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ABSTRACT

Successful space domain awareness (SDA) requires maintaining track custody of cooperative and noncooperative
cislunar space objects (CSOs) through both ballistic and maneuvering trajectories. The surveillance of CSOs is
particularly challenging due to the underlying chaotic multi-body dynamics, which makes future motion harder to
predict compared to Keplerian orbits. While methods exist for tracking cooperative spacecraft using high accuracy
range measurements, the problem of passive noncooperative maneuvering CSO tracking has received considerably less
attention. In this paper, CSO motion is modeled as a jump Markov system (JMS), where the CSO modality is unknown
and subject to random switching. A novel adaptive Bayesian filter is proposed and shown to successfully maintain
CSO track custody through both ballistic and maneuvering phases of an Artemis I-like trajectory.

1. INTRODUCTION

Accurate knowledge of a space object’s orbit and its associated uncertainty is essential to cislunar space domain
awareness (SDA). The probabilistic approach to cislunar space object (CSO) tracking involves finding complete
statistical descriptions of state uncertainty conditioned on available noisy observations. Uncertainty realism in cislunar
SDA is critical not only for state estimation accuracy, but for downstream objectives including conjunction analysis [1],
object search [2], and multi-sensor fusion [3]. Tracking a CSO with sparse observations presents significant estimation
challenges due in part to the underlying nonlinear, chaotic multi-body dynamics, which result in highly non-Gaussian
state distributions. Notional cislunar space-based observer constellations [4] increase observation opportunities yet are
still limited by Moon occlusion and albedo, which prevent consistent measurement opportunities, specifically during
close approaches to the Moon. During observation gaps, CSO state uncertainty grows rapidly and exhibits a highly
non-Gaussian structure driven by the underlying nonlinear and chaotic multi-body dynamics, even when the CSO is
assumed to be ballistic. Tracking a maneuvering CSO is even more challenging, as the unknown time and magnitude
of CSO maneuvers accelerate uncertainty growth.

In the Bayesian approach to state estimation and tracking, full statistical descriptions of the target uncertainty are sought,
typically in the form of probability density functions (pdfs). In nonlinear settings, Bayesian Gaussian mixture (GM)
and particle filters offer distinct advantages in that their underlying parameterizations can accurately approximate
arbitrary non-Gaussian pdfs, as illustrated in Fig. 1(a). Adaptive Gaussian mixture (AGM) filter approaches [5–10]
systematically increase and decrease the mixture resolution in key regions of the distribution support to account for
strong nonlinear effects while maintaining overall efficiency. Applications of AGM filtering to near-Earth and CSO
tracking are demonstrated in [7,11] and [12], respectively. Other notable nonlinear estimation approaches include, for
example, polynomial chaos expansion [13, 14], conjugate unscented transform [1], and multi-fidelity methods [15].

The challenging problem of maneuvering target tracking is an extensively studied problem with applications in
autonomous vehicle tracking [16,17], air traffic control [18,19], and missile defense [20,21]. Maneuvering objects are
commonly modeled as jump Markov systems (JMSs), wherein an object’s modality evolves according to a homogeneous
Markov chain [22–28]. Each modality consists of its own dynamics and measurement model, and thus can capture
different object behaviors, such as ballistic flight and thrusting. The Bayes-optimal filter solution requires exponential
complexity to account for the possible target mode histories, motivating suboptimal approximations such as the widely
adopted interacting multiple model (IMM) filter [23]. Non-JMS formulations include a control-theoretic approach that
detects maneuvers based on the integrated control effort required to connect two boundary states under an assumed
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optimal control policy [29–33]. While maneuvering target tracking and Bayesian nonlinear estimation have received
extensive attention independently, comparatively little existing work has been dedicated to probabilistic nonlinear
estimation of maneuvering objects in chaotic systems.

This paper presents the adaptive Gaussian mixture interacting multiple model (AGMIMM) filter, a novel AGM filter
for tracking noncooperative maneuvering objects in chaotic dynamic systems. The AGMIMM filter features a multi-
pronged adaptation approach. Unlike existing nonlinear AGM estimators, the AGMIMM adaptively accounts for
stochastic target modality changes and, unlike existing maneuvering target trackers, employs a comprehensive multi-
criterion mixture adaptation for other important nonlinear effects. In particular, this paper considers adaptation criteria
designed for capturing nonlinear effects from dynamics, measurements, negative information, and known constraints.
Another novel contribution of this paper is the adoption of a cluster-based merging algorithm to accurately approximate
the entire target mode history, which is shown to significantly improve state estimation performance and robustness
compared to existing techniques. The application to multi-sensor noncooperative CSO tracking is then considered,
where the maneuvering CSO modality is unknown and subject to random switching. The effectiveness of the new
filter is demonstrated in a challenging angles-only tracking problem, where a noncooperative CSO performs multiple
unknown maneuvers to achieve an Artemis I-like trajectory. Synthetic angle measurements are generated based on a
notional network of cislunar space-based observers flying in a 1:1 resonant orbit configuration.

(a)

(b) (c) (d)

(e) (f) (g)

Fig. 1: Comparison of merging and prediction methods where cyan lines denote the 1σ contours of each component
and red dots denote 100 Monte Carlo samples of a 20-component GM representing the true mixed mode-conditioned
posterior (a). The true distribution is merged using the techniques of the (b) IMM [23], (c) GMIMM [24], and (d)
AGMIMM. The merged GMs of the GMIMM and AGMIMM cases have 10 components each. The mixed mode-
conditioned posteriors are propagated over five days for the (e) IMM, (f) GMIMM, and (g) AGMIMM.
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2. PROBLEM FORMULATION

This paper considers the problem of estimating the state and modality of a nocooperative CSO conditioned on all
available sensor measurements. Particularly, the CSO state xk ∈ R6 is defined as

xk =
[
r⊤k v⊤

k

]⊤
=

[
xk yk zk ẋk ẏk żk

]⊤ (1)

where (·)k describes the quantities at discrete time tk, rk ∈ R3 is the relative position of the target with respect to the
Earth-Moon barycenter in the synodic frame, and vk ∈ R3 is the relative velocity of the target in the synodic frame.
Without loss of generality, this paper adopts the circular restricted three-body problem (CR3BP) assumptions. Let µ
be the ratio of the mass of the Moon to the sum of the masses of the Moon and Earth, and let r/Earth and r/Moon be
the distances of the target from the Earth and Moon, respectively. Then, the dynamics of the target are described by
the continuous time differential equations

ẍ− 2ẏ = wx(t, τ) +
∂U

∂x

∣∣∣∣
x

, ÿ + 2ẋ = wy(t, τ) +
∂U

∂y

∣∣∣∣
x

, z̈ = wz(t, τ) +
∂U

∂z

∣∣∣∣
x

(2)

U =
1− µ
r/Earth

+
µ

r/Moon
+
x2 + y2

2
(3)

where U is the pseudo-potential and w(t, τ) =
[
wx(t, τ) wy(t, τ) wz(t, τ)

]⊤ is the mode-dependent relative
acceleration due to unknown inputs such as target thrust. If w(t, τ) = 0, then CR3BP equations of motion (EOMs)
admit an integral of motion known as the Jacobi constant and defined as

C(xk) = 2U − v⊤
k vk (4)

This paper assumes that target mode changes (e.g., from ballistic to thrusting) occur at discrete time steps and thus form
a sequence (τ0, τ1, . . . , τk). Because the modes are unknown a priori, they are modeled as a homogeneous Markov
chain with known mode transition probabilities

πij = Pr(τk = j|τk−1 = i) (5)

that are time-invariant and independent of the base state. System modes can take values from the set M =
{1, . . . ,M} ⊂ N where M is the number of possible modes. The target mode τk is defined to be left-continuous such
that mode τk is in effect over t ∈ [t+k−1, t

−
k ].

Angles-only measurements of the target are taken by a network of O space-based observers each endowed with a body
frame

B(o) = (r
(o)
obs, b̂

(o)
1 , b̂

(o)
2 , b̂

(o)
3 ) (6)

where r(o)obs is the position of observer o with respect to the Earth-Moon barycenter in the synodic frame and b̂
(o)
1 , b̂(o)

2 ,
and b̂

(o)
3 are unit vectors that form an orthogonal basis. Each observer is equipped with a camera whose boresight

coincides with the b̂(o)
2 direction. The transformations from the synodic frame to each observer body frame are assumed

known. The observer state ξ(o) consists of observer o’s relative position and orientation and determines the bounded
sensor field-of-view (FoV) S(o)(ξ(o)), where S(o) is taken to be a compact and bounded set in R3. Observer o is
capable of measuring the target if and only if the target is within S(o), illuminated, not occluded by the Earth/Moon,
and not in the Moon exclusion angle (see Fig. 2). Then, the probability of detection for each observer is defined as

p
(o)
D,k(x;S

(o)) = 1S(o)(r)× ψ(x, ξ(o)) (7)

where the indicator function

1B(a) ≜

{
1 a ∈ B
0 otherwise

(8)
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Fig. 2: Example configuration where the target is within the bounded sensor FoV, illuminated, not occluded by the
Earth/Moon, and not in the Moon exclusion angle (note: Earth, Moon, target, and observer are not to scale).

and ψ(x, ξ(o)) is unity if the target is illuminated, non-occluded, and outside of the Moon exclusion angle for observer
o and zero otherwise.

The angles-only measurements come in the form of azimuth θ and elevation ϕ angles. For each observer, these
measurements are concatenated into the measurement vector z(o) =

[
θ(o) ϕ(o)

]⊤ defined by the nonlinear map

z(o) = h(o)(x, τ) =

arctan

(
û(o)·b̂(o)

1

û(o)·b̂(o)
2

)
arcsin

(
û(o) · b̂(o)

3

)
 (9)

where

û(o) =
r− r

(o)
obs

∥r− r
(o)
obs∥

(10)

At each observation time k, observer o produces a Bernoulli random finite set (RFS) measurement Z(o)
k that is either

empty or contains a single vector measurement z(o)k , depending on the probability of detection. The multi-sensor
measurement Zk is then defined as the tuple

Zk ≜ (Z
(1)
k , . . . , Z

(O)
k ) (11)

This paper assumes that the continuous-time dynamics can be accurately approximated as a discrete-time nonlinear
JMS

xk = f(xk−1, τk) +wk−1(τk) (12)

z
(o)
k = h(o)(xk, τk) + νk(τk) (13)

where f(x, τ) is defined as the solution to the CR3BP EOMs and the process noise wk−1(τk) and measurement
noise νk(τk) are zero-mean, Gaussian, and white with covariances E[wk−1(τk)wk−1(τk)

⊤] = Qk−1(τk) and
E[νk(τk)νk(τk)

⊤] = Rk(τk). The target kinematic state (also known as the base state) and modality are corre-
lated and thus modeled as the joint state x̃k =

[
x⊤
k τk

]⊤. With assumed knowledge of the pdf p0(x̃0) at some time
t0, this paper considers the problem of recursively estimating the unknown prior and posterior conditional distributions,
pk|k−1(x̃k|Z0:k−1) and pk(x̃k|Z0:k), respectively, where Z0:k denotes the entire measurement history from t0 to tk.
The evolution of these densities follows

. . .→ pk−1(x̃k−1|Z0:k−1)→ pk|k−1(x̃k|Z0:k−1)→ pk(x̃k|Z0:k)→ . . . (14)
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3. METHODOLOGY

This paper presents a novel adaptive Bayesian filter that is designed to handle the challenging angles-only tracking
problem of a maneuvering target in cislunar space in the presence of long observation gaps. Such a problem experiences
strong nonlinearities in both the dynamics and measurement functions. The nonlinearities combined with the chaotic
nature of the CR3BP results in highly non-Gaussian distributions that prevent the adoption of typical central moment
filters which is even more evident with the introduction of maneuvers with unknown time and magnitude. This paper
presents the AGMIMM where pdfs are represented by GMs with automatic component splitting to account for chaotic
dynamics, nonlinear measurements, bounded sensor FoVs, and other nonlinear constraints. The AGMIMM utilizes
the foundation of the IMM that allows for approximations of a nonlinear JMS filter to reduce computational cost [23].
3.1 Nonlinear JMS Bayes Filter
In a system modeled as a nonlinear JMS, both the target’s state and modality are estimated. Let gk(Zk|x̃) denote
the joint multi-sensor likelihood function. Given the multi-sensor measurement Zk and prior pk|k−1(x̃), the posterior
distribution is given by Bayes’ rule as

pk|k(x̃|Z0:k) =
gk(Zk|x̃)pk|k−1(x̃)∫ ∑M
ℓ=1 gk(Zk|x̃(ℓ))p(x̃(ℓ))dx

(15)

where the notation x̃(j) =
[
x⊤
k τk = j

]⊤ exposes the modality value. Assuming that measurements are conditionally
independent of the target kinematic state and mode, the joint multi-sensor measurement likelihood is given by the
product

gk(Zk|x̃) =
O∏

o=1

g
(o)
k (Z

(o)
k |x̃) (16)

By this factorization, the multi-sensor Bayes’ update can be written as the composition of single-sensor updates as

pk(x̃
(j)
k |Z0:k) = Ψ

(O)
k ◦ · · · ◦Ψ(1)

k pk|k−1(x̃
(j)
k |Z0:k−1) (17)

as shown in [34], where the single-sensor Bayes update operator Ψ(o)
k is

[Ψ
(o)
k p](x̃) =

g
(o)
k (Z

(o)
k |x̃)p(x̃)∫ ∑M

ℓ=1 g
(o)
k (Z

(o)
k |x̃(ℓ))p(x̃(ℓ))dx

(18)

and g(o)k (Z
(o)
k |x̃

(j)
k ) is the measurement likelihood function for observer o.

The filter prediction step is a direct result of the Chapman-Kolmogorov equation and total probability theorem and is
given by

pk|k−1(x̃
(j)
k |Z0:k−1) =

∫ M∑
i=1

pk|k−1(x̃
(j)
k |x̃

(i)
k−1)pk−1(x̃

(i)
k−1|Z0:k−1)dxk−1 (19)

where the joint state transition density pk|k−1(x̃
(j)
k |x̃

(i)
k−1) is known and specified by the mode transition probabilities,

dynamics function, and process noise model. Closed-form solutions of (17) and (19) are available when p0(x0) is
Gaussian and the state transition and measurement likelihood are linear-Gaussian, yet requireO(Mk) terms. Together,
the Markov chain-driven exponential complexity, nonlinear dynamics, and nonlinear observations considered in this
paper necessitate suboptimal approximations for tractability.

The joint distribution is readily factored into the mode-conditioned densities and mode probabilities. The prior and
posterior pdfs of xk conditioned on the jth system mode are defined as

p
(j)
k|k−1(xk) = pk|k−1(xk|τk = j, Z0:k−1) (20)

p
(j)
k (xk) = pk(xk|τk = j, Z0:k) (21)
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where the superscripts denote the assumed system mode. Let µ(i)
k−1 denote the posterior probability of mode i at time

tk−1 defined as

µ
(i)
k−1 = Pr(τk−1 = i|Z0:k−1) (22)

and µ̄(j)
k|k−1 denote the prior probability of mode j at time tk defined as

µ̄
(j)
k|k−1 = Pr(τk = j|Z0:k−1) =

M∑
i=1

πijµ
(i)
k−1 (23)

The single sensor update operator applied to an arbitrary mode-conditioned density p(j)(x) and prior mode probability
µ̄(j) is defined as

[Ψ
(o,j)
k p(j)](x) =

g
(o,j)
k (Z

(o)
k |x)p(j)(x)∫ ∑M

ℓ=1 g
(o,ℓ)
k (Z

(o)
k |x)p(ℓ)(x)dx

(24)

[Ψ
(o,j)
k µ̄(j)] =

p
(o,j)
k (Z

(o)
k |Z0:k−1)µ̄

(j)∑M
ℓ=1 p

(o,ℓ)
k (Z

(o)
k |Z0:k−1)µ̄(ℓ)

(25)

where

g
(o,j)
k (Z

(o)
k |x) = g

(o)
k (Z

(o)
k |τk = j,x) (26)

p
(o,j)
k (Z

(o)
k |Z0:k−1) = p

(o)
k (Z

(o)
k |τk = j, Z0:k−1) (27)

Then, the mode-conditioned multi-sensor Bayes’ filter equations follow from (19) and (17) and are given by

p
(j)
k|k−1(xk) =

∫
pk|k−1(xk|xk−1, τk = j)pk−1(xk−1|τk = j, Z0:k−1)dxk−1 (28)

p
(j)
k (xk) = Ψ

(O,j)
k ◦ · · · ◦Ψ(1,j)

k p
(j)
k|k−1(xk|Z0:k−1) (29)

where pk−1(xk−1|τk = j, Z0:k−1) is referred to as the mixed mode-conditioned posterior pdf and is given as

pk−1(xk−1|τk = j, Z0:k−1) =

M∑
i=1

πijµ(i)
k−1

µ̄
(j)
k|k−1

p
(i)
k−1(xk−1)

 (30)

The update of the prior mode probability µ̄(j)
k|k−1 is defined as

µ
(j)
k = Ψ

(O,j)
k ◦ · · · ◦Ψ(1,j)

k µ̄
(j)
k|k−1 (31)

The remainder of this section is organized as follows: Section 3.2 presents a novel application of a cluster-based merging
algorithm to approximate (30) in order to maintain reasonable computational complexity, Section 3.3 discusses the
approximations of (28) and (29), and Section 3.4 defines the criteria that informs the adaptive splitting techniques.

3.2 Bayesian IMM Approximations

In the application of the recursion defined in (28) and (29), calculation of the mixed mode-conditioned posterior results
in a pdf with an exponentially growing number of terms. Assuming that the posterior pdf p(i)k−1(xk−1) is modeled as
the GM

p
(i)
k−1(xk−1) =

L
(i)
k−1∑
ℓ=1

ω
(ℓ,i)
k−1N (xk−1;m

(ℓ,i)
k−1,P

(ℓ,i)
k−1) (32)
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where the superscript (·)(ℓ,i) denotes the ℓth component for the assumed mode τk−1 = i. The resulting mixed
mode-conditioned posterior is then a

(∑M
i=1 L

(i)
k−1

)
-component GM

pk−1(xk−1|τk = j, Z0:k−1) =
M∑
i=1

L
(i)
k−1∑
ℓ=1

πijµ
(i)
k−1

µ̄
(j)
k|k−1

ω
(ℓ,i)
k−1N (xk−1;m

(ℓ,i)
k−1,P

(ℓ,i)
k−1) (33)

In successive time steps, the number of components of the mixed mode-conditioned posterior grows exponentially
necessitating the need for suboptimal approximations to retain computational tractability. At each time step, the mixed
mode-conditioned posterior is approximated as

pk−1(xk−1|τk = j, Z0:k−1) ≈
L∑

ℓ=1

ω
(ℓ,j)
k−1|k−1N (xk−1|k−1;m

(ℓ,j)
k−1|k−1,P

(ℓ,j)
k−1|k−1) (34)

where L <
∑M

i=1 L
(i)
k−1 and the subscript (·)k−1|k−1 and superscript (·)(ℓ,j) delineate the approximate weights and

pdfs in (34) from those seen in (33).

The most notable approximation is the IMM, where L = 1 and the mode-conditioned pdfs are assumed Gaussian [23].
As such, the mixed mode-conditioned posterior is approximated as

pk−1(xk−1|τk = j, Z0:k−1) ≈ N (xk−1;m
(j)
k−1|k−1,P

(j)
k−1|k−1) (35)

where the mean m
(j)
k−1|k−1 and covariance P

(j)
k−1|k−1 are chosen to match the moments of (33). The assumption

of Gaussianity is reasonable in some cases but not where highly nonlinear and chaotic dynamics result in highly
non-Gaussian distributions (as evidenced by numerical experiments conducted in [35]).

The GMIMM generalizes the IMM to account for GM representations of the mode-conditioned pdfs [24]. The mixed
mode-conditioned posterior is approximated by retaining the r components with the highest weights and merging the
remaining components into a single Gaussian using moment-matching techniques. In other words, L = r + 1 and the
mixed mode-conditioned posterior is approximated as

pk−1(xk−1|τk = j, Z0:k−1) ≈
r+1∑
ℓ=1

ω
(ℓ,j)
k−1|k−1N (xk−1;m

(ℓ,j)
k−1|k−1,P

(ℓ,j)
k−1|k−1) (36)

As evidenced by Figs. 1(b) and 1(c), both the approximation methods of the IMM and GMIMM fail to accurately
model the true mixed mode-conditioned posterior. In both cases, the approximations underestimate the distribution
tails while introducing erroneous probability mass in low-probability regions of the support.

This paper proposes a new approximation of the mixed mode-conditioned posterior based on recent advances in
GM reduction methods. Specifically, the AGMIMM filter incorporates the cluster-based merging algorithm of [36]
to efficiently approximate the mixed mode-conditioned posterior while minimizing the integrated square distance
between the true and approximate density. The Gaussian mixture reduction via clustering (GMRC) merging algorithm
takes a two-pronged approach, where a greedy reduction algorithm is applied to obtain an initial guess and the k-
means algorithm is applied to the original GM to provide an accurate reduction of components. The proposed filter
uses Runnals’ merging algorithm as the GMRC’s initial guess [37]. The mixed mode-conditioned posterior is then
approximated as

pk−1(xk−1|τk = j, Z0:k−1) ≈
L∑

ℓ=1

ω
(ℓ,j)
k−1|k−1N (xk−1;m

(ℓ,j)
k−1|k−1,P

(ℓ,j)
k−1|k−1) (37)

where L <
∑M

i=1 L
(i)
k−1 is the desired number of components and the weights, means, and covariances are found via

the GMRC algorithm. Fig. 1(d) presents the approximated mixed mode-conditioned posterior as a good approximation
of the original pdf.
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3.3 Gaussian Mixture Filter with State-Dependent Detection
With an adequate approximation of the mixed mode-conditioned posterior, by (28), the mode-conditioned prior at tk is

p
(j)
k|k−1(xk) =

L
(j)

k|k−1∑
ℓ=1

ω
(ℓ,j)
k−1|k−1

∫
N (xk; f

(j)(xk−1),Q
(j)
k−1)N (xk−1;m

(ℓ,j)
k−1|k−1,P

(ℓ,j)
k−1|k−1)dxk−1 (38)

A closed-form solution of (38) is not available, in general, for systems with nonlinear dynamics. For sufficiently small
covariances, the mode-conditioned prior pdf can be approximated with moment-matching techniques as the GM [38]

p
(j)
k|k−1(xk) ≈

L
(j)

k|k−1∑
ℓ=1

ω
(ℓ,j)
k|k−1N (xk;m

(ℓ,j)
k|k−1,P

(ℓ,j)
k|k−1) (39)

where

ω
(ℓ,j)
k|k−1 = ω

(ℓ,j)
k−1|k−1 (40)

m
(ℓ,j)
k|k−1 =

∫
f (j)(xk−1)N (xk−1;m

(ℓ,j)
k−1|k−1,P

(ℓ,j)
k−1|k−1)dxk−1 (41)

P
(ℓ,j)
k|k−1 =

∫
(f (j)(xk−1)−m

(ℓ,j)
k|k−1)(f

(j)(xk−1)−m
(ℓ,j)
k|k−1)

⊤N (xk−1;m
(ℓ,j)
k−1|k−1,P

(ℓ,j)
k−1|k−1)dxk−1 +Q

(j)
k−1

(42)

It is important to consider the validity of the assumption that the covariances are small enough for (39) to be valid.
Specifically, the covariances should be small enough so that deviations in m

(ℓ,j)
k−1|k−1 behave linearly over tk−1 to tk.

This requirement provides the central idea of adaptive GM filtering discussed in Section 3.4.

Following the prediction step, the mode-conditioned prior is updated iteratively by the single sensor update operator
Ψ

(o,j)
k . Let the mode-conditioned pdf be a GM of the form

p(j)(x) =
L(j)∑
ℓ=1

ω(ℓ,j)N (x;m(ℓ,j),P(ℓ,j)) (43)

The single-sensor RFS measurement likelihood is given by

g
(o,j)
k (Z

(o)
k |xk) =

{
1− p(o)D,k(xk;S(o)) Z

(o)
k = ∅

p
(o)
D,k(xk;S(o))g(o,j)k (z

(o)
k |xk) Z

(o)
k = {zk}

(44)

and accounts for both measurement noise and missed detections. Then, by (18), each single-sensor iteration of the
multi-sensor Bayes update yields an updated mode-conditioned pdf of the form

[Ψ
(o,j)
k p(j)](x) ∝1∅(Z

(o)
k )

L(j)∑
ℓ=1

(1− pD,k(x;S(o)))ω(ℓ,j)N (x;m(ℓ,j),P(ℓ,j))

+ (1− 1∅(Z
(o)
k ))

L(j)∑
ℓ=1

pD,k(x;S(o))ω(ℓ,j)
∏

z∈Z
(o)
k

g
(o,j)
k (z|xk)N (x;m(ℓ,j),P(ℓ,j)) (45)

where the single-sensor measurement likelihood function is g(o,j)k (z|xk) = N (z;h(o,j)(xk),R
(j)
k ). Note that, by

the RFS-theoretic measurement likelihood and state-dependent probability of detection function, negative information
from non-detection is systematically assimilated in a unified Bayes update. On the other hand, the state-dependent
probability of detection is nonlinear in x. To that end, a zeroth-order Taylor series expansion can be applied about the
means, as shown in [10]. Then, the single sensor update of a mode-conditioned prior is approximated as the GM

[Ψ
(o,j)
k p(j)](x) ≈ p(j)+ (x) =

L
(j)
+∑

ℓ=1

ω
(ℓ,j)
+ N (x;m

(ℓ,j)
+ ,P

(ℓ,j)
+ ) (46)
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where

ω
(ℓ,j)
+ ∝

{
ω(ℓ,j)(1− p(o)D,k(m

(ℓ,j);S(o))) Z
(o)
k = ∅

ω(ℓ,j)p
(o)
D,k(m

(ℓ,j);S(o))q(ℓ,j)+ (z
(o)
k ) Z

(o)
k = {z(o)k }

(47)

m
(ℓ,j)
+ =

{
m(ℓ,j) Z

(o)
k = ∅

m(ℓ,j) +K
(ℓ,j)
+ (z

(o)
k − ẑ

(ℓ,j)
+ ) Z

(o)
k = {z(o)k }

(48)

P
(ℓ,j)
+ =

{
P(ℓ,j) Z

(o)
k = ∅

P(ℓ,j) −C
(ℓ,j)
+ (K

(ℓ,j)
+ )⊤ −K

(ℓ,j)
+ (C

(ℓ,j)
+ )⊤ +K

(ℓ,j)
+ P

(ℓ,j)
z,+ (K

(ℓ,j)
+ )⊤ Z

(o)
k = {z(o)k }

(49)

q
(ℓ,j)
+ (z

(o)
k ) = N (z

(o)
k ; ẑ

(ℓ,j)
+ ,P

(ℓ,j)
z,+ ) (50)

ẑ
(ℓ,j)
+ =

∫
h(o,j)(x)N (x;m(ℓ,j),P(ℓ,j))dx (51)

C
(ℓ,j)
+ =

∫
(x−m(ℓ,j))(h(o,j)(x)− ẑ

(ℓ,j)
+ )⊤N (x;m(ℓ,j),P(ℓ,j))dx (52)

P
(ℓ,j)
z,+ =

∫
(h(o,j)(x)− ẑ

(ℓ,j)
+ )(h(o,j)(x)− ẑ

(ℓ,j)
+ )⊤N (x;m(ℓ,j),P(ℓ,j))dx+R

(j)
k (53)

K
(ℓ,j)
+ = C

(ℓ,j)
+ (P

(ℓ,j)
z,+ )−1 (54)

In addition to the prior mode-conditioned pdf, the prior mode probability µ̄(j)
k|k−1 must be updated. Similarly, the single

sensor update operator is applied iteratively on µ̄(j)
k|k−1 to obtain the posterior mode probability at tk. Let µ̄(j) be an

arbitrary prior mode probability. Starting from (25) and applying (44), a single iteration of the single sensor update
operator is

µ̄
(j)
+ ∝

µ̄(j)
∑L

(j)
+

ℓ ω(ℓ,j)(1− p(o)D,k(m
(ℓ,j);S(o))) Z

(o)
k = ∅

µ̄(j)
∑L

(j)
+

ℓ=1 ω
(ℓ,j)p

(o)
D,k(m

(ℓ,j);S(o))q(ℓ,j)+ (z
(o)
k ) Z

(o)
k = {z(o)k }

(55)

under the same zeroth-order Taylor expansion of the detection model about the means.

The single sensor update operator is applied successively on the prior mode probability and the mode-conditioned prior
p
(j)
k|k−1(xk) for each observer resulting in the posterior mode probability µ(j)

k and the mode-conditioned posterior

p
(j)
k (xk) ≈

L
(j)
k∑

ℓ=1

ω
(ℓ,j)
k N (xk;m

(ℓ,j)
k ,P

(ℓ,j)
k ) (56)

Closed form solutions of the integrals in (41)-(42) and (51)-(53) are not available when the dynamics and measurement
functions are nonlinear, so linearized approximations must be made.

For outputting purposes, the posterior state distribution is found through the total probability theorem and is given by

pk(xk|Z0:k) =
M∑
j=1

µ
(j)
k p

(j)
k (xk) (57)

3.4 Gaussian Mixture Splitting

In problems with nonlinear and chaotic dynamics and nonlinear measurements, the linearized approximations of (41)-
(42) and (51)-(53) may only be accurate within small neighborhoods of the component means. Care must then be
taken to satisfy the key GM filter assumption that component covariances are commensurately small to ensure linearity
within the local support. Adaptive GM filtering addresses these concerns by dynamically increasing the number of
components in regions where linear assumptions are most strongly violated. Any component of the GM that violates
the assumptions is approximated itself by an R-component GM [5–7].
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This paper generalizes splitting as the operator G̃c which operates on an arbitrary multivariate GM p(x) as

G̃c[p(x)] =
I∑

i=1

Gc[ω
(i)N (x;m(i),P(i))] (58)

where

Gc[ω
(i)N (x;m(i),P(i))] =

{
ω(i)N (x;m(i),P(i)) c(ω(i),m(i),P(i)) ≤ 0∑R

ℓ=1Gc[ω
(i,ℓ)N (x;m(i,ℓ),P(i,ℓ))] otherwise

(59)

and c(ω(i),m(i),P(i)) is a splitting criterion. The operator is applied recursively on all newly generated components
until no components satisfy the splitting criterion.

Algorithm 1 Single AGMIMM step

Require: Zk and µ(i)
k−1, p

(i)
k (xk−1)∀i ∈M

for each j ∈M do
Compute µ̄(j)

k|k−1 according to (23)
Compute {ω(ℓ,j)

k−1|k−1, m
(ℓ,j)
k−1|k−1, P

(ℓ,j)
k−1|k−1}

L
ℓ=1 with GMRC algorithm [36]

Compute {ω(ℓ,j)
k|k−1, m

(ℓ,j)
k|k−1, P

(ℓ,j)
k|k−1}

L
ℓ=1 according to (40)-(42)

p
(j)
k|k−1(xk)← G̃c[p

(j)
k|k−1(xk)]

p(j)(x)← p
(j)
k|k−1(xk)

µ̄(j) ← µ̄
(j)
k|k−1

for o = 1, . . . , O do
p
(j)
+ (x)← [Ψ

(o)
k p(j)](x)

p(j)(x)← p
(j)
+ (x)

µ̄
(j)
+ ← [Ψ

(o)
k µ̄(j)]

µ̄(j) ← µ̄
(j)
+

end for
p
(j)
k (xk)← p(j)(x)

µ
(j)
k ← µ̄(j)

p
(j)
k (xk)← G̃c[p

(j)
k (xk)]

end for
pk(xk|Z0:k)←

∑M
j=1 µ

(j)
k p

(j)
k (xk)

4. MULTI-SENSOR MANEUVERING CISLUNAR SPACE OBJECT TRACKING

Section 3 presents the framework of the AGMIMM for an arbitrary system with a single iteration outlined in Algorithm
1. The equations are refined in this section to apply the AGMIMM to the problem of maneuvering CSO tracking.
Section 4.1 defines a splitting criterion based on statistical linear regression that accounts for errors resulting from
the linearization of nonlinear dynamics or measurement functions. Section 4.2 presents a recently proposed splitting
criterion for the variance of the Jacobi constant. This criterion aims to combat covariance growth through the CR3BP
dynamics as a result of their chaotic nature. Section 4.3 introduces the addition of negative information to utilize
non-observations. Section 4.4 adds user-defined constraints on the possible Jacobi constant values and an assumption
that the target does not crash into the Moon. Finally, Section 4.5 defines the target modes and develops an approximation
of the discrete-time process noise from the assumed continuous-time noise values.
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4.1 Statistical Linearization Error Criterion

This paper adopts a statistical linearization approach, where the dynamics and measurement processes are linearized
using deterministic weighted sample points. The statistical linear regression approach, which encompasses, for
example, unscented, central differencing, and cubature filtering, employs the linear approximation

y = g(x) ≈ Gx+ b (60)

where the generic nonlinear transformation g(·) can be replaced by the nonlinear difference equation f or measurement
equation h, and where G and b are optimized to minimize the sum of the squares of the linearization error

e = g(x)− (Gx+ b) (61)

The statistical linearization approach is particularly attractive for AGM filtering, as the ensemble approximation of the
linearization error covariance

E
[
ee⊤

]
= Pe (62)

is readily available. With this, the splitting criterion of [39] is adopted, given by

cSL(ω,m,P;g, smax,Γ) = s− smax (63)
s = ωΓ · (1− exp (−ϵ))1−Γ ∈ [0, 1] (64)
ϵ = tr(Pe) (65)

where Γ and smax are design parameters and s represents a geometric interpolation of the component weight and
linearization error. The tuning parameter Γ ∈ [0, 1] denotes the relative importance of component weight and
linearization error in the calculation of the selection criterion; when Γ = 0, only linearization error is considered, and
when Γ = 1, only component weight is considered [39]. If, for a given component, s exceeds a user-defined threshold
smax, the component is split.

4.2 Jacobi Constant Criterion

In addition to the linearization error splitting, the proposed filter employs a newly defined splitting criterion based on
Jacobi constant values [12]. By definition, the value of the Jacobi constant along a given trajectory remains constant.
Differences in Jacobi constant between two solutions thus reflect different orbits/trajectories, whereas neighboring
solutions of the same Jacobi constant likely belong to the same trajectory but separated by phase. Thus, the Jacobi
constant variance serves as a strong predictor of linearization error [12]. This relationship between linearization error
and Jacobi constant variance is demonstrated in Fig. 4, where the initial regression point ensemble covariance grows
significantly over time. If, prior to propagation, the variance of the Jacobi constant values of the sigma-points exceeds
a user-defined threshold, the component is split. It is important to note that this splitting criterion was introduced for a
non-maneuvering CSO where representing a wide range of trajectories was detrimental to the performance of the filter.
In this paper, with a maneuvering CSO, an unknown number of trajectories can be present thus the representation of
multiple trajectories is required in the prior and posterior pdfs. However, only a single trajectory should be represented
on the component level allowing for the adoption of this splitting criterion.

The Jacobi constant variance associated with the component (ω,m,P) is given by

σ2
C =

∫
(C(x)− E [C(x)])

2N (x;m,P)dx (66)

which can be trivially computed using the already computed regression points. The associated split criterion function
is then defined as

cJC(ω,m,P;σ2
C,max, ωmin) = min

(
σ2
C − σ2

C,max, ω − ωmin

)
(67)

such that a component is split if its GM weight is larger than the minimum allowable value wmin and its associated
Jacobi constant variance σ2

C exceeds the user-specified threshold σ2
C,max.
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4.3 Splitting for Negative Information
In the cislunar regime, long periods of multiple sensing opportunities are rare due to solar illumination, Earth/Moon
occlusion, and Earth/Moon exclusion angles. It is important to incorporate any information gained from not detecting
a target, termed negative information. Negative information is incorporated into the posterior pdf via the probability of
detection function p(o)D,k(xk;S(o)). Note that the expansion approximation applied in (46) and (47) effectively assumes
the probability of detection of a single component to be constant over its local support. Thus, significant approximation
errors may arise when large components overlap the sensor FoV boundaries. Such components experience a sharp
change in the probability of detection within its local support. To address this, the proposed filter adopts a geometric
recursive splitting algorithm that splits components that overlap FoV bounds until some stopping criteria are reached
[9, 10], as seen in Fig. 3. The details of this algorithm and its associated criterion function c are omitted for brevity
but can be found in [10].

Fig. 3: Example space object state probability density function before (left) and after (right) incorporating negative
information (non-detection), obtained using recursive Gaussian mixture splitting [12].

4.4 Nonlinear Constraints
The proposed filter provides the ability to add any additional nonlinear constraints or soft data from human sources.
For example, with knowledge of the target’s ∆V capacity, bounds can be imparted on the Jacobi constant as

Cmin(∆V ) ≤ C(x) ≤ Cmax(∆V ) (68)

To incorporate this constraint, components that violate the Jacobi constant bounds can be eliminated from the GM. In the
context of tracking a maneuvering CSO where no knowledge of the ∆V capacity is available, a conservative minimum
and maximum can be chosen that account for the maximum realistic ∆V capacity in cislunar operations. Additionally,
the assumption of target-lunar collision avoidance can be incorporated into the posterior. When components are in the
Moon’s vicinity, they can be split in a similar manner to the application of negative information. The portion of the
density within the Moon can then be truncated. These nonlinear constraints can be seen graphically in Fig. 5.
4.5 Target Modality Definitions and Discrete-Time Approximation
In a nonlinear JMS system, modes are used to differentiate between varying dynamics, measurement models, and noise
covariances. To account for a maneuvering CSO, this paper assumes mode-independent dynamics, measurements, and
measurement noise covariance and accounts for the potentiality of thrusting through a mode dependent process noise
covariance. In particular, the proposed filter has two modes where ballistic trajectories are denoted by τk = 1 and
maneuvers are denoted by τk = 2. The continuous-time process noise covariance for a given mode is defined as

Q(j) = E[w(t, τ = j)w(t, τ = j)⊤] =


(
q
(j)
wx

)2

0 0

0
(
q
(j)
wy

)2

0

0 0
(
q
(j)
wz

)2

 (69)

The discrete-time process noise covariance mapped to the state space is found via the solution of

Q
(j)
k−1 =

∫ tk

tk−1

Φ(tk, t
′)ΓQ(j)ΓTΦT (tk, t

′)dt′ (70)
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Fig. 4: Growth in covariance as a result of different Jacobi
constant values where black denotes periodic halo orbits,
dark blue denotes the initial points and their covariance,
and light blue denotes the propagated points and their
covariance.
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p
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Fig. 5: Graphical depiction of the nonlinear constraints for
(a) Jacobi constant bounds and (b) Moon collision.

where Φ(tk, t
′) is the state transition matrix from a state at t′ ∈ [tk−1, tk] to a state at tk and

Γ =

[
03×3

I3×3

]
(71)

The integral in (70) does not have a closed form solution under the time varying dynamics of the CR3BP, so it is
approximated through Van Loan’s matrix fraction decomposition as described in [40,41]. Let F(x(t′)) be the Jacobian
of the continuous-time dynamics at time t′ defined as

F =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

∂2U
∂x2

∣∣∣
x(t′)

∂2U
∂x∂y

∣∣∣
x(t′)

∂2U
∂x∂z

∣∣∣
x(t′)

0 2 0

∂2U
∂y∂x

∣∣∣
x(t′)

∂2U
∂y2

∣∣∣
x(t′)

∂2U
∂y∂z

∣∣∣
x(t′)

−2 0 0

∂2U
∂z∂x

∣∣∣
x(t′)

∂2U
∂z∂y

∣∣∣
x(t′)

∂2U
∂z2

∣∣∣
x(t′)

0 0 0


(72)

and assume that F(x(t′)) ≈ F(x(tk−1)) for any t′ ∈ [tk−1, tk]. Defining the matrix exponential

exp

([
−F(x(tk−1))

⊤ ΓQ(j)ΓT

06×6 F(x(tk−1))

])
=

[
M

(j)
1,k−1 M

(j)
2,k−1

06×6 M
(j)
3,k−1

]
(73)

the discrete-time process noise mapped to the state space is approximated as

Q
(j)
k−1 ≈

(
M

(j)
3,k−1

)⊤
M

(j)
2,k−1 (74)
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5. RESULTS

The proposed filter is tested against a simplified cislunar trajectory inspired by the Artemis I mission. Unlike the
Artemis I trajectory, which has a total of 19 reported maneuvers [42], the simplified trajectory features four impulsive
maneuvers designed to mimic the Artemis I outbound powered flyby (OPF), distant retrograde insertion (DRI), distant
retrograde departure (DRD), and return powered flyby (RPF) maneuvers and is presented in Fig. 6. The initial epoch
of the simulation is November 16, 2022, 08:44:51.150 UTC chosen to align with the timeline of the Artemis I mission,
and the total simulation time is 28.30 days. The ∆v magnitudes of the simplified OPF, DRI, DRD, and RPF maneuvers
are 0.1980, 0.0997, 0.0997, and 0.1980 km/s, respectively. Exact details of the time and magnitudes of the maneuvers
are presented in Table 1, and the initial state of the target is defined as

r0 =
[
75, 926.589 56, 944.942 0

]⊤
[km] (75)

v0 =
[
1.5636 1.8042 0

]⊤
[km/s] (76)

with an initial position and velocity uncertainty of 20 km and 1 m/s root sum square (RSS), respectively.

0.2 0.4 0.6 0.8 1 1.2
−0.4

−0.2

0

0.2

0.4
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RPF
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DRD

x [LU]

y
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U
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Fig. 6: Simplified Artemis I trajectory.

Table 1: Impulsive Maneuvers
Maneuver t− t0 [days] ∆v⊤ [km/s]

OPF 4.6488
[
−0.1385 −0.1415 0

]
DRI 10.1894

[
−0.0878 0.0472 0

]
DRD 18.1152

[
−0.0878 −0.0472 0

]
RPF 23.6558

[
−0.1385 0.1415 0

]

A notional cislunar space-based surveillance network is considered that consists of three observer spacecraft in an
Earth-Moon 1:1 planar resonant periodic orbit, as shown in Fig. 7, with initial conditions

r
(1)
0,obs =

[
212, 171.440 224, 189.013 0

]⊤
[km], v

(1)
0,obs =

[
0.1618 0.5780 0

]⊤
[km/s] (77)

r
(2)
0,obs =

[
267, 266.589 291, 378.691 0

]⊤
[km], v

(2)
0,obs =

[
0.4596 0.1991 0

]⊤
[km/s] (78)

r
(3)
0,obs =

[
361, 478.978 291, 915.604 0

]⊤
[km], v

(3)
0,obs =

[
0.5970 −0.1946 0

]⊤
[km/s] (79)

A 1:1 resonant orbit is selected to mimic the nearly 1:1 behavior of the Sun in the synodic frame. As such, it is likely
that a sensor with suitable lighting conditions at one epoch will have suitable lighting conditions at a later epoch. When
visibility conditions are satisfied, angle measurements are simulated according to (9) and corrupted by white Gaussian
noise with a standard deviation of 18 arcsec, which reflects a single pixel error of a camera with a 10◦ × 10◦ FoV
and 2048 × 2048 pixel focal plane array. For ease of analysis, the sensor attitudes are designed to track the object.
Lighting conditions are simulated based on historical solar ephemerides from the Artermis I mission period, and when
available, measurements are taken every 120 seconds. Fig. 7 presents the number of sensors that can measure the target
along its trajectory including illumination conditions and the impact of Earth/Moon occlusion, umbra, and exclusion
angles. The most impactful constraint is the Moon exclusion angle that results in long observation gaps during which
the OPF and RPF maneuvers take place. The two observations gaps last for 1.686 and 2.606 days, respectively. Other
pertinent parameters of the AGMIMM are presented in Table 2.
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(a) (b)

(c) (d)

Fig. 7: Visibility of the target along the entire trajectory where colored lines denote the number of sensors that can
measure the target at a given location, the black line denotes the sensors’ orbit, the black dot denotes the location of the
target, and black circles denote the locations of the sensors. The target and sensor geometry is show for the (a) OPF,
(b) DRI, (c), DRD, and (d) RPF maneuvers.

Table 2: AGMIMM Filter Parameters
Parameter Value

Jump Markov Parameters
π11 0.99
π12 0.01
π21 0.1
π22 0.9

Gaussian Splitting

L 50
smax 0.1
ωmin 0.01
σ2
C,max 0.0001

Cmin 2 [LU2/TU2]
Cmax 3.5 [LU2/TU2]

q
(1)
wx , q

(1)
wy , q

(1)
wz 0 [LU2/TU3]

q
(2)
wx , q

(2)
wy , q

(2)
wz 1 [LU2/TU3]
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The performance of the proposed filter is compared to that of the square-root unscented Kalman filter (SRUKF) [43],
IMM [23], and GMIMM [24] in 250 Monte Carlo trials. The position and velocity estimation performance of the
four filters are presented in Fig. 9. When visibility conditions permit, high-frequency multi-sensor measurements
lead to nearly Gaussian distributions and the SRUKF, IMM, and GMIMM offer comparable state estimation accuracy
compared to the AGMIMM. Throughout the first observation gap, however, the error and associated uncertainty of
the IMM and GMIMM approach values on the order of 1010 km and 107 m/s. The large uncertainty is also evidenced
by the marginals presented in Figs. 8(b) and 8(c). The SRUKF, on the other hand, results in an error and uncertainty
on the same order of magnitude as the Earth-Moon semi-major axis. The AGMIMM results in position errors one
order of magnitude fewer than the semi-major axis. Figs. 8(a) and 8(d) further clarify that the resultant SRUKF
uncertainty spans the cislunar regime whereas the uncertainty of the AGMIMM estimation remains in the vicinity of
the Moon. Following the first observation gap, the effective range information provided by coincident observations by
two observers stresses the non-adaptive filters, resulting in failure of all 250 trials of the SRUKF and IMM and 248
trials of the GMIMM. The remaining two trials of the GMIMM and the 250 trials of the AGMIMM successfully retain
track custody of the target during the DRI and DRD maneuvers where at least one observer is providing measurements.
At the close of the second observation gap, the remaining two trials of the GMIMM and three trials of the AGMIMM
fail. A total of 247 trials of the AGMIMM successfully retained track custody through the end of the trajectory, and
the cause of the three failures was a result of numerical failure in the solution of the CR3BP and not a direct limitation
of the filter.

(a) (b) (c) (d)

Fig. 8: Posterior state distributions marginals of the (a) SRUKF, (b) IMM, (c) GMIMM, and (d) AGMIMM at day 5.8
where the red star denotes the target truth.

6. CONCLUSION

This paper proposes a novel adaptive Gaussian mixture (AGM) filter that is uniquely able to track a maneuvering,
noncooperative target in highly nonlinear, chaotic systems. The proposed adaptive Gaussian mixture interacting
multiple model (AGMIMM) filter is suitable for nonlinear jump Markov systems (JMSs) where the target modality
evolves according to a homogeneous Markov chain. Cluster-based merging is employed to maintain computational
tractability while retaining accurate descriptions of the non-Gaussian state uncertainty. Furthermore, the AGMIMM
employs multi-criterion parametric adaptation to account for nonlinear effects due to dynamics, measurements, negative
information, and known constraints. The AGMIMM is analyzed in a 250-trial Monte Carlo cislunar object tracking
simulation and shown to significantly outperform existing maneuvering target tracking algorithms in terms of state
estimation accuracy and robustness. Further work in the topic of maneuvering target tracking in nonlinear/chaotic
systems will consider multi-object systems and clutter.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 9: Position (a,c,e,g) and velocity (b,d,f,h) estimation performance over 250 Monte Carlo trials of the SRUKF (a,b),
IMM (c,d), GMIMM (e,f), and AGMIMM (g,h) where black denotes the estimation error, red denotes the uncertainty
in terms of the error variance 3σ bounds, and red dashed lines mark the maneuvers.
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