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This paper delves into the predictive sensor tasking algorithm, leveraging the Extended
Information Filter (EIF). Exploiting the EIF’s additive structure of measurement information,
a linear integer programming formulation is devised to address the multi-observer, multi-target
sensor tasking problem. We further investigate how the cislunar dynamics expands and shrinks
the measurement information along the libration point orbits, and relate the information gain
to the deformation represented by the left Cauchy-Green tensor. We numerically demonstrated
that the predictive sensor tasking algorithm outperforms the myopic algorithm in terms of
the total information gain of the system and the minimum information gain over the targets,
depending on the formulation.

I. Introduction

Space Domain Awareness (SDA) requires systems adaptive to its dynamic environment. For example, the translunar
and cislunar regions will see both stable observation demands as well as potentially unanticipated detection and tracking
demands. The former type of demands involves monitoring and maintaining a custody chain of existing assets, such as
the Gateway from the Artemis program, LunaNet service provider satellites, CLPS satellites loitering at low-lunar orbit,
as well as numerous other space lunar missions by both US and non-US entities, such as CNSA’s Queqiao relay satellite
at Earth-Moon L2. The latter type comes primarily from translunar transfers, both heading to and returning from
cislunar space. Missions with mothership-daughtership configurations, such as JAXA’s SELENE mission launched in
2007, may also deploy additional flying segments after reaching their destination, leading to additional targets to be
monitored. The cislunar SDA systems architecture should be designed to meet these dynamic demands.

As a building block of the system’s performance evaluation against the demand uncertainty, we study the predictive
sensor tasking algorithm via integer linear programming (ILP), based on the Extended information filter (EIF). It should
be noted that a variety of sensor tasking algorithms for catalog maintenance have been studied [[1H21]: metric-based
reactive methods with the Fisher information, entropic measures, and Lyapunov exponents, optimization-based predictive
methods such as gradient-based stochastic optimization, dynamic programming, reinforcement learning, or Monte Carlo
Tree Search (MCTS). We use ILP mainly to benefit from its formality and efficiency. The most related work to ours is
[8]], which proposed to project the information at the common evaluation time for a fair comparison and optimal choices
of the observation events. We extend the work to the cislunar sensor tasking with multiple observers and multiple targets.
We further investigate how the cislunar dynamics expands and shrinks the measurement information along the Libration
point orbits, and relate the information gain to the deformation induced by the Cauchy-Green tensor.

I1. Background

A. Filtering Algorithms

In this subsection we review the extended Kalman filter (EKF) and its information form, also known as the extended
information filter (EIF) [22}23]. The EKF propagates the covariance matrix whereas the EIF propagates the inverse of
the covariance matrix, which is also called the information matrix. Both algorithms approximate the nonlinear state
dynamics and measurement model around a nominal state trajectory as a linear system. Although EKF and EIF are
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well-known algorithms, they are briefly explianed here because they form the basis of our study. First we review the
linearlized state dynamics and measurement model, followed by the prediction step and the update step of the EKF and
the EIF.

1. System Linearlization
Let x () be the state vector and B(¢) be the process noise assumed to be zero-mean Gaussian with covariance matrix
QO(t). The nonlinear continuous state dynamics is given by

dx (1) = f(x(1))dt + dp(1)

" (M
EIB0] =0, B[(B0) - B B0 - )| = [ (o

Given a nominal trajectory X (¢), we can linearize the state dynamics around the nominal trajectory. Let £(¢) =
x(t) — X (1) be the state error vector. Then, the linearized state error dynamics is given by

E(tr) = O(tg, te—1)E(tr-1) + w(te-1)

i _ @)
O(ty, tx-1) = / Df(x(r))dr, @(tk-1,tk-1) =1
Ir—1
where
Elw(ti-)] =0, E[w(ti-Dw(t-1)"] = 0. 3)
Similarly, we can linearize the measurement model around the nominal trajectory. Let y(7) be the measurement
vector and v (¢) be the measurement noise assumed to be zero-mean Gaussian with covariance matrix R. Suppose the
nonlinear measurement model is given by y(¢) = h(x(¢)) + ¥(t), and the deviation from the nominal measurement is
denoted by z(#) = y(¢) — y(¢) = y(t) — h(%(¢)). Then, the linearized measurement error model is given by

Z(tx) = H(t1)€(tr) + v (1)

_ )
H(tx) = Dh(x(tx))-

where
E[v(t)] =0, E[v(tv(t)’]|=R. ®)

2. Prediction Step

The prediction step computes the prior distribution of state error before observation, £(#;), given the previous
posterior distribution by the observation, £ (#x-1). The propagation is based on the linear dynamics of Eq. (). Since the
state error is assumed to be zero-mean Gaussian and independent of the process noise, the prior distribution at 7 is also
zero-mean Gaussian with a covariance matrix, denoted by P(#;). The prior covariance matrix P(t;) and its information
form A(t;) = P(t;)~" are computed as the sum of the linear map of &(rx_;) ~ N(0, P(7x_1)) and the process noise
v(tx-1) ~ N(0, Q) as follows [24]:

P(tx) = ®(tx, tr-1) Pt 1) @ (1x, 11-1)" +Q (6)

A1) = (q)(tkatk—l)A_l(tk—l)(D(tka )’ + Q)_l . @)
Another form of the propagation equation for the information matrix is given with the Woodbury identity:

(A+ucv)y'=a"-aluc ' +vaTlu)lvaTl. (8)

Let M = ®(t_1, 1) T A(tx—1)®(tx1, 1) and substituting A = M~!, C = Q, and U = V = [ to the identity of Eq. (),
we obtain

_ -1
Arg) = M—M(Q‘1 +M) M. ©)
The propagation of the information form is computiationally less efficient than that of the covariance matrix because of

the inverse operations. However, without the process noise, we obtain the following simpler linear expressions. Note
that the backward state transition matrix is used for the information form.

P(tr) = ©(ty, tr—1) P(t3—1) D (tr, tk-1)" (10)
A(te) = D(ti—1, 1) " A(teo1) D (t—1, te) (1D
2
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3. Update Step

The update step computes the posterior distribution of state error after observation, &(#x), given the prior distribution
£(t). The update is made to minimize the variance of the conditional distribution of &(;) given the measurement
z(ty) and the prior distribution £(#;). The update in the covariance form is well-known as the Kalman filter update:

P(1;) = (I - K(tx)H (k) P(11)

_ _ -1 (12)
K(t) = P H()T (H(t) P(t) H(10)T +R)

where K () is the Kalman gain matrix. We can derive the update in the information form by applying the Woodbury
identity of Eq. (§) to the inverse of the covariance matrix in Eq. (T2). Substituting A~! = P(t;) = A~'(t), C~' = R,
V =UT = H(t;) into Eq. (8)), we obtain

A(te) = A1) + H(t) "R™ H (1). (13)

Note that the information form allows the simple additive operation for synthesizing the propagated prior information
matrix A(¢) and the measurement information H (¢,)T R~ H(ty).

4. Information Matrix Propagation in EIF
When we assume no process noise in the EIF, the combined expression of the prediction step and the update step
becomes relatively simple. The single step uncertainty propagation of the information form is given by

A(tr) = @(te—1, 1) T A(tko)@(tk-1, 11) + D(trmr, ) H(t) "R H (1) @ (11, 1) (14)

We can easily obtain the multi-step propagation by recursively applying Eq. (T4).

L-1

A1) = (1o, 1) Alt)®(t0,11) + ) D(txs 1) H(te) R™ H (1) Dty 1)
k=0
(15)

-1
£ To(tr) + Z I(tr,tx).
=0

Here 7y (¢ ) is the initial information matrix propagated to t;,, and 7 (¢, tx) is the information matrix by the measurement
at 1 and propagated from 7 to . The cummulative information obtained by the measurements alone, Zi;ol I(tp,t)
is called the Fisher information matrix[22]. This term is also related to the observability of the discrete system; the
system without process noise and measurement noise is observable if and only if the null space of the Fisher information
matrix with R = I is 0 for some finite L [22].

B. Circular Restricted Three-Body Problem

We model the cislunar dynamics as a circular restricted three-body problem (CR3BP) with the Earth and Moon
as the two primaries and the spacecraft as a massless particle. The CR3BP is a simplified model of the three-body
problem where the mass of the smaller primary is negligible compared to the larger primary. The CR3BP is a good
approximation for the translunar and cislunar regions, where the Moon is the smaller primary and the Earth is the larger
primary. Let r € R? and v € R? be the nondimensionalized position and velocity of the spacecraft in the Earth-Moon
rotating frame. The CR3BP equations of motion are given by

F=v, v+2wxv=VU(r) (16)
where w = [0,0, 1]7 and the potential function U is given by

Lo oy, 1-p n
U== =
2(x +y°)+ 7 +d2
d% = ()c+/,t)2 +y2 +72 (17

d§=(x—1+,u)2+y2+z2
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Table 1 Parameters of CR3BP dynamics

Parameter Value

Earth-Moon system mass parameter y, n.d. 0.01215058560962404
Canonical length scale LU, km 389703.264829278
Canonical time scale TU, s 382981.289129055

with u representing the mass parameter. d; and d, represent the distances from the spacecraft to Earth and Moon,
respectively. The state-transition matrix ®(¢, ty) is propagated through the Jacobian of the dynamics

I 0o 2 0
D (tx,19) = VU O D(1x,t0), =1|-2 0 0]. (18)
0O 0 O

Given the state-transition matrix, ®(#g, x—1), the state error dynamics is obtained.

E(tr) = O(tp, tr-1)E(tr-1),  E(tr-1) = x(tp—1) — X (tr-1) (19)

III. Measurement Model and Uncertainty Deformation
We consider optical measurements of a target spacecraft from an observer spacecraft, which is applicable to
uncooperative targets. The measurements are often defined for the azimuth and elevation angles, but instead we use the
directional cosine vector and its rate to exploit the symmetricity of the expression and also to avoid the singularity at
zenith and nadir. Let r and v be the position and velocity, and the subscript i and j denote the observer and target,
respectively. The relative position and velocity vectors are given by

rij=r; —ri, Vij =V; — V. (20)

Our measurements are the directional cosine vector and its rate.

T
rig o _vip vy

Yij = Yip= s — s i =il @
Fij Tij Tij

We derive the linearlized measurement error model with respect to the error state of the target, §;. Let §;; = yij —yi;
and {;; = yi; — yi; be the measurement error and its rate, respectively. The linearized measurement error model is
given by
gij| _
. = Hijfj +v (22)
dij

where H;; is the Jacobian matrix of the measurement model. We assume that the measurement noise variance is fixed

for the directional cosine vector, and proportional to the exposure time for the directional cosine rate. The measurement
noise v is given by

I
vy ~N(0,R), R=0c" 0 (23)
0 %1
At?

where o is the standard deviation of the angle measurement noise and At is the exposure time.

A. Jacobian Matrix
The Jacobian matrix H;; is obtained by taking the derivative of the measurement model with respect to the target
state; we assume that the observer state is known. Although the measurements y;; and y,; are functions of the relative
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position and velocity vectors r;; and v;;, due to their relation to the target state by Eq. (20), we can compute the
Jacobian matrix H;; by taking the derivative of the measurement model with respect to the target state. The Jacobian
matrix is given by

c"‘y,,
( lj) 0 H: 0
H;j a' Py = [ (24)
‘ ﬂ(;i. 5. DU owy| [Hiua Higz
61‘]' J> 7 an J> 7y
where .
I Fijr;.
Hiji1=Hijn=——-— &
rij r?.
5 =T ’ Ts Ve 7T (25)
ViiT rl]v +rl]v,]1 (rijvij)rijrij
Hijo=- . 3 P
ij ij ij
B. Null Space

The angle and angular rate measurements do not provide the range and range rate information, and the measurement
Jacobian has rank of 4 at maximum. We can confirm this by analytically identifying the null space of the measurement
Jacobian. The null space of the Jacobian matrix H;; is given by

Null(H,J) = {V € RG | Hijv = 0}
={veR|v=avi+pvs, a BeR}

v = ['fl vy = [_0 l 27)
Vij rij

The null space of the Jacobian matrix H;; is spanned by the vectors v{ and v>. The direction of v; corresponds to the
relative position and the velocity, which is because the measurement model is defined only with the relative position and
velocity directions of the target and the observer, and the range and range rate information cannot be observed. The
direction of v, is the case when the relative velocity change is in the direction of the relative position, which also cannot
be detected by the angle and angular rate measurement. We can analytically check the null space.

0
Hijirij - oL F P 5
Hijvl = _ J> J _ = Vij (vijrij)rij Vij (vljrlj)rlj
Hijo1Fij+ Hijoovij |t -

Tij _13] Tij

|0

|0
C. Informative Space

The information gain by the measurement is given by H' R™'H, as shown in Eq. (T3). The null space of

the information gain is given by Null(HT R~'H) = Null(H), and the informative space is spanned by four linearly
independent eigenvectors, which are orthogonal to the null space. For simplicity, we omit the subscript ij in the
following discussion. The information gain is given by

(26)

where

(28)

0
Hij 0ok

Hiij = [

A2
H{ H\\+H) Hy —H) H
T p-1 -2 21 2
H'R'H=0 AR A . (29)
T T
3 ——H),Hy 2 —H,,Hy»

Numerically we identified that the informative space often has two major eigenvalues and two minor eigenvalues,
resulting in a "thin" four dimensional ellipsoid, which is qualitatively similar to a two dimensional plane. Informally, we
can observe this structure by Eq. (29) as Ar> << 1; the typical sensor exposure time, At, is about the order of 1e2 ~ 1e3

5
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seconds, but the time unit of the cislunar dynamics used for normalization is about 7U = 3.8e5 seconds. Therefore, the
eigenspace closer to the upper row of the information matrix is dominant. As our null space spans both in the position
and the velocity space, we have two major information space closer to the position space, and two minor information
space closer to the velocity space. For example, let r, | € R3 and r, » € R? be the two vectors orthogonal to the
relative position vector r;;. Then, the vectors [ril, 0717 and [’{,2’ 0717 both have the same eigenvalue of o2/ rl.zl..
On the other hand, the vector [07, rvT]7 where rv, € R is a vector orthogonal to r;; and v;;, has the eigenvalue of
O'_ZAt4/4rl.2j << a'_z/rl.zj.

D. Uncertainty Deformation
The measurement information by the allocation of an observer i to a target j at time k is represented by Hl.Tj R 'H; k-
Following the update equation of the EIF, the information gain propagated to time #;, is obtained as follows:

T(tr,tk) = ®(tr, tr) " H(t) "R H (1)@ (tx, 11) (30)

where (1, t1) is the backward state transition matrix from 7y, to #;. We provide the following theorem to highlight the
propagated information’s physical meanings.

Theorem 1 Let 0y, (+) and () denote the maximum singular value and the i-th largest singular value of an input
matrix, respectively. Suppose R be a symmetric positive definite matrix. Then, os(H' R"'H) = o¢(H' R"'H) = 0 and
we have the following bounds:

4
Tnax(@DT) > @}oi(H'R™'H) < 0an (@ HTR™H®) < 03100 (DT ) (HT R H) (3D
i=1

where a; represents the alignment between the i-th largest eigenvector of H' R™VH, denoted by v;, and the largest
eigenvector of the left Cauchy-Green tensor, ®®T, denoted by v cgr:

ai =(vi, veer), i=1,2,3,4. (32)

Proof: See Appendix A.

Theorem [I]implies that the propagated information 7 (z7,, ) is maximized when the measurement information
HTR~'H and the uncertainty deformation in the form of the left Cauchy-Green tensor, ®®7, are not only maximized
but also aligned well. In other words, the information is maximized when we have a good state measurement in the
direction to which the uncertainty is extended. This is a key insight for Cislunar SDA where the spacecraft state
uncertainty undergoes large deformation due to the chaotic nature of the dynamics. In this regard, predictive sensor
tasking is advantageous as it can utilize the prospective uncertainty deformation by the dynamics to maximize the
observed information.

IV. Multi-Observer, Multi-Target Predictive Sensor Tasking

A. Design Variables

We consider the predictive sensor tasking problem with time horizon L for the fixed set of time instances
{tx }x = {to, ..., tL-1}. Optical observation requires finite exposure time, Az, and the wait time between observations
including the time for steering, €;. Figure[I|shows the time step for the predictive sensor tasking. The time instances
for decision making satisfy fx4; = tx + At + € for k =0, ..., L — 1. The sensor exposure starts at ;o and ends at #x ;.
We approximate the optical measurement obtained by the exposure time of Az by the instantaneous measurement at
t = (teo +tr,1) /2.

We optimize the sensor allocations at the decision making time instances {¢; }x = {to, ..., tL—1}. Our design variables
are the binary tasking allocation variables u; jx wherei=1,--- ,M,j=1,--- ,N,andk =0,--- ,L—1. Here M, N, L
denote the number of the observers, targets, and time steps, respectively. The binary variable u; ;. represents the tasking
allocation of the ith observer to the jth space object at time step k; if u;;x = 1, the ith observer is tasked to the jth space

6

Copyright © 2023 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) — www.amostech.com



r 1 \ 2
—— ——
L | L
— 1 1
tx ko tr tka Crt1

Fig.1 Time steps for the predictive sensor tasking where 7, and 7, are the time instances for decision making.
The sensor exposure starts at 7, o and ends at 7, ;. We approximate the optical measurement obtained by the
exposure time of Az by the instantaneous measurement at 1, = (¢ o + 7x,1)/2. Here At is the exposure time and ¢
is the buffer for sensor steering.

object at time step k. Otherwise, u;;x = 0. The tasking allocation variables u; j are subject to the following constraints:
N
Dwigk <1, Vik (33)
=1

uijk €{0,1}, Vi, j, k. (34)

Eq. (33) ensures that each observer is tasked to at most one target space object at each time and Eq. (34) states that the
tasking allocation is binary. Since we need at least two independent measurements to make the state observable, we also
add a constraint that all objects are observed at least twice during the time horizon:

M L-1

ZZuijk >2, Vj. (35)

i=1 k=0

B. Objective Function

Our main objective is to minimize the state uncertainty of all space objects at the end of the time horizon. To
maintain the linear property of the objective function in terms of the design variables, we use the information form of
the covariance matrix. The information matrix A is the inverse of the covariance matrix P and since P is symmetric
positive definite, the following equality holds:

6 6
tr(A) = Z AL w(P) = Z A (36)
m=1 m=1

where 4,, is the mth eigenvalue of P. Note that restricting linear operations of the information form does not allow us
to bound the minimum eigenvalue of the information matrix, which corresponds to the maximum eigenvalue of the
covariance matrix. However, we empirically show that the objective functions based on the information matrix is a good
surrogate for the minimization of the state uncertainty.

1. Maximizing Total Information

Since we do not consider the uncertainty in the observer states, the information matrix are independent between the
targets. Let H; ;i be the measurement Jacobian of Eq. (24) evaluated at ;. Then, maximization of the total observed
information at #;, becomes the sum of cummulative information of each spface object as follows:

M L-1
max wiitt (L (e, 1)) s Zij (1, 1y) = @ (1, 1) " H R Hiju®; (17, 11) (37)

Uik
YK ST =1 k=0

where Z;; (1., ;) is the information matrix of the jth space object due to the measurement of the ith observer at time ¢;,
projected to the time 77 .
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Table 2 Observer Libration Point Orbits

ID  Libration Point Orbit Period, Synodic Stability Phase
TU resonance  index
1 L2 Halo Southern 2.66 5:2 7.00 0.00
L1 Halo Northern 1.90 7:2 2.08 0.00
3 DRO 3.33 2:1 1.00 0.00

Table 3 Target Libration Point Orbits

ID  Libration Point Orbit Period, Synodic Stability Phase
TU resonance  index

1 L2 Halo Southern 3.33 2:1 2.91e2 3.38e-2
2 L2 Halo Southern 1.48 9:2 1.26 6.45¢-2
3 L2 Halo Northern 2.22 3:1 1.00 4.03e-1
4 L1 Halo Northern 2.22 3:1 2.14 8.91e-1
5 L1 Halo Southern 2.00 10:3 2.74 5.11e-1
6 DRO Northern 2.22 3:1 1.00 9.57e-1
7 Dragonfly Northern 5.55 1:1 2.25¢e2 1.92e-1

2. Maximizing Minimum Target Information
We often want to maximize the minimum cummulative information for the space objects in the system, instead of
the total information. In such cases, we can employ the max-min formulation.

M L-1
i Gt (L (e, 1)) . 38
B 2y gg o ) .

Note that this formulation makes the problem mixed-integer linear programming, becase the lower bound of the trace is
a continuous variable, which is maximized.

V. Numerical Analysis
We consider 3 observers and 7 targets in the Earth-Moon libration point orbits. The parameters for the observer
orbits and the target orbits are shown in Table[2]and [3] respectively. Figure[2]shows the orbits of the observers and the
targets.

A. Predictive Tasking Performance

We compared the predictive algorithms for maximizing the total trace of the system and maximizing the minimum
trace of the targets, corresponding to Eqs. and (38), respectively. The predictive algorithms are compared with
the memory-less myopic policy; the myopic policy maximizes the total trace of the information gain each time. Table
shows the comparison of the performance of the tasking algorithms. The max-trace predictive algorithm with the
objective function of Eq. outperforms the myopic policy in terms of the total information gain, >’ ; Tr(Z;) and
the maximum singular value of the system, max o'max (£;), without sacrificing the other metrics. The min-max-trace
predictive algorithm with the objective function of Eq. (38) outperforms the myopic policy in terms of the minimum
trace of the information gain, max min; Tr(Z;), without sacrificing the other metrics.

Figure 3] compares the observer-target allocations with the measurement information. For the myopic policy, the
color shows the amout of information at the time of measurement, whereas it shows the projected information to the final
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(a) Observer LPOs. (b) Target LPOs in L2 family.
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(c) Target LPOs in L1 family (d) Target LPOs of DRO and Dragonfly orbits.

Fig. 2 Orbits of the observers and the targets. The observer orbits are shown in blue and the target orbits are

shown in red.

Table 4 Comparison of the tasking algorithm performance.

Algorithms 2 Tr(Z;(ty)) min; Tr(Z;(tf)) max; Omax (£ () min; omax(Z(tr))
Myopic, Max 1.846e+13 4.867e+09 7.955e+12 1.035e+08
Predictive, Max 2.807e+13 6.868e+09 9.575e+12 1.035e+08
Predictive, MaxMin 3.885e+12 4.416e+11 1.004e+12 1.036e+08
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time, 77, for the two predictive algorithms. First, we can see that there exists a clear difference in the trend between the
information evaluated at the observation time and the information evaluated at a fixed later time, #; . Next, the myopic
policy and max-trace predictive algorithm both tend to allocate the observers to the targets with the largest information
gain, which is projected to the final time, ¢, for the predictive algorithm. On the other hand, the min-max-trace
predictive algorithm tends to allocate the observers to the targets with the smallest information gain.

28

Observer 1 Observer 2 Observer 3
Target 6
* B~ = =
= = S
Target 5 g " § g
Target 4 ﬂ 22 k) El T
< ® <
& & &
Target 3 21 En » Eﬂ .E’.D
Target 2
20
Target 1
arge 20

Target 7 = Predictive Max(Trace) Predictive Max(Trace)

Target 6
Target 5
Target 4

Target 3

log(trace(IG(tp)

I~
log(trace(IG(ts))

log(trace(IG(tp)

Target 2

Target 1 Predictive Max(Trace)

28

Target 7 »  Predictive MaxMin(Trace)

Predictive MaxMin(Trace)

Target 6
Target 5
Target 4

Target 3

log(trace(IG(tf)
log(trace(IG(ts)
log(trace(IG(ts)

Target 2

Target 1 Predictive MaxMin(Trace)

0.0 0.5 10 15 0.0 0.5 1.0 L5 0.0 0.5 1.0 15
Time, TU Time, TU Time, TU

Fig. 3 Comparison of the observer-target allocations with the measurement information, at the time of
measurement for the myopic algorithm, and propagated to the final time for the predictive algorithms.

B. Deformed Information

Next, we look into the effect of the cislunar dynamics on the measurement information that is propagated to the
evaluation time. Figure[d]demonstrates that uncertainty deformation can be non-monotonic with respect to time for
Cislunar LPOs, showing the case for target 7. The right plot of Figure ] shows the magnitude of uncertainty deformation
from the evaluation time 7; backward, where a‘max(dMI)T) is the maximum singular value of the left CGT. Starting from
the reference time ¢ = 0, the deformation reaches its peak at t = —7.0 TU, and shrinks toward t = —1.57 TU. The left
plot of Figure ] validates this non-monotonic trend of deformation with the error distributions of randomly perturbed
samples. We sampled 1000 perturbed states at the reference time and propagated them backward, and the left plot of
FigureEl shows their distributions projected onto the first and second largest eigenvectors of the left CGT, ®®’. We can
also confirm that the eigenvector of the left CGT, which is equivalent to the left eigenvector of the state transition matrix
® from the reference time, represents the directions with the largest deformations. It validates the usage of the left CGT
as our interests are the largest deformation directions in the state space at the time after backward propagation from
the reference time, instead of at the reference time. If we would like to know the directions that undergo the largest
deformation in the state space at the reference time, then the right (=regular) eigenvectors have this information.

Figure [5| shows that the information propagated to the reference time is maximized when both the measurement
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Fig. 4 The right plot shows the backward transition of the magnitude of uncertainty deformation from the
reference time of 7; , where opnax (®®7) is the maximum singular value of the left CGT. The left plot is the error
distributions projected onto the first and second largest eigenvectors of the left CGT.

information and the uncertainty deformation from the reference time are large, and their information space is aligned, by
the example results for target 7. The first row shows the representative magnitude of the propagated information with the
derived bounds of Eq. , the second row is the measurement information, the third row is the alignment between the
propagated information and the uncertainty deformation, and the last row shows the uncertainty deformation all along
time. The columns correspond to each observer. The first row numerically validates the derived bounds of Eq. (31)), and
shows that the lower bound is relatively tight. Comparing the four rows, we can observe that the information propagated
to the reference time is maximized when both the measurement information and the uncertainty deformation from the
reference time are large, and their information space is aligned; for example, the peak of the propagated information for
observer 1 and 2 is observed at around ¢ = 0.8 TU where the peak of the uncertainty deformation exists. However,
observer 3 does not have the peak at around ¢ = 0.8, and this is because the information alignment is weak around that
time except for the fourth singular value, which is small.

VI. Conclusion

We have investigated the predictive sensor tasking algorithm based on the Extended information filter (EIF).
The additive structure of the measurement information of the EIF has been exploited to formulate the linear integer
programming formulation for the multi observer, multi target sensor allocation problem.

The measurement Jacobian is derived with the relative position and velocity of the target and the observer, and
their null space and the remaining informative 4D space were investigated. Specifically, the predictive EIF formulation
propagates the information gain by the measurement to a reference time, and the propagation is related to the information
space deformed by the left Cauchy-Green tensor.

We numerically showed that the cislunar dynamics expands and shrinks the state uncertainty information along
the Libration point orbits, and the projected information gain is maximized when the deformation by the left CGT
is aligned with the informative measurement space. The predictive sensor tasking algorithm was compared with the
myopic algorithm and demonstrated to outperform the myopic algorithms in terms of the system’s total information gain
and the minimum information gains over the targets, depending on the formulation.

Appendix: Proof of Theorem
Since R is a positive definite matrix, we have nullity(H'R™'H) = nullity(H) = 2, thus os(H'R™'H) =
o6(HTR™'H) = 0.
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Fig. 5 The first row shows the representative magnitude of the propagated information with the derived
bounds of Eq. (3T)), the second row is the measurement information, the third row is the alignment between the
propagated information and the uncertainty deformation, and the last row shows the uncertainty deformation all
along time. The columns correspond to each observer. This is for the target 7.

To obtain the bounds, we use the following fact: for a real square matrix A € R"*", we have

2
: (39)

Ax
s (A7 A) a,iax(A)=||A||§=(sup IAxls

Ixizo l1x112

Since R is symmetric and positive definite, we can define R~'/? that satisfies R=! = (R"1/2)TR™1/2. Let RIH2 S,
then we have

Tmax(®THTRT'H®) = 072, (SD)

40
S O-I%]aX(S)O-I?‘laX (®) = O-max(HTR_IH)O—maX(CDq)T)' ( )

For the lower bound, we apply the singular value decomposition (SVD); the SVD of a real square matrix A € R™*"
is represented by UDV” where U and V are orthogonal matrices and D is a diagonal matrix with singular values
o1(A), ..., 0, (A) in the descending order from top left. The column vectors of U and V are the left and right eigenvectors
of A,asU = [uay, - ,uasn] andV = [v 4y, - ,van]. Note that u 4; and v 4; are the regular (=right) eigenvectors of
AAT and AT A, respectively. Substituting the maximum eigenvector of ®7®, denoted by v(®), with x in Eq. (39), we
obtain
2

|SPx||2
sup ————

Ixz0 1%l
2 _ 2 2 _ T 2
2 [|SPv (D)5 = oax (P)|[Su (@) [|5 = omax (PD")[|Svearll5-

Omax (®THTR'H®) = @D

In the last equality we used 072, (®) = Tpax (D7) and u(®) = v (PDT) £ ycgr. The alignment a; of Eq. (32) is the
i-th element of Vg vcgr Where S = USDSVST . Therefore, the vector inside the squared norm of the last term becomes
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the linear sum of ;05 ;jus ; as follows:

2 2
ISvearll; = laios 1us,1 + -+ - + asos stts 6ll5

T
= (Qlo'S,luS,l +'“+060's,6us,6) (CYlO's,lus,l +- "+Q'6O'S,6u5,6)

) (42)
= Z afo-é’i = Z aizo-,-(HTR_lH).
i=1 i=1

[=)}

We used the orthogonality of U and 03 , = ogrs; = 0y (H” R™"H). Combining Eqs. (@1} and @2) with os(H' R™'H) =
o6(HT R™'H) = 0 completes the proof.
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