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ABSTRACT

The reconstruction of a 3D model of a satellite is crucial for space domain awareness. In this paper, we demonstrate
novel view synthesis (NVS) of satellites from linear pass observations by combining Neural Radiance Fields Without
Known Camera Parameters (NeRF--) with data preprocessing techniques. Our study makes several contributions.
Firstly, we demonstrate the efficacy of the Neural Radiance Fields approach for satellite applications, using both
synthetic SPEED+ datasets and real satellite images obtained from the 1.6-meter and 3.6-meter Advanced Electro-
Optical System (AEOS) telescopes situated at the Air Force Maui Optical and Supercomputing (AMOS) Observatory.
Secondly, we show that data preprocessing significantly enhances the performance of NeRF--. Thirdly, we demonstrate
that our approach can account for various lighting conditions and lack of camera parameters. Finally, we demonstrate
that a 3D model of a satellite can be constructed from only 32 images with limited angular range. We evaluate 16
geometric and photometric transformations, from which we construct a performant data preprocessing pipeline for
satellite images. In quantitative analysis, we demonstrate that our approach outperforms existing NeRF models and
state-of-the-art NeRF variants in terms of peak signal-to-noise ratio (PSNR) and structural similarity index measure
(SSIM) within our application domain. Our study is the first to investigate the impact of data preprocessing on NeRF
3D reconstruction in the context of satellite imaging.

1. INTRODUCTION

The fielding and operation of satellites is inherently risky. Any number of carefully choreographed steps in the deploy-
ment process may fail and post-deployment anomalies are not uncommon. Furthermore, the burgeoning population of
defense-related satellites poses new and urgent characterization challenges [1]. Distance and illumination conditions
conspire to restrict ground-based spatially-extended imaging of satellites to large-aperture telescope systems and high-
power radars, the scarcity of which demands information-rich sensing paradigms. In this work, we propose a Novel
View Synthesis (NVS) approach that enables the prediction of many views using a single linear pass observation from
a ground-based optical sensor using an intermediary learned radiance field representation.

3D satellite models enable owners and operators to diagnose satellite configuration issues, assess damage, and deter-
mine orientation. A model of a previously unseen satellite can aid in the understanding of that satellite’s intended roles
and potential uses within its orbital regime. In this paper, we investigate the feasibility of combining Neural Radiance
Fields (NeRF) and data preprocessing techniques to create such models using both synthetic and real satellite images
obtained from linear pass observations.

In keeping with our ground-based imaging application, our study does not restrict the evaluation dataset to ideal (i.e.,
photometric) conditions. Rather, we explore satellite images that exhibit noisy and variable lighting conditions, and
we also limit the angular diversity and number of images of each satellite. Furthermore, we eliminate the assumption
of known camera parameters, which is a departure from the standard assumptions in this field [9, 6, 8, 2].

The rest of this paper is organized as follows. Section II elaborates on this “less than ideal” dataset condition. Section
III provides a detailed description of our dataset, while Section IV outlines our general approach and model. In Section
V, we introduce our method, which comprises several components, including metrics, geometric and photometric
transformations, baseline, and model choice. Section VI presents a summary of our results and analysis, while Section
VII describes the limitations of our work. Finally, in Section VIII, we conclude our research by discussing potential
extensions of our work for future studies.
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2. RELATED WORKS

This work lies at the intersection of NeRF applications and satellite radiometric and geometric modeling. This section
describes relevant work in each domain.

2.1 Satellite Model Prediction

Prior work has established the efficacy of NeRF [7, 4] and Generative Radiance Fields (GRAF) [14] on images of
spacecraft with impressive results. Of particular relevance is Mergy et. al, which demonstrated that while both NeRF
and GRAF are able to learn 3D differentiable representations of spacecraft with distinct geometry, NeRF generally
achieves better performance [7]. Lucas et. al found NeRF to be the most superior method for the discoverability of 3D
object structure from passive observations of objects1 [4]. Nevertheless, both studies were limited to synthetic dataset
results, sufficient view diversity, and ideal conditions (limited lighting variability and occlusions).

2.2 3D Reconstruction from NeRF

The NeRF method, proposed by Mildenhall et al., generates high fidelity 3D reconstructions from sets of synthetic and
real images [9] but also entails several prerequisites that are not met by electro-optical images of satellite. The NeRF
approach (1) requires known camera parameters for each image, (2) assumes that the scene was stable geometrically,
materially, and photometrically, (3) performs well only for low-noise images, (4) needs many input views, and (5)
requires extensive training. Overcoming these limitations is vital to the creation of a successful NeRF model for
satellite modeling.

Several approaches attempt to address some of these limitations during the NeRF training process. For example, Wang
et al.’s [16] Neural Radiance Fields Without Known Camera Parameters (NeRF--) achieved comparable results by
optimizing camera parameters as learnable parameters in the training process. Similarly, Deng et al.’s [2] DS-NeRF
utilized “free” sparse representations from structure-from-motion for depth supervision, reducing convergence time
and the number of training images required. However, the DS-NeRF method requires knowledge of 3D keypoints.

Noisy and variable lighting conditions are prominent challenges in 3D reconstruction from 2D images [6, 8]. Martin et
al.’s [6] approach of using Generative Latent Optimization and decomposing image elements into static and transient
components enabled NeRF in the Wild (NeRF-W) to account for image-specific variations such as exposure and
lighting. Nonetheless, NeRF-W was sensitive to camera calibration errors and was unable to render areas of the scene
that were rarely observed during training. NeRF in the Dark (RawNeRF) [8] addressed these limitations by directly
supervising on noisy raw input images, transforming it into a multi-image denoiser and enabling the reconstruction of
dimly lit environments through the adaptation of high dynamic range (HDR) images as input.

Table 1 summarizes the attributes of interest for the NeRF model and its variants.

Table 1: Comparison of NeRF and NeRF variants

Model Attributes
Model No COLMAP1 Variable Light/Noise Sparse Image Set
NeRF

NeRF--
NeRF-W
DS-NeRF
RawNeRF
1This means that camera parameters do not need to be known for training.

2.3 Data Preprocessing

Prior literature has shown that preprocessing techniques can enhance the performance of 3D reconstruction models.
For instance, Gaiani et al. [3] have demonstrated the benefits of preprocessing images based on color enhancement,
image denoising, color-to-gray conversion, and image content enrichment prior to training. Furthermore, Taylor et al.
[15] have explored the effectiveness of various geometric and photometric transformations, such as cropping, rotating,

1In contrast to a deformable mesh implementation
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and shifting pixel values based on pre-defined heuristics on convolutional neural networks. In a similar vein, Lv et
al. [5] have demonstrated the effectiveness of data augmentation methods for face recognition from a limited set of
images.

3. DATA

The present research utilizes a diverse set of data sources, comprising the synthetic and sunlamp subsets of the SPEED+
[12] dataset and real satellite images gathered through observations using a 1.6-meter and a 3.6-meter telescope.
The synthetic dataset from SPEED+ encapsulates the scenario of ideal lighting conditions, while the sunlamp subset
encompasses challenging sources of illumination, such as corner cases, stray light, and shadowing, amongst other
visual effects. In particular, the sunlight dataset emulates direct, high intensity homogeneous light emanating from the
Sun. As is evident in Fig. 1, solar illumination obscures fine details within certain geometries, a challenge to this work
even in high signal observations. Notably, each model in this research is trained on a set of 32 images.

Fig. 1: A. Synthetic images. B. Sunlamp images. [12]

4. APPROACH AND MODEL

In order to achieve 3D reconstructions from 2D satellite images, we propose an approach that combines Neural Ra-
diance Fields with data preprocessing techniques. In this study, we will assess the effectiveness of two geometric
transformations and fourteen photometric transformations on the quality of the reconstructions. Additionally, we
investigate the combination of these preprocessing techniques for the 3D reconstruction of satellites.

4.1 NeRF

NeRF expresses a complex scene2 with a continuous function as shown in Eq. (1).

Lo,σ = f (x,y,z,θ ,φ) (1)

where (x,y,z) is a spatial location, (θ ,φ) is the viewing direction, Lo and σ are the emitted radiance and volume
density at (x,y,z) respectively.

To synthesize a scene from an arbitrary viewpoint, we can estimate the corresponding pixel values by querying posi-
tions along a specific camera view direction defined by the angles θ and φ and the position coordinates (x,y,z). By
synthesizing the scene in this way, we can create a representation of the 3D environment from different perspectives.

2A “complex scene” in the context of 3D reconstruction poses one or more of the following challenges: fine-scale surface details, variable
lighting conditions, occlusions, and/or significant geometric complexity.
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4.1.1 Volume Rendering

Radiance emitted from a point source is partially absorbed by the medium through which it propagates [13] as shown
in Fig. 2.

Fig. 2: Volume Absorption: p = (x,y,z) is a spatial location and ω is a solid angle, Li is the incident radiance, and Lo
is the output radiance.

Given that density of a volume is σ , within a short distance, dt, we have

Lo −Li =−σLi dt

dLo =−σLi dt

.

(2)

According to Eq. (2), if the light travels a distance t, the remaining portion is

T (t) = exp
(
−
∫ t

0
σ dt

)
(3)

Therefore, the value of a pixel at distance o can be estimated by integrating the radiance at position p(t) = o+ dt
through the view ray d from the near plane to far plane of the viewing frustum.

C(o,d) =
∫ tfar

tnear
T (t)σ(p(t))Lo(p(t))dt (4)

The numerical expression of Eq. (4) is shown below [10].

Ĉ =
N

∑
i=0

Tiαili where

Ti = exp

(
−

i−1

∑
j=1

σiδi

)
αi = 1− exp(−σiδi)

δi = ti+1 − ti

The quantities li and σi can be deduced by probing the function f (o+d(ti), d). This, in turn, enables us to generate a
synthesized representation of the scene.

4.1.2 NeRF Model Architecture: Multi-Layer Perceptron

We adopt the architecture proposed in [9] in order to generate the W ×H ×N query points where W,H,N correspond
to the width and height of the image as well as the number of samples along the view ray, respectively. The architec-
ture uses a fully connected neural network with 8 hidden layers, each containing 256 neurons, followed by a ReLU
activation layer (see Fig. 3).

Park et. al [11] suggested that inserting input in the middle layer can enhance learning. Thus, in our approach, we
concatenate the input with the output of the fourth layer, which serves as the input of the fifth layer. We employ ReLU
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Fig. 3: Structure of MLP

activation to generate the σ value and sigmoid activation to produce radiance. To quantify the discrepancy between
the predicted and true images, we use the Frobenius norm of the distortion, as shown in Eq. (5).

E =

√
W

∑
w=1

H

∑
h=1

∥ ˆCwh −Cwh∥ (5)

4.2 Geometric and Photometric Transformation

In image processing, data augmentation techniques can be separated into geometric and photometric transformations.
Geometric transformations change the image geometry by modifying the pixel positions, while photometric trans-
formations alter the image’s channels by shifting pixel colors to new values. Notably, the dataset used in this study
comprises single-channel data, where each sample represents grayscale information rather than multiple color chan-
nels.

5. METHODS

5.1 Metrics

We employ both qualitative and quantitative evaluation to assess the efficacy of our approach. For qualitative evalua-
tion, we visually inspect the quality of the novel views synthesized by our method. For quantitative evaluation, we use
two standard performance metrics: peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM).

PSNR, given by the equation below, measures the average amount of noise present in the reconstructed images relative
to the original images:

10log10

(
(L−1)2

MSE

)
Here, L represents the number of maximum possible intensity levels in an image, and MSE is the mean squared error.

SSIM, on the other hand, evaluates the similarity between the reconstructed and original images by accounting for
their luminance, contrast, and structure. It is computed as follows:

SSIM(x,y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x +µ2

y + c1)(σ2
x +σ2

y + c2)

where µx,µy and σ2
x ,σ

2
y are the averages and variances of x,y, σxy is the covariance of x and y, and c1 and c2 are

variables that stabilize the division with weak denominator. SSIM is designed to better reflect human visual perception
than PSNR.

We will use both PSNR and SSIM to quantitatively evaluate the performance of our approach. While PSNR is better
suited for assessing the quality of noisy images, SSIM is more comprehensive as it takes into account various aspects
of image quality.
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5.2 Geometric and Photometric Transformation
In the context of 3D satellite reconstruction, we investigate various geometric and photometric transformations, in-
cluding minimal rotation, crop, center, and resize for geometric transformations, and denoise, exposure control, edge
enhance, negative transform, sharpen, smooth, contrast stretch, log transform, mode filter, min filter, max filter, median
filter, gaussian area blur, and pepper noise for photometric transformations. In the following section, we develop a
combination of data augmentation techniques for the purpose of satellite 3D reconstruction.

For visual demonstration, we provide the effects of these transformations on the synthetic and sunlamp subsets of
SPEED+ analyzed in this study, which can be seen in Fig. 4 and Fig. 5, respectively.

Fig. 4: Synthetic

Fig. 5: Sunlamp

5.3 Baseline Model Performance
We evaluate three different NeRF models as potential baseline models: NeRF, NeRF--, and NeRF-W. While potentially
suitable for satellite imaging applications, RawNeRF requires HDR images3 and DS-NeRF requires 3D keypoints,
neither of which are available in our datasets.

3While our real dataset includes RAW 16-bit images which would fulfill the HDR requirement, the SPEED+ dataset used to test the majority of
our methods is not HDR.
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In Table 2 we present novel views generated by applying each candidate NeRF model to the a sample from the SPEED+
dataset. Prior to applying the NeRF models, all images were subjected to standard pre-processing techniques such as
centering, cropping, and resizing. The novel views in Table 2 are generated from 64-image datasets since COLMAP
(prerequisite to NeRF and NeRF-W) failed to converge for lower image numbers.

Model NeRF NeRF-- NeRF-W1

Novel View Ex.

1The novel view is a white image.
Table 2: Baseline Model Results

Of our baseline models, only NeRF-- produced performant novel views. This may be attributed to the inferior quality
of COLMAP pose estimations, which is a prerequisite for all models except NeRF--. We therefore assume that NeRF--
may have implicitly compensated for such imprecise poses by exploiting the dataset’s inherent structure.

NeRF-- is based on two assumptions: (1) all images are captured in a forward-facing setup with a certain amount of
rotation and translation, and (2) all images are captured with the same intrinsic parameters. The optimization problem
for NeRF-- can be expressed as:

Θ,Π = argmin
Θ,Π

L (Î ,Π̂|I )

where Π denotes the camera parameters. During the training process, a set of pixels is rendered for each input image,
and the reconstruction loss between the rendered colors and ground-truth colors is minimized for the pixels. The
entire pipeline is differentiable, allowing for joint optimization of NeRF and camera parameters by minimizing the
reconstruction loss. Notably, this approach enables the successful reconstruction of complex 3D scenes with minimal
input information.

6. RESULTS AND ANALYSIS

With our baseline established, we now turn to task of adapting NeRF models to NVS for satellite images. Our analysis
begins with an overview of our selected geometric and photometric transformations and concludes with the application
of the complete techniques to real data.

6.1 Geometric and Photometric Transformations

In this study, we establish a control group comprising geometric and photometric transformations. Specifically, we
observe that in order for NeRF–a neural radiance field algorithm–to succeed, cropping, centering, and resizing the
original images is necessary. When input images are not cropped and centered on the satellite object, only the black
background is recovered in the 3D reconstruction. However, by applying the aforementioned transformations, we
observe immediate improvements in novel views, as evidenced by Fig. 6. We present quantitative measures of the
performance improvements in Table 3, which includes the peak signal-to-noise ratio (PSNR) and structural similarity
index measure (SSIM). The resolution of the control group images is (512, 512), while the original resolution is (1960,
920).

Subsequently, we examine the effects of individual geometric and photometric transformations on the performance
of our preprocessing pipeline. The outcomes of our investigation, presented in Table 4, reveal that only two transfor-
mations, namely median filter and Gaussian area blur, led to improvements in peak signal-to-noise ratio (PSNR) and
structural similarity index measure (SSIM) for both the synthetic and sunlamp datasets. In contrast, transforms such
as min filter and log transform led to significant increases in PSNR and SSIM for one dataset and decreases for the
other dataset, and were therefore not deemed suitable for our robust preprocessing pipeline.
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Fig. 6: The original dataset images had novel views that only retrieved the background of images (A). However, after
the images underwent crop + center + resize, we were able to recover the following novel views (B).

Table 3: Raw v. Crop, Center, Resize

Dataset PSNR SSIM
Original – Top of Satellite 22.536 0.367
Control – Top of Satellite 26.662 0.932

Original – Bottom of Satellite 14.671 0.226
Control – Bottom of Satellite 27.545 0.987

Notably, our analysis demonstrates that rotate, max filter, median filter, denoise, and Gaussian area blur were all
effective transformations for improving the performance of our preprocessing pipeline across both datasets. However,
given that rotate augmentation led to minimal improvements and greatly increased model training time due to tripling
the number of images, we opted not to use this transformation in our final pipeline.

To choose between max and median filter, we examined a subset of novel views for each filter. As illustrated in Figs.
7 and 8, while max filter resulted in lower PSNR and SSIM values, it produced subjectively superior qualitative results
for both datasets. For example, with the synthetic subset, the sides of the satellite were not cut off, and with the
sunlamp dataset, the square shape of the solar panel top was preserved considerably better. As a result, we combined
max filter, denoise, and Gaussian area blur in our final preprocessing pipeline.

The results of various combinations of denoise, max filter, and Gaussian area blur for the synthetic and sunlamp
datasets are presented in Table 5. Based on the outcomes, we selected denoise + Gaussian area blur, max filter +
denoise + Gaussian area blur, and Gaussian area blur + max filter + denoise as the three combinations to compare the
novel views. Our analysis indicates that denoise + Gaussian area blur provided the best overall visual novel views.
Therefore, we recommend utilizing denoise + Gaussian area blur in conjunction with the original crop + center + resize
as the optimal data preprocessing pipeline for satellite 3D reconstruction. In the subsequent sections, we employ this
preprocessing pipeline.

Visuals of the control and denoise + Gaussian area blur for the synthetic and sunlamp datasets are presented in Fig. 9

DISTRIBUTION A. Approved for public release: distribution is unlimited.
Public Affairs release approval #AFRL-2023-378

Copyright © 2023 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) – www.amostech.com 



PSNR and SSIM Values for Single Transformation
Synthetic Sunlamp

Transformation PSNR SSIM PSNR SSIM
Control 26.662 0.932 23.080 0.965
Rotate 27.412 0.944 22.949 0.965

Min Filter 17.774 0.075 25.625 0.972
Max Filter 26.387 0.947 23.269 0.972

Mode Filter 26.742 0.934 22.351 0.957
Median Filter 28.090 0.949 23.356 0.966

Contrast Stretch 20.120 0.350 20.144 0.935
Smooth 24.493 0.893 21.827 0.951

Exposure 26.142 0.931 25.651 0.962
Log Transform 19.397 0.863 28.654∗ 0.967

Negative Transform 23.848 0.900 21.799 0.950
Sharpen 24.493 0.892 21.827 0.951

Edge Enhance 19.709 0.914 20.473 0.793
Denoise 26.728 0.932 23.139 0.963

Gaussian Area Blur 30.241∗ 0.966∗ 26.014 0.980∗
Pepper Noise 24.327 0.875 17.091 0.873

Table 4: Geometric and Photometric Transformation Results

and Fig. 10, respectively. It is evident from these figures that the novel views obtained from the proposed preprocessing
pipeline conform more closely to the expected square solar panel shape and exhibit minimal artifacts.

PSNR and SSIM Values for Multiple Transformations
Synthetic Sunlamp

Transformation PSNR SSIM PSNR SSIM
Denoise 26.728 0.932 23.139 0.963

Max Filter 26.387 0.947 23.269 0.972
Blur 30.241 0.966 26.014 0.980

Denoise, Max Filter 26.791 0.951 22.472 0.965
Denoise, Max Filter, Blur 29.355 0.970 26.776 0.987

Denoise, Blur 30.605∗ 0.969 27.351 0.986
Denoise, Blur, Max Filter 29.226 0.966 26.238 0.983

Max Filter, Denoise 26.703 0.950 23.289 0.972
Max Filter, Denoise, Blur 30.130 0.976∗ 25.876 0.985

Max Filter, Blur 28.497 0.964 25.524 0.984
Max Filter, Blur + Denoise 29.598 0.972 26.258 0.985

Blur, Denoise 30.582 0.970 25.934 0.980
Blur, Denoise, Max Filter 28.951 0.964 26.638 0.985

Blur, Max Filter 29.723 0.969 25.950 0.983
Blur, Max Filter, Denoise 30.129 0.973 27.830∗ 0.988∗

Table 5: Geometric and Photometric Transformation Results

6.2 Real Data

In this section, we extend the application of our work on the SPEED+ dataset to real-world data by investigating
the performance of NeRF-- with data preprocessing for linear pass satellite images. The linear pass satellite images
analyzed in this study are obtained from a 1.6 meter telescope and a 3.6 meter telescope, and two satellites are examined
for each telescope. Information on the satellites can be found in Table 6.

DISTRIBUTION A. Approved for public release: distribution is unlimited.
Public Affairs release approval #AFRL-2023-378

Copyright © 2023 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) – www.amostech.com 



Fig. 7: Novel Views of Synthetic. A - Max Filter. B - Median Filter.

1.6m AMOS 3.6m AEOS
A B A B

Satellite Name NOAA 13 COSMOS 1606 RESURS O1 SPOT 2
Sensor HFOV/VFOV 25.6481/25.6481 25.6481/25.6481 25.6481/25.6481 25.6481/25.6481
Satellite Z Position 2982195 2872251 3439306 2831563

Timestamp 57967.2933 57971.2588 59697.2840 59697.2820
Table 6: Satellite Details

6.2.1 1.6 meter

The application of data preprocessing to the linear pass satellite images obtained from the 1.6 meter telescope resulted
in improved PSNR and SSIM values for both satellites, as indicated in Table 7 and depicted in Figs. 11 and 12.
Despite these improvements, the quality and rotational diversity of both satellites are limited, as illustrated in Fig.
13. Specifically, NOAA 13 exhibits minimal changes in its novel views, while COSMOS 1606 demonstrates nearly
no variation in its novel views. This observation is further supported by the depth maps depicted in Fig. 14, which
indicate that, even with data preprocessing, NeRF-- is unable to effectively learn the 3D characteristics of the satellites.

Table 7: 1.6 meter Satellite Results

Dataset PSNR SSIM
NOAA 13 – Control 16.785 0.167

NOAA 13 – Denoise + Blur 39.850 0.995
COSMOS 1606 – Control 35.019 0.987

COSMOS 1606 – Denoise + Blur 39.620 0.995

6.2.2 3.6 meter

In line with our previous experiment on linear pass satellite images from the 1.6 meter telescope, we extend our study
to analyze the performance of NeRF-- with data preprocessing on linear pass satellite images captured from a 3.6
meter telescope. As with the previous experiment, we investigate two distinct satellites (RESURS O1 and SPOT 2)
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Fig. 8: Novel Views of Sunlamp. A - Max Filter. B - Median Filter.

and assess the impact of data preprocessing on their 3D reconstruction.

Consistent with our previous findings, data preprocessing of the images from the 3.6 meter telescope led to higher
PSNR and SSIM values for both satellites, as depicted in Table 8. Moreover, the quality and rotational diversity of
both satellites notably improved following data preprocessing, as demonstrated in Fig. 15. Notably, RESURS O1
exhibits clear rotation of the satellite body over the novel views.

To further evaluate the effectiveness of data preprocessing in improving the 3D reconstruction of the satellites, we
also assessed the depth maps for both satellites. As shown in Fig. 16, the depth maps demonstrate that the model has
learned the 3D properties of the satellites to a greater extent following data preprocessing. Overall, our results suggest
that data preprocessing is a crucial step in achieving improved 3D reconstruction of linear pass satellite images from
the 3.6 meter telescope.

Table 8: 3.6 meter Satellite Results

Dataset PSNR SSIM
RESURS O1 – Control 37.853 0.996

RESURS O1 – Denoise + Blur 40.265 0.997
SPOT 2 – Control 32.064 0.978

SPOT 2 – Denoise + Blur 36.331 0.991

7. LIMITATIONS

The current application has a significant drawback as it can only handle forward-facing scenes, similar to the NeRF--
method, and may fail with camera motions having rotation perturbations exceeding ±20◦. As a consequence, spherical
datasets cannot be processed by the system, and this limitation may adversely affect non-linear passes. However, for
linear passes where rotation perturbations are restricted, this constraint is not an issue.

Moreover, the restoration capabilities of geometric and photometric transformations used in this work have certain
limitations. In the future, it will be worthwhile to investigate more common but costly image restoration techniques to
overcome these limitations.

DISTRIBUTION A. Approved for public release: distribution is unlimited.
Public Affairs release approval #AFRL-2023-378

Copyright © 2023 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) – www.amostech.com 



Fig. 9: Novel Views of the Synthetic subset exhibit that Denoise + Blur (B) enhances visual quality and improves
fidelity in contrast to the Control (A).

Fig. 10: Novel Views of the Sunlamp subset exhibit that Denoise + Blur (B) enhances visual quality and improves
fidelity in contrast to the Control (A).

8. CONCLUSION

We have demonstrated the potential of neural radiance fields (NeRF) methods for 3D satellite radiance modeling.
However, the quality of the reconstruction heavily relies on factors such as the number of images, diversity of angular
rotation, and lighting/noise conditions. Future work may reduce the impact of these limitations by implementing data
preprocessing techniques. Fig. 15 showcases the promise of our approach. Future research will focus on enhancing
the quality of images prior to modeling though the application of advanced image restoration methods such as super
resolution and image matting.
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Fig. 13: Novel Views of 1.6 meter Real Satellite Images. A - NOAA 13. B - COSMOS 1606.

Fig. 14: Depth Maps of 1.6 meter Real Satellite Images. A - NOAA 13. B - COSMOS 1606.
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Fig. 15: Novel Views of 3.6m Real Satellite Images. A - RESURS O1. B - SPOT 2.

Fig. 16: Depth Maps of 3.6m Real Satellite Images. A - RESURS O1. B - SPOT 2.
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