larger or smaller manifold structures.

fragments that spread out the farthest distances in all cases appear to be those that are generated at 6 angles of around
450°, which show up as the cyan, green, and yellow markers on the respective maps. On the other hand, fragments
that originate at 6 angles greater than 150° and less than -150° appear to create manifolds with smaller diameters,
and therefore less volume. Furthermore, Figures 6(b) and 7(b) reveal that fragments originating at 6 angle locations
symmetric about the x-axis do not necessarily produce similar results. These figures indicate the number of fragments
at each location that travel to either the larger manifold outside of the ZVC, represented by the yellow portion of the
bar plot, or to the smaller manifold inside the associated ZVCs, represented by the maroon portion of the bar plot.
In Figure 6(b), which represents the chosen pathways of fragments that originate on the smaller orbit, we see a large
disparity in where fragments end up between different energy levels. However, all three energy levels for the larger
orbit follow a similar pattern, despite differences in the numbers of feasible fragments, as shown in Figure 7(b). Here

we see that almost all fragments that originate in the angle range of +120° end up in the larger manifold outside of the
ZVC.

To get a clearer view of the impact of the starting orbit, we can overlay the results of multiple orbits on the same
figure. By outlining the circumference of the maps of each orbit, the traversed volumes of cislunar space become more
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(b) Fragment counts indicating the number of fragments in either the larger manifold (yellow) or smaller manifold (maroon),
corresponding to the plots in (a) for constant fragment JC values of (left) 2.99, (middle) 3.015, and (right) 3.12.

Fig. 7: Comparison between (a) Poincaré map intersections for fragmentation events with three different constant JCs

values on twenty locations around an orbit with JC = 2.9001, and (b) the corresponding number of fragments that
travel to either the larger or smaller manifold structures.

apparent. Figure 8 reveals manifold shapes associated with nine different orbits, shown with their color-codings in
Figure 8(a), based on fragmentation events at twenty locations around each orbit. Once again, as energy increases,
or JC decreases, more area is open to the fragments to move around. This can be observed most prominently for
fragments originating in the smaller L, Lyapunov orbits (blue and green orbits), as we see the manifold diameter
increase from JC of 3.12 in Figure 8(a) to 3.015 in Figure 8(b) and 2.99 in Figure 8(c). Thus the investigation reveals

that both orbit and location on an orbit play a significant role in the outcome of a fragmentation event in the vicinity
of the L, Lyapunov orbit.

Copyright © 2023 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) — www.amostech.com



§ [nd]
Z [nd]

0 05 1 15 2 g [“d]

(a) color-coding map for each initial orbit (b) Manifold cross-sectional areas for objects with JC =3.12

orbit 1
orbit 2
orbit 3
orbit 4
orbit5
orbit 6
orbit 7 2

orbit 1
orbit 2
orbit 3
orbit 4
orbit 5
orbit &
orbit 7
orbit 8
orbit9

orbit 8
orbit9

s s 4 3 2 1 0 1 6 5 -4 -3 2 El 0 1
7 Ind] 7 Ind]

(c) Manifold cross-sectional areas for objects with JC = (d) Manifold cross-sectional areas for objects with JC =2.99
3.015

Fig. 8: Comparison between boundaries of manifold cross-sections for objects with different constant energy levels,
originating on 9 different orbits and 20 locations around the orbit.

4.2 Realistic Breakup Event

The modified satellite breakup model enables analysis of collision and explosion fragmentation events in orbit through
the computation of fragment counts, sizes, area-to-mass ratios, and relative velocities. The model generates statistical
distributions as a function of characteristic fragment length L.. In the original SBM publication, the authors assert that
the initial conditions of the breakup are ‘highly influential’ in the outcome of the model [6]. In simulating realistic
breakup events in this study, we will consider a reference scenario with the initial conditions of an explosion event
involving a spacecraft (as opposed to a rocket body) of varying mass from 50 to 1000 kg on a planar L, Lyapunov
orbit. The minimum fragment size considered has been limited to 5 cm to reduce the computational burden, while the
largest fragment length is fixed at 1 m. The breakup epoch is arbitrarily selected as 2023-08-29 00:00:00, although
we acknowledge that the relative positions of the Sun, Earth, and Moon affect the final velocities of each fragment
coming out of the breakup algorithm, and therefore breakup epoch conditions deserve further investigation. The initial
conditions are summarized in Table 2.

Table 2: Breakup model initial conditions.

Event type explosion

Debris type spacecraft
Minimum fragment length 5 cm

Maximum fragment length 1 m

Breakup epoch 2023-08-29 00:00:00
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4.2.1 Scale factor optimization

Given the statistical nature of the model, no run will naturally produce an equal number of fragments or the same
distribution of fragment characteristics. However, in order to reproduce a given case for continued analysis, the
random number generator seed can be computationally fixed. This tactic is exploited in the implementation of the
scale factor optimizer to obtain an optimal explosion scale factor for a satellite of any mass. Given the discontinuities
present in the modified SBM model, the optimizer employs the Nelder-Mead simplex algorithm [15, 16] to find the
minimum value of an unconstrained cost function. In order to limit the search to produce only scale factors that yield
total fragment mass values less than that of the original satellite (prior to conservation of mass), a penalty is applied
to the cost function when the mass requirement is not met. Since optimization requires repeatable results to obtain a
solution, the random seed can be fixed. However, to maintain a random area-to-mass distribution model, a single seed
is not appropriate, thus in that case an array of fixed seed values is assigned to the optimizer. The optimization function
is executed prior to running the full breakup model, and the resulting scale factor and associated seed are applied to
the model.

4.2.2 Sensitivity analysis

Before embarking on a study of a specific breakup event, it is valuable for us to understand the relationships between
some of the variables in our system. In a case, such as this, with a large parameter space, a sensitivity study can help
identify inputs that are most responsive to changes and give overall insight into the parameters that have the largest
influence on the system.

We can consider eighteen orbits and fifty true anomaly locations around each orbit, as well as two different satellite
masses, to evaluate which of those parameters is most influential on the energy levels and rotational velocity magni-
tudes of the generated fragments. Running the breakup model without subsequent propagation is not computationally
burdensome and yields valuable insight. Using the initial event conditions provided in Table 2, the breakup model is
run only once per mass value, to maintain consistency in the analysis. As the algorithm is a function of spacecraft
mass, the fragment outputs will differ between cases of different masses. The ejection velocity of each fragment
produced by the modified SBM is then added to the initial velocity state of the spacecraft at the designated breakup
location to obtain the final velocity and Jacobi constant of each debris object. The optimized scaled factor for the two
mass cases and the number of explosion fragments generated are provided in Table 3.

Table 3: Sensitivity study parameters, in addition to those listed in Table 2.

Satellite mass [kg] 50 500
Explosion scale factor, s 0.264453  1.1625
Number of generated fragments 197 838

Figure 9 reveals the effect of mass and initial breakup location on the median of all fragment Jacobi constants for both
a 50 kg object and a 500 kg object. We see from the median and mean results in the left and center plots in Figure
9(a) and (b) that the Jacobi constant is very dependent on the orbit of origination, and not as dependent on location
around the orbit, remaining fairly constant and symmetric throughout the orbit, except where the orbit pinches in at
its closest flyby of the Moon. We observe from these plots that the median and mean plots are not exactly aligned.
We can intuitively understand that since objects on larger orbits that travel further away from the Moon have higher
energies than smaller family members, fragments generated on those higher-energy orbits will be imbued with larger
energies as well. In contrast, the right plot in Figure 9(a), representing the standard deviations of the Jacobi constant
distribution at each location, does not yield the same intuitive results. There is a lack of symmetry about the x-axis
of the orbit, with much larger variations in energy at the negative true anomaly locations compared with the positive
0 angle locations. By far the largest standard deviations occur again at the orbital pinch point, increasing drastically
as 0 approaches -180°. However, in the right plot of Figure 9(b), we see that standard deviations are relatively lower
than that of the 50 kg object and symmetry in the plot is restored. Both mass cases reveal that average fragment energy
levels do not vary considerably with initial satellite mass, although standard deviations are more variable.

From the rotational velocity magnitude contours, both the mean and median contour plots in the left and center plots
of Figure 10(a) and (b) appear to match for both the 50 kg and 500 kg mass scenarios. In both cases, the mean velocity
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Fig. 9: Contours representing changes in fragment Jacobi constants as a function of initial breakup location for satel-
lites with two different mass values
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Fig. 10: Contours representing changes in fragment velocity magnitudes in the rotating frame as a function of initial
breakup location for satellites with two different mass values
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values reveal an almost perfect symmetry about the x-axis, although there is much more velocity sensitivity to changes
in both orbit and true anomaly than there was with the energy terms. Higher velocity fragments look to exist for
explosions originating close to the x-axis, as well as on higher energy orbits. However, once again, we observe unique
behavior at the closest Moon pass of each orbit, with a sudden jump in fragment velocities. The standard deviations in
velocity for the 50 kg object, in the right plot in Figure 10(a), look to be much larger on average than those for the 500
kg object, shown in the right plot in Figure 10(b). Neither plot is symmetric about x and both exhibit spikes in standard
deviation on smaller, lower energy orbits at a true anomaly of around £100°, which are located at the very top and
bottom of the orbits. Once again, we observe almost no difference in average velocity magnitudes with changes in
satellite mass, although differences exist in the velocity distribution standard deviations.

4.2.3 Reference breakup case

We can now consider the effect of this analysis on a simulated breakup event, again using the input conditions specified
in Table 2, and a satellite mass of 500 kg. Optimization of the explosion scale factor s yields a value of 1.2187, which
generates 881 pieces of debris. The explosion occurs when the satellite is at the nondimensional state of [1.2187 0
0 0 -0.4232 0], which corresponds to an object located at a position along the Earth-Moon x-axis and traveling in a
negative y-direction on periodic planar L, Lyapunov orbit with a Jacobi value of 3.0165 and a dimensional period of
18.53 days.

The distributions obtained from the modified SBM model for the fragment characteristic lengths, area-to-mass ratios,
masses, and delta-V magnitudes are displayed in Figure 11 along with their mean values. The shapes of the distribu-
tions are consistent with findings from literature [6, 8, 17]. The probability density of the rotational velocity magnitude
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Fig. 11: Breakup model distributions for characteristic length L., area-to-mass ratio AM, mass, and ejection velocity
AV of generated explosion fragments.

distribution is additionally included for reference in Figure 12, and indicates a mean fragment velocity of 0.456 km/s
and standard deviation of 0.064 km/s. Recall that the SBM is a statistical algorithm, and, therefore, these distributions
will not repeat each time the model is run. This leads to countless potential fragment velocities and energies for a
single scenario, which is why it is valuable to identify repeatable behaviour and dynamical patterns.

Figure 13 displays the resulting fragments and associated trajectories corresponding to the explosion event described
above. The fragments are color-coded based on their Jacobi constant, as indicated by the color bar in Figure 13(a).
Figure 13(b) provides a three-dimensional view of the trajectories, while Figure 13(c) enables a closer inspection
of trajectories nearby the orbit of origination. After 30 days of propagation, many of the fragments have travelled
enormous distances, with some of the farthest reaching distances of up to 5.33 nd, or 2 million km, from their location
of origination. We are able to identify one very large energy object that travels on a trajectory symmetric about the
x-axis and collides with the Earth. Simulations like this prove that even with an explosion at 1.2187 nd, or 470,000 km,
from the Earth, which generates less than one thousand pieces of debris, Earth reentries are possible, and even likely.
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And with plans of colonizing the Moon on the horizon, the amount of Moon impacts due to only one fragmentation
event will be unacceptable, especially given the lack of a lunar atmosphere to decelerate or destroy them.

Figure 14 provides a Jacobi-centered view of the fragment behaviour in this case. In Figure 14(a) the trajectory plot
has been reevaluated in terms of energy regions, rather than individual Jacobi values. The regions have been defined
according to the energy levels required to pass through the various Earth-Moon libration points. The first region,
defined by the color yellow, represents objects with very low energies and Jacobi constants greater than that of the L;
equilibrium point, such that they are incapable of traversing through L; and remain trapped on whichever side of the
ZVC they originate from. The second region, represented by the color orange, indicates objects with Jacobi values
between those of L; and L;, denoting the ability to pass through L;, but not L,. The third, or red, region represents
objects with Jacobi values between those of L, and L3, such that L, is available for travel, but L3 is not. The fourth
region, in purple, includes objects with Jacobi values between those of L3 and Ls. And finally, region five, displayed
in black, encompasses fragments for which no ZVCs exist, and thus, fragments at those high energies can travel
unhindered by dynamical boundaries.

Figure 14(a) provides insight into the energy regions in which each fragment lies. The more erratic trajectories belong
to fragments without ZVCs and demonstrate their ability to move about freely in cislunar space. Figure 14(b) supplies
a breakdown of the Jacobi distribution of the explosion. Those details are summarized in Table 4. As seen from the
distribution, 31% of fragments belong to the fifth region, indicating that a third of the generated fragments have the
potential for unpredictable travel patterns. Out of the remainder of fragments, 33% belong to the third region and 36%
have energies in the fourth region, both of which face limited travel restrictions. Only 0.1% of fragments fall in the
low energy categories. The fragments have an average JC of 2.994, a median JC value of 3.002, and a JC standard

Table 4: JC region summary.

Region Jacobi range  Fragment percentage
Yellow region > 3.1883 0%

Orange region  3.1722 - 3.1883 0.1%

Red region 3.0121-3.1722 33%

Purple region ~ 2.9880 - 3.0121 36%

Black region < 2.9880 31%

deviation of 0.071. If we attempt to correlate those values to the JC plots associated with a 500 kg object in Figure
9(b), on an orbit with a JC of 3.0165, and a true anomaly of 0°, we would expect to get an average JC of around 2.96,
and a standard deviation of around 0.07, which align reasonably well with the findings in the sample scenario. Figure
14(c) displays the Poincaré map for this fragmentation event on a hyperplane located at the halfway point between L,
and the Earth. From looking at the trajectory plots in Figures 13(a) and 14(a), similar to the earlier analysis of constant
JC conditions, we observe that many of the fragments, especially those with lower energies, look to be traveling on
clearly defined invariant manifolds. Interestingly, these manifolds appear to remain mostly planar and thus do not form
the visually gratifying egg-shaped three-dimensional manifolds explored in Section 4.1.
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Fig. 14: Summary of reference explosion scenario, with outputs classified according to energy range categories.

5. CONCLUDING REMARKS

With increased interest in lunar missions, and heightened activity in the Cislunar region, a focus on understanding the
complex multibody dynamics of fragmentation events without exorbitant computational expense is necessary for the
support of debris mitigation strategies. In this investigation, the motion of fragments characterized by constant energies
is explored and subsequent dynamical structures are examined. Multiple breakup locations in the vicinity of the L,
Lagrange point are investigated, and behavioral patterns specific to the location of the breakup are found to exist.
Zero Velocity Curves (ZVCs) and manifolds provide some measure of predictability in fragment motion, although
ZVCs become irrelevant at higher energies. A sensitivity analysis is performed on satellites of different masses to
look at the factors that characterize a fragmentation event and their influence on the Jacobi constant and fragment
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velocity magnitude. Little variation is found to exist between masses, while the orbit of origination is seen to be the
largest influence on fragment energies. Finally, a physically realistic explosion event is modeled using a modified
version of the NASA Standard Breakup Model, and insight gleaned from the constant energy study is applied in
the analysis, although some different behavior is exhibited relative to the theoretical constant Jacobi cases. Notably,
the average energy levels of a realistic explosion are often large enough to enable fragments to move unhindered
throughout cislunar space. Grouping the fragmentations into respective Jacobi constant regions enables the prediction
of allowable pathways without the need for propagation.
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