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ABSTRACT

Orbit determination in non-Keplerian orbit regimes presents challenges due to the chaotic and unpredictable motion in these systems
over large time scales. Typical approaches to cislunar orbit determination leverage numerical shooting to produce trajectories in
optimization. These methods often break down for measurement gaps on the order of days or hours. This work presents a novel
algorithm for cislunar IOD using direct collocation methods. The new approach provides many benefits, including large region of
convergence with poor initial guess, as well as increased stability and performance over long observing time scales. An additional
modification is made for periodic orbit determination, in which both the orbit and its natural period are estimated by the algorithm
simultaneously. IOD leveraging collocation methods may significantly reduce sensor tasking requirements for orbit determination
of newly detected objects in cislunar space.

1. INTRODUCTION

The future of space situational awareness (SSA) necessitates substantial leaps in observing algorithms and technologies
as a growing number of spacecraft operators set their sights on cislunar space. A critical capability in SSA is the initial
orbit determination (IOD) problem. IOD seeks to reconstruct a target orbit from optical measurements across several
measurement arcs. In two-body Keplerian dynamics, IOD is a well-defined problem yielding an initial state for
batch processing or sequential estimation. Examples of two-body IOD approaches include classical methods such as
Laplace, Gauss, and double-r [7], as well as Gooding’s method [13] and association of admissible regions (AR) [9].
In contrast, IOD with multi-body dynamics presents a significant challenge due to the lack of analytical solutions (i.e.,
fewer constants of motion), as well as the chaotic nature of trajectories over long observing periods. Existing efforts
in cislunar IOD have largely relied on predictive shooting algorithms to solve for an initial state at epoch [23, 26].
The circular-restricted three body problem (CR3BP) is known to exhibit chaotic, unpredictable behavior, particular
over long time scales [14]. In turn, cislunar IOD methods may often fail for measurements gaps on the order of
days or even hours. Further, existing approaches often assume perfect angular rate information, imposing burdensome
sensor tasking requirements to produce sequential imaging for measurement tracklet interpolation. The state-of-the-
art in cislunar IOD will greatly benefit from the development of advanced algorithms that: 1) have a large region of
convergence requiring minimal a priori knowledge of the target orbit, and 2) can converge to an accurate solution over
long measurement gaps.

This work presents a novel angles-only IOD approach in multi-body systems using direct collocation. The method
works via discretization of the solution space over a set of collocation nodes (or “knots”). Transcription of the sys-
tem dynamics converts the continuous-time problem into a set of interpolating splines at each node. An objective
function is designed to minimize the sum-squared measurement residuals at each epoch inversely weighted by the
measurement error covariance. Following transcription, the resulting IOD formulation is a large-scale sparse nonlin-
ear programming problem (NLP). For comparison, the number of unknowns with traditional shooting IOD methods is
on the order of 100, whereas the number of unknown parameters in collocation may be on the order of 102 or greater.
However, numerical NLP solvers such as IPOPT [3] and SNOPT [12] are widely available and generally meet or
exceed capabilities of numerical shooting methods.

A major benefit of the direct method approach is that little to no initial guess information is required to successfully
converge to an accurate solution, even over a large search domain. This feature is particularly beneficial for IOD with
no prior ephemeris information of an observed object. Direct collocation is commonplace in trajectory optimization
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settings such as optimal control [20] and interplanetary transfers [21] for its convergence properties. These methods
have also been previously studied for fast orbit propagation using Chebyshev polynomials [1], Gauss-Legendre [16]
collocation, and implicit Runge-Kutta schemes [4], for example. However, the utility of collocation methods in multi-
body orbit determination problems is largely unstudied.

This paper demonstrates the advantages of collocation in comparison to traditional shooting methods for non-Keplerian
orbit determination. Results demonstrate convergence to accurate solutions from extremely limited initial guess in-
formation for the target orbit (such as initializing the algorithm at one of the Lagrange points). The method is highly
flexible, allowing for varying observer geometry using angles-only measurement information. Although the CR3BP
dynamics are chosen for study, there are no restrictions that preclude application to more realistic orbits using full
ephemeris models. When compared to existing shooting methods, the collocation IOD approach proves highly reli-
able in reconstructing multi-body orbits. Finally, a modified periodic IOD algorithm is implemented, demonstrating
the capability to fit optical measurements to naturally repeating orbits in the CR3BP system.

SSA is critical to maintaining operational awareness and safety in cislunar space. As the number of objects in the
Earth-Moon system continues to expand, operators will require increasing reliability and capability of SSA algorithms.
Robust IOD represents a basic requirement for any cislunar observing architecture, as it enables the association of
uncorrelated tracks or identification of previously undetected objects from optical measurements. The collocation IOD
algorithm presented in this work is a fundamental departure from traditional approaches, demonstrating significant
improvements in both solution accuracy and rate of convergence across long measurement intervals with limited initial
guess information.

2. NON-KEPLERIAN ORBIT DETERMINATION

Applications of IOD with non-Keplerian orbit dynamics cannot leverage analytical solutions and constants of motion
from two-body orbital mechanics. In turn, predicting states forward (or backward) in time requires approximate
numerical integration. This section outlines the general multi-body IOD problem, as well as example limitations of
explicit integration solution methods.

2.1 Problem Formulation

To begin, suppose the multi-body IOD objective can be posed in terms of a dynamic mapping between hypothesized
and observed states at measurement epochs. The nonlinear system dynamics can be written as

ẋxx = fff (xxx, t) (1)

for t ∈ [t0, t f ] with system state xxx ∈Rn. Measurements of the system state yyy ∈Rm are modeled by a nonlinear function

yyyi = hhh(xxxi, ti)+ vvvi (2)

where vvvi ∼N (000,Ri) is additive Gaussian white noise with intensity Ri ∈ Rm×m. Suppose a set of observed vectors
Λ = {yyy1,yyy2, . . . ,yyynobs

} are collected at times t0 ≤ ti ≤ t f . A general IOD objective can be formulated in terms of the
following distance metric evaluated at each measurement

min
xxx1,...,xxxnobs

J =
nobs

∑
i=1

(yyyi−hhh(xxxi, ti))TR−1
i (yyyi−hhh(xxxi, ti)) (3)

Equation (3) is a general statement for non-Keplerian IOD minimizing the weighted residuals at each measurement
epoch. The problem is a nonlinear weighted least squares objective, in which states must be mapped between epochs
subject to the dynamics in Eq. (1). Solving this problem can be challenging without precise knowledge of the orbital
state. The following section outlines current approaches using explicit integration methods and admissible regions.

2.2 Solution Using Explicit Integration and Admissible Regions

Prior methods have approached solution of Eq. (3) subject to the dynamics of Eq. (1) using numerical shooting meth-
ods. These methods can generally be categorized as indirect methods using using explicit numerical integration. The
solution procedure attempts propagate a hypothesized state at epoch forward (or backward) in time to evaluate the
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Fig. 1: Illustration of CR3BP coordinate system and RA/DEC angles in synodic frame (not to scale).

IOD objective at every measurement. To outline this approach, first define the flow function φ as a solution to Eq. (1)
with initial state xxx0

xxx(t) = φ(t;xxx0, t0), t ∈ [t0, t f ] (4)

The IOD objective of Eq. (3) can then be rewritten as

min
xxx0

J =
nobs

∑
i=1

(yyyi−hhh(φ(ti;xxx0, t0), ti))TR−1
i (yyyi−hhh(φ(ti;xxx0, t0), ti)) (5)

in terms of the unknown state at epoch xxx0. In its stated form, the problem amounts to solving for the position and
velocity state at initial epoch that minimizes the measurement residuals at propagated future epochs.

Although the number of unknowns with numerical shooting methods is small (n = 6 for 3-DOF motion), multi-body
orbit dynamics often exhibit highly nonlinear, chaotic behavior when propagated over long timescales. These methods,
while generally stable over short timescales, often break down over large measurement gaps or without a close initial
guess. In turn, this makes optimization for the unknown state at epoch challenging.

One approach to overcoming this difficulty utilizes admissible region (AR) information [10, 25]. This approach
segments the system states into its undetermined and determined components, xxxu ∈ Rnu and xxxd ∈ Rnd , respectively,
where nu+nd = n. The undetermined state is then sampled from a bounded AR and a full state at epoch is reconstructed
by a mapping from AR components to the full state space. For example, for optical observations with measurement
rate information, the given quantities are

xxxd = [α, α̇,δ , δ̇ ]T (6)

where α and δ are the right ascension (RA) and declination (DEC) angles, respectively. An illustration of these angles
is given in Figure 1. At each observation, the hypothesized range ρ and range-rate ρ̇ are sampled from the AR at time
ti such that

xxxu = [ρ, ρ̇]T (7)

A state estimate at ti can then be reconstructed from following the methodology in Worthy and Holzinger [24]. For
angles-only IOD, the angle rates are not assumed, meaning an additional two quantities must be pulled from the
AR. Further, for non-Keplerian orbits, AR methodologies are not well-developed and may not provide sufficient
information to accurately sample undetermined quantities.

Example IOD results using shooting methods for a simple cislunar observing scenario are shown in Figure 2. These
cases were specifically chosen to outline failure modes of explicit integration methods. We note that these methods are
able to converge to accurate solutions in many cases [23], particularly over short measurement time scales. However,
the reliability of these methods for generalized observing architectures with long observing gaps or complex orbits is
not assured. While not exhaustive, the example cases illustrate limitations of these methods in the highly nonlinear
CR3BP system. In turn, this places burdensome operational considerations and sensor tasking requirements for orbit
determination in the cislunar domain.
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(a) Initial guess error

(b) Large measurement interval

(c) Phasing in target orbit

Fig. 2: Illustration of failed IOD cases using numerical shooting methods (L2 Southern Halo target and L1 observer).
In general, without a close initial guess and closely-spaced measurements, these methods tend to break down due to
nonlinear, chaotic behavior in the CR3BP dynamics.
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3. SOLUTION USING SPARSE COLLOCATION

The objective of this work is to develop a novel collocation IOD algorithm using direct methods. In this approach,
the solution space is discretized into nodes (or “knots”) in time. The state at each node is optimized at each iteration
independently to minimize the IOD objective in Eq. (3). Transcription of the dynamics using piecewise interpolating
splines enforces Eq. (1) implicitly, ensuring the resulting solution is a feasible trajectory of the system. Direct methods
tend to have a wide region of convergence and low sensitivity to initial guess errors. Although these benefits are
well-known in trajectory optimization settings [11], direct methods are under-utilized for IOD and nonlinear batch
estimation problems in general. Details of the collocation IOD algorithm are given in the following sections, along
with examples and case studies of interest relevant to cislunar SSA.

3.1 Transcription to Nonlinear Programming Problem

The primary feature of the direct collocation approach is to discretize the solution space while enforcing governing
differential equations through a set of equality constraints. A feasible solution of the discretized problem must then
satisfy the system dynamics to the degree of accuracy implied by the transcription scheme. The reader is referred to
Refs. [2, 22, 17] for further details.

The transcription process is outlined as follows. The time domain is divided into N discrete times over the mesh
defined as

tk = t1 < t2 < · · ·< tN (8)

Throughout this paper, the k-th subscript will indicate the index of a collocation node point, whereas the i-th subscript
will represent the index of a specified measurement epoch. In general, these times cannot be assumed coincident
without tying the mesh spacing to the measurement times. For the purposes of this work we utilize a uniform mesh
spacing, although a non-uniform mesh is equally valid.

The states at each node xxxk = xxx(tk) are concatenated into a parameter vector XXX ∈ RnN defined as

XXXT = [xxxT
1 ,xxx

T
2 , . . . ,xxx

T
N ] (9)

The nN total number of unknowns is a function of both the mesh grid spacing and the state dimension. The IOD
objective in Eq. (3) can then be stated as

min
xxx1,...,xxxN

J =
nobs

∑
i=1

(yyyi−hhh(xxxi, ti))TR−1
i (yyyi−hhh(xxxi, ti)) (10)

Note that, since the measurement times ti are not assumed coincident with the node times tk, an interpolation of the
state xxxi at each measurement epoch must be performed with respect to the collocation mesh. This procedure is outlined
in the next section.

The differential equation in Eq. (1) is replaced by a set of equality (or “defect”) constraints of the form

gggk(xxxk,xxxk+1, tk, tk+1) = 000, k = 1, . . . ,N−1 (11)

where the constraints gggk depend on the collocation scheme. For example, using trapezoidal collocation [17] gives

gggk = xxxk+1− xxxk−
1
2

hk( fff k+1 + fff k) = 000 (12)

where hk = tk+1− tk. The fff k = fff (xxxk, tk) notation indicates the system dynamics evaluated at time tk. Trapezoidal
collocation constraints result from using trapezoidal quadrature to approximate the integral of the dynamics between
times tk and tk+1 with a quadratic spline interpolation of the state.

As the accuracy of the quadrature scheme is directly tied to the mesh spacing interval, it is often desirable to use a
higher-order approximation of the system dynamics. For example, the Hermite-Simpson collocation method represents
the state trajectory using cubic splines, giving the following defect constraint

gggk = xxxk+1− xxxk−
1
6

hk( fff k +4 fff k+ 1
2
+ fff k+1) = 000 (13)
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Note that in contrast to Eq. (12), the defect constraint in Eq. (13) requires an additional evaluation of the system
dynamics fff k+ 1

2
at the midpoint of the segment xxxk+ 1

2
. This point can be evaluated from an interpolant of the state

trajectory at time tk+ 1
2

as follows

xxxk+ 1
2
=

1
2
(xxxk + xxxk+1)+

1
8

hk( fff k− fff k+1) (14)

Although many choices exist for transcribing the system dynamics (see Betts [2]), for this work we focus on trapezoidal
and Hermite-Simpson collocation.

Regardless of the transcription method chosen, the objective in Eq. (10) subject to constraints in Eq. (11) can be written
compactly as the (

PN) minimize J(XXX)
subject to ggg(XXX) = 000

XXXL ≤ XXX ≤ XXXU

(15)

where XXXL and XXXU are the lower and upper bounds, respectively, on the unknown parameters XXX . In general, these limits
need not be overly restrictive or require significant knowledge of the solution domain. Along-the-path inequality
constraints are also feasible, but these are left for future work. The continuous-time IOD problem has been converted
to a large scale nonlinear-programming (NLP) problem in Eq. (15). Given an initial guess for the unknowns, a solution
can be found with widely available numerical NLP solvers such as SNOPT [12] or IPOPT [3].

3.2 Measurement Interpolation

The IOD objective in Eq. (10) as transcribed to a NLP problem must be evaluated at each measurement epoch. How-
ever, the measurement times may not match exactly with constructed grid times. Two approaches are plausible to
overcome this problem. The first option is to construct a dense mesh in which measurements can be correlated to a
single node. In this case, the objective (and its gradient) are only evaluated at this isolated node for each measurement
epoch. However, this approach introduces additional numerical overhead in evaluating the NLP constraints for more
unknowns, due to the insertion of synthetic node times coinciding with each measurement. A second, more efficient
approach, is to use interpolating splines to determine the solution state between node points. Although this introduces
implementation and algorithm complexity, it decouples the node spacing entirely from the measurement epochs. An
illustration of these two approaches is given in Figure 3. For periodic IOD covered in the following section, grid
interpolation is strictly required.

Although interpolation is a relatively straight-forward task in general, a number of complexities exist when applied in
the context of the collocation IOD algorithm, including: 1) the interpolation method is dependent on the transcription
scheme itself, 2) the gradient and its objective must be evaluated at the two nearest-neighbor nodes relative to each
measurement, and 3) large discontinuities in the measurement model (such as RA angle-wrapping) are not well-
approximated by smooth interpolating splines. This section outlines an interpolation approach that accounts for these
properties.

First, noting that Eq. (10) must evaluate the state xxxi at each predicted measurement, we consider the state at each
nearest-neighbor nodes xxxk and xxxk+1 such that tk ≤ ti ≤ tk+1. We also introduce the following notation ∆i = ti− tk as the
time differential between the first mesh point and measurement. An interpolated state can be constructed generally as

xxxi = ccc0(xxxk,xxxk+1)+ ccc1(xxxk,xxxk+1)∆i + ccc2(xxxk,xxxk+1)∆
2
i + . . . (16)

where the coefficients ccc0,ccc1,ccc2, . . . are determined by the transcription scheme. For example the trapezoidal quadra-
ture method approximate the system dynamics linearly in time, resulting in a quadratic spline interpolation of the
integrated state

xxxi = xxxk + fff k∆i +
1
2

∆2
i

hk
( fff k+1− fff k) (17)

Note that the preceding interpolant is valid only for ti ∈ [tk, tk+1] and is not extrapolated outside of these bounds.
Similarly, for higher-order Hermite-Simpson collocation the system dynamics are interpolated quadratically, resulting
in a cubic interpolation of the integrated state of the form

xxxi = xxxk + fff k∆i +
1

2hk
(−3 fff k +4 fff k+ 1

2
− fff k+1)∆

2
i +

1
3h2

k
(2 fff k−4 fff k+ 1

2
+2 fff k+1)∆

3
i (18)
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(a) Dense mesh (b) Sparse mesh

Fig. 3: Heuristic comparison of dense and sparse mesh schemes with interpolating measurement. Arrows represent
non-zero gradient evaluations at a given node.

Equations (17) and (18) give the necessary expressions for evaluating the NLP objective at each measurement as
a function of the mesh grid. This information must also be reflected in computation of the objective gradient and
constraint Jacobian, which is discussed in the following section.

3.3 Gradient and Jacobian Structure

Iterative NLP solvers (such as IPOPT) require an evaluation of the objective gradient and constraint Jacobian with
respective to the unknown parameter vector XXX . These expressions are briefly outlined here for context. Let us introduce
the notation

∇k(·) =
(

∂ (·)
∂xxxk

)
(19)

as the gradient of a quantity with respect to the state at a specified node k. Referring to the IOD objective in Eq. (10),
the gradient at node k corresponding to measurement i is

∇kJ =−2(yyyi−hhh(xxxi, ti))TR−1
i

(
∂hhhi

∂xxxi

)(
∂xxxi

∂xxxk

)
(20)

Because the interpolating function in Eq. (16) includes both of its nearest-neighbor nodes for each measurement, the
gradient must also be evaluated at node k+1 as

∇k+1J =−2(yyyi−hhh(xxxi, ti))TR−1
i

(
∂hhhi

∂xxxi

)(
∂xxxi

∂xxxk+1

)
(21)

The first Jacobian (∂hhhi)/(∂xxxi) is evaluated based on the form of the measurement model. For angles-only IOD, the
measurement function is generally right ascension (RA) and declination (DEC), or the line-of-sight (LOS) vector.
Expressions for (∂xxxi)/(∂xxxk) and (∂xxxi)/(∂xxxk+1) are developed as a function of the interpolation method (and therefore
transcription scheme) in the Appendix.

For clarity, it can be shown that the structure of the objective gradient takes the form(
∂J
∂XXX

)T

∼
[

111T
n 111T

n 000T
n · · · 000T

n 111T
n 111T

n · · ·
]T ∈ RNn (22)

where 111 refers to a vector with all entries equaling one. Note that Eq. (22) is not a strict equality; it serves only to
illustrate the zero and non-zero entries of the objective gradient. It is interesting to note that the gradient is evaluated
at discrete points in the solution space, which is in contrast to most trajectory optimization problems that attempt to
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Case No. Target Orbit Initial Guess Nodes NLP Iterations NLP Error CPU Time
1 L2 S Halo L2 16 15 1.7850E-6 0.293 s
2 DRO L2 20 18 3.6442E-6 0.415 s
3 L4 Long Period L4 45 70 1.91784E-6 3.347 s
4 Northern Dragonfly L2 40 43 2.1214E-5 1.182 s

Table 1: Summary of example cislunar observing cases using collocation IOD algorithm (L1 N Halo observer).

optimize a terminal or integral cost [22]. Similarly, the structure of the constraint Jacobian can be illustrated as follows

(
∂ggg
∂XXX

)
∼


111n×n 111n×n 000n×n · · · 000n×n
000n×n 111n×n 111n×n · · · 000n×n

...
...

. . . . . .
...

000n×n 000n×n · · · 111n×n 111n×n

 ∈ Rn(N−1)×nN (23)

where we again emphasize that Eq. (23) is not a strict equality. The individual entries of the constraint Jacobian are
found based on the transcription method. These quantities are given in the Appendix.

3.4 Case Studies and Discussion

The preceding sections outline a novel IOD algorithm utilizing direct collocation. In contrast to existing strategies, the
approach relies on implicit integration between nodes to ensure a trajectory satisfies the system dynamics. One of the
major benefits of this approach is to significantly reduce the sensitivity of the algorithm to errors in the initialization
of the algorithm. Whereas shooting methods have leveraged admissible regions (with assumed angles and angle rates
information) to generate an initial state at epoch, the collocation IOD algorithm can converge from a wide range
of initial guesses. Moreover, results indicate that the method is robust to widely-spaced measurements over long
observing time scales. These convergence properties also benefit applications requiring minimal human intervention,
such as autonomous catalog maintenance of a large number of tracked objects in cislunar space.

Table 1 summarizes representative example cislunar observing cases. Measurement time scales and cadences vary by
case. The algorithm is initialized with an initial guess coinciding with a stationary Lagrange point of the Earth-Moon
system. These points are widely known and easy to compute. Application of admissible region methodologies may
enable further refinement of an initial guess at epoch; however, the purpose of the following results is to illustrate a
wide region of attraction of the collocation IOD algorithm starting from a poor initial guess. The NLP solver was set
to a 1E-5 convergence tolerance threshold.

Figure 4 shows reconstructed orbits in 3-D position space. The initial guess for each case corresponds to a Lagrange
point of the Earth-Moon system, which can be interpreted as a stationary orbit at this point. Measurement epochs
and relative LOS vectors are also shown in red. Note that these correspond to angular quantities at each measurement
(RA/DEC), not absolute position measurements. The node points are plotted along with an interpolation between
nodes consistent with the transcription scheme. The number of nodes in each case were chosen by inspection, although
automated mesh refinement techniques could be applied to produce finer solutions. The CPU time for solution is on
the order of seconds, indicating that the algorithm could be implemented for online applications, without relying on
extensive ground operations for computing initial orbits.

Further support of these findings is evident from Figure 5, which shows a time history of RA/DEC angles. These an-
gular quantities are computed across the full observing period for visualization, but it is emphasized that measurement
information is only utilized in the algorithm at the prescribed epochs (red markers). These results also highlight the
range of observing timescales that are possible with the collocation IOD approach. In Cases 1 and 2, the relatively
shorter orbit periods allow for IOD on the order of 3-5 days between measurements. The L4 Long Period orbit in
Case 3, however, succeeded with a substantial gap between measurements of about 4 weeks. Prior methods using
explicit shooting methods would be unlikely to see convergence in these difficult observing scenarios. Further, due
to the long timescale of the L4 Long Period family, it is unlikely this orbit could be accurately reconstructed without
these widely-spaced measurements.

The convergence rate and accuracy of each IOD case is summarized in Figure 6. The total iterations required for
convergence varies based on situational observing geometries and orbits. The L2 S Halo and DRO cases converge
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relative quickly in less than 20 iterations, whereas the L4 and Dragonfly orbits take longer due to the complexity
of the orbits and the time between measurements. The final objective value depends on the error of the implicit
integration implied by the collocation scheme. Finer grids or mesh refinements would improve these accuracies at the
cost of greater computing costs. For the purposes of this study, however, the results are sufficiently accurate to fully
reconstruct the target orbit from widely-spaced optical observations.

While no AR information is used in the algorithm, AR methodologies could be applied to further reduce the feasible
search space of the NLP problem. In addition, there is no strict requirement that an observer be stationed in any
particular orbit. For example, Earth-based observers could also be considered, although low observability in angular
measurements of near-Lunar orbits as seen by ground observers is a limiting factor.

4. PERIODIC INITIAL ORBIT DETERMINATION

Periodic orbits in the CR3BP system are a topic of high importance in cislunar SSA [8, 15]. These orbits have the
special property of repeating natural motion as seen by the rotating synodic frame. This behavior is desirable for
observing in the Earth-Moon environment, as stable repeating orbits allow for predictable motion with lower station-
keeping maneuver requirements. Cislunar periodic orbit determination has been approached using Gaussian Mixture
Model Estimation Filters [5], observability analysis about Libration points [19], or machine learning classification [18],
for example. The capability to autonomously estimate a repeating orbit and its period simultaneously from optical
measurements remains an ongoing area of research.

In this section, we modify the collocation IOD algorithm for periodic orbit determination in non-Keplerian systems.
The process maintains the benefits of the direct collocation scheme, requiring minimal a priori knowledge to initialize
the algorithm. The method also does not rely on sourcing pre-computed periodic orbit tables. The approach is outlined
in the following sections.

4.1 Time Normalization

Repeating natural motion of a dynamic system in general can be stated as a periodicity constraint of the form

xxx(t +T ) = xxx(t) (24)

where T is the period of the orbit. In the preceding sections, the time scale was fixed as the delta between the initial
and final observation epochs. For periodic IOD, the total time scale is a function of the unknown variable T . It is
therefore helpful to normalize the problem over a new time interval τ ∈ [−1,1]. Note that the original time variable
t ∈ [t0, t f ] can be recovered by an affine transformation [11] with no loss of generality

t =
t f − t0

2
τ +

t f + t0
2

(25)

For notational convenience, we restrict our application to the case where t0 = 0 and t f = T without loss of generality.
Applying Eq. (25) over the the mesh times tk and measurement epochs ti gives the relations

tk =
T
2

τk +
T
2
, ti =

T
2

τi +
T
2

(26)

The system dynamics Eq. (1) must also be transformed to the new time variable as

dxxx
dτ

= fff (xxx(τ),τ) (27)

The periodicity constraint in Eq. (24) can then be stated as simply

xxx(−1)− xxx(1) = 000 (28)

where the period T has been absorbed into the affine transformation in Eq. (25).
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(a) Case 1 (L2 S Halo) (b) Case 2 (DRO)

(c) Case 3 (L4 Long Period) (d) Case 4 (Northern Dragonfly)

Fig. 4: 3-D visualization of observer and reconstructed target orbits using collocation IOD algorithm.

Copyright © 2023 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) – www.amostech.com 



(a) Case 1 (L2 S Halo) (b) Case 2 (DRO)

(c) Case 3 (L4 Long Period) (d) Case 4 (Northern Dragonfly)

Fig. 5: Reconstructed observations using collocation IOD algorithm.

Fig. 6: IOD objective value versus NLP iteration for each observing case.
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4.2 Transcription to Nonlinear Programming Problem
The periodic IOD problem can be transcribed to a NLP problem following a similar process as the preceding sections.
The normalized time domain is divided into N segments

τk = τ1 < τ2 < · · ·< τN (29)

where τ1 =−1 and τN = 1. Following the transcription approach in Eq. (11), the defect constraints are written as

gggk(xxxk,xxxk+1,τk,τk+1) = 000, k = 1, . . . ,N−1 (30)

The states and unknown period are then concatenated into an augmented parameter vector in the following NLP
problem

(
PN,1)


minimize J(XXX ,T )
subject to ggg(XXX ,T ) = 000

XXXL ≤ XXX ≤ XXXU
TL ≤ T ≤ TU

(31)

where TL and TU are the lower and upper bounds, respectively, on the unknown period T . These bounds can be set
based on the predicted orbit family period range, or set arbitrarily large to explore a greater number of potential orbits.
The periodicity requirement is enforced by an additional NLP constraint, giving a total of nN constraints and nN +1
unknowns.

4.3 Gradient and Jacobian Structure
In order to solve the NLP problem in Eq. (31), common solvers will require gradient and constraint Jacobian infor-
mation. These expressions are similar to those developed in preceding sections, with the exception of an additional
constraint and unknown due to the periodicity constraint. Equations (20) and (21) give the objective gradient with
respect to the state at nodes k and k+1. A derivative is also required in order to evaluate the sensitivity with respect
to the unknown period, T . Applying the chain rule to Eq. (10) gives

∂J
∂T

=−2(yyyi−hhh(xxxi, ti))TR−1
i

(
∂hhhi

∂xxxi

)(
∂xxxi

∂τi

)
∂τi

∂T
(32)

The second term (∂xxxi)/(∂τi) can be found from taking a derivative of Eq. (16) with respect to T , giving(
∂xxxi

∂T

)
= ccc1(xxxk,xxxk+1)+2ccc2(xxxk,xxxk+1)∆i +3ccc2(xxxk,xxxk+1)∆

2
i . . . (33)

where ∆i = τi− τk in normalized time coordinates. These derivatives are given in the Appendix as a function of the
transcription scheme. The last derivative in Eq. (32) can be found by inverting Eq. (26) for τi and taking a derivative
with respect to T

∂τi

∂T
=− 1

T
+

T −2ti
T 2 (34)

where we note that the measurement times ti appear in non-normalized time coordinates. Equation (34) is ill-defined
for T → 0. Fortunately, this scenario of minimal concern for practical orbits, which generally must have a non-zero
period.

It also helpful to outline the objective gradient and constraint Jacobian structures. For convenience, define the aug-
mented state vector ZZZ ∈ RnN+1 as

ZZZT = [XXXT,T ] (35)

It can be shown that the non-zero entries of the objective gradient take the following structure(
∂J
∂ZZZ

)T

∼
[

111T
n 111T

n 000T
n · · · 000T

n 111T
n 111T

n · · · 1
]T ∈ RNn+1 (36)

Similarly, the constraint Jacobian has the structure

(
∂ggg
∂ZZZ

)
∼


111n×n 111n×n 000n×n · · · 000n×n 111n
000n×n 111n×n 111n×n · · · 000n×n 111n

...
...

. . . . . .
...

...
000n×n 000n×n · · · 111n×n 111n×n 111n
IIIn×n 000n×n · · · 000n×n IIIn×n 000n

 ∈ RNn×Nn+1 (37)
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Target Orbit Initial Guess True Period (TU) Estimated Period (TU) Residual, ‖xxx1− xxxN‖
L2 S Halo L2 3.4155 3.4157 2.8575E-4

Northern Dragonfly L2 2.7551 2.7585 8.8564E-5

Table 2: Summary of periodic IOD results (L1 N Halo observer).

Note that the preceding equations are not strict equalities and serve only to show non-zero entries. The defect constraint
equations depend on the period T through the affine time transformation in Eq. (26). Given the objective gradient and
constraint Jacobian, the NLP problem in Eq. (31) can be solved to fit a periodic orbit to observed measurements.

4.4 Case Studies and Discussion

The periodic IOD algorithm is validated for a subset of cislunar observing cases in Table 2. In each observing scenario,
a sequence of three measurements is used to reconstruct both the target orbit and an estimate of its period. Figure 7
shows these 3-D reconstructed orbits. Although the measurement interval covers less than half of each orbit, the
resulting trajectory extends for full period to account for the periodicity constraint. In numerical experimentation, it
was noted that the NLP solver can sometimes become “trapped” at Lagrange points, as these points trivially satisfy
the periodicity constraint by remaining stationary. A simple resolution to this issue is introduce a small, random
perturbation to the initial guess to allow the solver to explore wider regions of the solution space.

Figure 8 shows the observer-relative RA/DEC angles for the true and reconstructed orbits, as well as the measurement
epochs. Following the final measurement, the remaining trajectory is stretched (or compressed) in time by the affine
transformation in Eq. (26) as the estimated period changes. Accuracy of the results is further supported by Figure 9,
which shows the estimated period in days for each NLP iteration. In both cases, the final estimated period converges
to within 0.2% of the true period, even without a close initial guess.

Estimating the period of an object in non-Keplerian IOD has benefits from an operations perspective. Knowledge of an
orbit period provides valuable information on sensor revisit rates and allows operators to predict when the object will
be next observable. However, the method does present a few drawbacks. First, solution requires a greater number of
collocation nodes, which increases computational requirements. Second, the solver may not always reliably converge
to the correct solution, even while satisfying the periodicity constraint in the NLP algorithm. Additionally, orbits with
longer periods (such as L4 or L5 orbits) have difficulty converging, although using AR methodologies to generate a
more accurate initial guess may help overcome these challenges. Finally, it is important to note that periodic orbits are
derived in the CR3BP system but may not exist in a true ephemeris model. However, the idealized CR3BP dynamics
are often used to develop periodic trajectories for reference tracking and mission analysis.

This work develops a plausible concept for periodic IOD using direct methods, demonstrating its utility in cislunar
SSA. Results of the IOD algorithm show promise for reconstructing periodic orbits from optical angles-only measure-
ments. The findings of this work are expected to provide a highly robust and efficient algorithm for orbit determination
in non-Keplerian systems. Potential future improvements to the methodology include adaptive mesh refinement tech-
niques [6] or higher-order transcription methods [2].

5. CONCLUSIONS

This work outlines a novel non-Keplerian IOD algorithm leveraging direct collocation methods. The approach has a
wide region of convergence and decreased sensitivity to initial guess errors. Results show the algorithm can reliably
converge starting from initialization at one of the Lagrange points of the Earth-Moon system. Further, the method
works well with sparse grids and large observing gaps, enabling rapid orbit determination with limited measurement
information. A further modification of the algorithm is made for periodic orbit determination, which is shown to
successfully reconstruct natural repeating orbits in the CR3BP system. The method provides a highly flexible, robust
approach to cislunar SSA observing requiring minimal human supervision. Implications for this work include auto-
mated catalog maintenance and orbit determination for newly-detected objects in cislunar space. Future work includes
validation of the approach on experimentally-obtained optical measurements. The method could also be extended to
account for admissible regions or maneuvering targets. Finally, while optical angles-only measurements are the focus
of this paper, the algorithm could be extended to include RF measurements instead.
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(a) L2 S Halo (b) Northern Dragonfly

Fig. 7: Angles-only reconstructed orbits using periodic IOD algorithm.

(a) L2 S Halo (b) Northern Dragonfly

Fig. 8: Reconstructed observations using periodic IOD algorithm.
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(a) L2 S Halo (b) Northern Dragonfly

Fig. 9: Estimated period versus NLP iteration using periodic IOD algorithm.
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A. APPENDIX: DERIVATIVE QUANTITIES

This appendix outlines the necessary derivative quantities for evaluating the NLP objective gradient and constraint
Jacobian. Expressions are organized with respect to each transcription method for clarity.

A.1 Trapezoidal Collocation
The following derivatives are necessary to compute the interpolation gradient with respect to nodes k and k + 1 in
Eq. (20) and (21) using trapezoidal quadrature.

The trapezoidal interpolation scheme is repeated from Eq. (12) as follows

xxxi = xxxk + fff k∆i +
1
2

∆2
i

hk
( fff k+1− fff k) (38)

giving the following derivatives at nodes k and k+1(
∂xxxi

∂xxxk

)
= IIIn×n +

(
∂ fff k

∂xxxk

)(
∆i−

1
2

∆2
i

hk

)
(39)(

∂xxxi

∂xxxk+1

)
=

(
∂ fff k+1

∂xxxk+1

)
1
2

∆2
i

hk
(40)

For the periodic IOD derivative in Eq. (33), the following derivative is also required(
∂xxxi

∂T

)
= fff k +

∆i

hk
( fff k+1− fff k) (41)
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The defect constraints for trapezoidal quadrature are also repeated from Eq. (12) here

gggk = xxxk+1− xxxk−
1
2

hk( fff k+1 + fff k) = 000 (42)

giving the following Jacobian at nodes k and k+1(
∂gggk

∂xxxk

)
=−IIIn×n−

1
2

hk

(
∂ fff k

∂xxxk

)
(43)(

∂gggk

∂xxxk+1

)
= IIIn×n−

1
2

hk

(
∂ fff k+1

∂xxxk+1

)
(44)

These expressions complete the necessary derivative quantities using trapezoidal quadrature.

A.2 Hermite-Simpson Collocation

The trapezoidal interpolation scheme is repeated from Eq. (18) as follows

xxxi = xxxk + fff k∆i +
1

2hk
(−3 fff k +4 fff k+ 1

2
− fff k+1)∆

2
i +

1
3h2

k
(2 fff k−4 fff k+ 1

2
+2 fff k+1)∆

3
i (45)

giving the following interpolation gradient with respect to nodes k and k+1 in Eq. (20) and (21)(
∂xxxi

∂xxxk

)
= IIIn×n +

(
∂ fff k

∂xxxk

)(
∆i−

3
2

∆2
i

hk
+

2
3

∆3
i

h2
k

)
+

(
∂ fff k+ 1

2

∂xxxk

)(
2

∆2
i

hk
− 4

3
∆3

i

h2
k

)
(46)

(
∂xxxi

∂xxxk+1

)
=

(
∂ fff k+1

∂xxxk+1

)(
−1

2
∆2

i
hk

+
2
3

∆3
i

h2
k

)
+

(
∂ fff k+ 1

2

∂xxxk+1

)(
2

∆2
i

hk
− 4

3
∆3

i

h2
k

)
(47)

where from Eq. (14) it can be shown that(
∂ fff k+ 1

2

∂xxxk

)
=

(
∂ fff k+ 1

2

∂xxxk+ 1
2

)[
1
2

IIIn×n +
hk

8

(
∂ fff k

∂xxxk

)]
(48)(

∂ fff k+ 1
2

∂xxxk+1

)
=

(
∂ fff k+ 1

2

∂xxxk+ 1
2

)[
1
2

IIIn×n−
hk

8

(
∂ fff k+1

∂xxxk+1

)]
(49)

which gives expressions evaluated at the midpoint of the segment. For the periodic IOD derivative in Eq. (33), the
following derivative is also required(

∂xxxi

∂T

)
= fff k +

1
hk

(−3 fff k +4 fff k+ 1
2
− fff k+1)∆i +

1
h2

k
(2 fff k−4 fff k+ 1

2
+2 fff k+1)∆

2
i (50)

The defect constraints for Hermite-Simpson quadrature are also repeated from Eq. (13) here

gggk = xxxk+1− xxxk−
1
6

hk( fff k +4 fff k+ 1
2
+ fff k+1) = 000 (51)

giving the following Jacobian at nodes k and k+1(
∂gggk

∂xxxk

)
=−IIIn×n−

1
6

hk

[(
∂ fff k

∂xxxk

)
+4

(
∂ fff k+ 1

2

∂xxxk

)]
(52)

(
∂gggk

∂xxxk+1

)
= IIIn×n−

1
6

hk

[
4

(
∂ fff k+ 1

2

∂xxxk+1

)
+

(
∂ fff k+1

∂xxxk+1

)]
(53)

These expressions complete the necessary derivative quantities using Hermite-Simpson quadrature.
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