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ABSTRACT

This paper presents a novel solution to the space domain awareness (SDA) sensor tasking problem using decentralized, autonomous
planning. Decentralized methodologies for sensor tasking are necessary because of an increasing number of active sensors and res-
ident space object populations. The proposed approach describes the problem as a Markov game, a schema considered in detail in
multi-agent reinforcement learning literature. Decentralized Monte Carlo Tree Search (MCTS) is applied to optimize rewards with
communication between agents assumed over regular random directed graphs. The use of random graphs enables robust communi-
cation between agents and guarantees upper bounds on communication gaps. The proposed approach is validated empirically and in
simulation. First, a simulation of a cislunar tracking problem tasking both space-based optical sensors is illustrated, demonstrating
capabilities to autonomously track space objects through maneuvers. The Vision, Autonomy, and Decision Research (VADeR)
observatory is then automated and utilized for a geostationary tasking campaign. This study is the first known methodology to
fully decentralize the SDA sensor tasking problem with empirical validation. As such, the research presented in this paper is an
important step towards meeting the demands of an evolving near-Earth environment.

1. INTRODUCTION

Over recent years, surging investment in space operations has greatly increased the population of active spacecraft in
the near-Earth environment. While spacecraft in low-Earth orbit (LEO) and medium Earth orbit (MEO) may largely be
tracked by technologies such as phased-array radar, additional challenges arise when objects are placed in more distant
orbits. At and above geosynchronous orbit distances, it generally becomes advantageous to utilize optical sensors for
space object detection and tracking, but because such sensors offer comparatively small fields of regard, only a small
number of objects may be captured in a single observation. Optical sensors must therefore be tasked to track subsets
of a considered population. This problem of “catalog maintenance” is well-studied in literature and is formulated in a
large variety of manners.

It is most common to consider the catalog maintenance problem in an information sense, utilizing knowledge of
the underlying dynamical system and the applied estimators. Classically, these features are applied by sequentially
prioritizing covariance features [1, 2] or the immediate nonlinearity of the dynamics [3]. Such methods are often
myopic, and more recent literature has recognized a critical feature of the catalog maintenance problem is when to
observe a candidate object that is high value in such metrics. Often, for reasons as such as an object being occluded,
nearing a threshold probability of detection, or achieving a future close approach, there is a decision trade space in time.
These factors motivate more recent methodologies incorporating decision making over time horizons, in particular the
use of the Markov decision process (MDP) formalism.

An MDP applies stochastic transitions between states, which fully encapsulate current information, over which an
actor may make sequential decisions, receiving a reward at each epoch. The goal of an MDP is to maximize long-term
reward. Most prominently, the reinforcement learning paradigm utilizes MDPs as the underlying problem setting,
and such literature has been incorporated into the catalog maintenance problem [4, 5]. Alternatively, a decision-time
planning algorithm called Monte Carlo Tree Search (MCTS) can be applied to solve MDPs in an online, anytime
manner, with great success in partially observable [6] and continuous [7] environments. As such, it is an excellent
candidate for the decision space presented in the catalog maintenance problem, and was previously applied to cislunar
space object tracking [8].
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The goal of Monte Carlo Tree Search is to determine an ideal immediate action to take given initial knowledge of the
environment; this is a clear differentiation from reinforcement learning methods, where the problem goal is to estimate
the value function of a problem or state-action value across any state of the environement, determining a policy for
maximizing long-term value. The specificity of MCTS is quite useful in large problem settings that often require a
large amount of offline learning for reinforcement learning-based methods, and MCTS is easily adaptable to scenarios
in which the environemnt changes from prior assumptions. Examples for such settings in space object tracking include
the coordination of multiple observers, tracking maneuvering space objects, or the sudden loss or denial of an observer.

While MCTS was initially considered for centralized decision making tracking objects that remain in periodic orbits,
recent work has been submitted extending the MCTS methodology for maneuvering space object tracking [9]] and
decentralizing the MCTS methodology for many-observer settings [10]. It is also critical to empirically validate the
MCTS methodology and the key outcome of this paper is application of MCTS to the Vision, Autonomy, and Decision
Research (VADeR) observatory at the University of Colorado at Boulder.

The remainder of this paper is outlined as follows. Section II presents an overview of the sensor tasking methodology
as is utilized in [10]. Section III continues with an outline of autonomous and distributed observatory operations for
the VADeR observatory. Results using the tasking methodology are then presented in Section IV, and two cases are
considered. An overview of submitted decentralized tasking results in cislunar space [10] is first presented, followed
by empirical validation of the tasking methodology alongside Two-Line Element information over a geostationary
tasking campaign over the VADeR observatory. These results demonstrate that MCTS is a robust methodology for
autonomous and decentralized space domain awareness operations.

2. DECENTRALIZED MONTE CARLO TREE SEARCH FOR SPACE DOMAIN AWARENESS

Generically, a multi-agent decision problem is any scenario in which many agents operate over a Markov game [11],
a problem that may be defined by the set of elements {K,S,{A'}ic(1,. k), P, {R }icqi,.. k), %} These definitions may
be outlined as

» K: the number of agents considered in the problem.

S: the probabilistic state of the environment shared across agents.
* . the action space for agent i
e P: S XxA: atransition function between states over time conditioned on global sets of actions.

* R': a scalar reward function for the ith agent.

¥; € 10, 1]: the discount factor over time for agent i.
When narrowing the problem scope to space object tracking, we consider the following problem design.

» K: the number of observing agents considered in the problem.
* §: An ensemble of Gaussian space object state estimates, with objects labeled 1,...,N.
 {A’}: [1,...,N], describing the object an agent should observe at a given epoch

e P: S xA: Kalman updates are performed for each observation an agent makes, then nonlinear propagation is
performed using the underlying dynamical system.

* R': Generally, reduction in state uncertainties across the catalog.

* 7 €[0,1]: the discount factor over time for agent i.
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In this problem setting, each agent may individually generate a search tree that informs the long term value of feasible
observational actions for that agent. Detailed discussion of tree search methods is presented in [§]], and the developed
methodology combines convergence guarantees of MCTS with domain knowledge that may be utilized in sampling
heuristics. With the assumption that actions sampled using domain knowledge achieve a value within a neighborhood
€ of the optimal value, improved claims on convergence may be made [12]. Extended action sampling heuristics
are developed in [13]], and a combined heuristic utilizes features such as the hypervolume of the projection of state
uncertainty into measurement space, threshold detection of prior manuevers, and local analysis of the dynamical flow
about the first order state estimate. As each agent generates its own search tree, this methodology scales in constant
time onboard each agent as more observers are considered.

Decentralizing the decision-making process introduces several new challenges to this problem setting. As each agent
plans locally, it must consider the impact of actions that other agents take. Due to combinatorial explosion, it is
infeasible for agents to search over the full action space of all other agents, and this information must be obtained
from the plans that other agents generate. A key component of this problem, then, is the formulation of an efficient
and robust architecture for communicating decision information between agents. In [[10], we identify that agents
may efficiently communicate the best local action trajectories found via MCTS to other agents, and if an agent has
knowledge of the action trajectory another agent expects to take, local rewards may then be conditioned on that action
trajectory. When no information is available, local rewards are evaluated with stochastic action selection for other
agents.

Ideally, an observing agent could pass information to every other agent in the problem, but such a communication
paradigm is prohibitively costly as the number of cooperating agents grows large. An efficient communication archi-
tecture such as a hub and spoke system may be utilized, but such an architecture is susceptible to denial of operations
along any line of communication. In [10]], agents are assumed to intermittently augment a set of downstream agents to
which all known information on local action trajectories and action trajectories of other agents are passed. A directed
random graph formulation of a communication architecture is developed that offers guarantees on the existence and
maximal length of lines of communication to any other agent. Realistic communication schemes for many-agent deci-
sion problems could hope to combine the guarantees of randomized algorithms with known efficient architectures that
closely place agents with overlapping decision spaces and minimize necessary lines of communication.

It is worthwhile to visualize this discussion and consider how these decentralized methods may be applied to a Markov
game. Algorithm [I] presents the methods by which a search tree is generated locally and results are passed to other
agents in the problem. The Dec-MCTS [14] selection methodology is applied with modifications, and agents alternate
between search tree generation and communication steps. An agent communicates its current best action trajectory,
and in addition, it also propagates any other actions sets it has received from other agents through the graph. With
timestamped trajectories, each agent then has downstream access to recent likely actions for all other agents with the
assumption of a fully connected graph.

During simulation, an agent applies the actions specified for other agents to inform expected rewards; if no action
trajectory is available for another agent, an action is randomly sampled. Progressive widening [|15]] is applied for large
action spaces to simulate new actions within the search tree. A random rollout is applied if a new action is desired, and
domain knowledge may be applied to generate new actions. Simulation proceeds until a time or computation budget
is exhausted, at which point the D-UCB [[16] maximizing action is applied.

The outlined tasking methods may be applied in simulation or asynchronously with observatory control, imaging, and
processing pipelines toward the overall goal of maintenance of a large catalog of space objects. To better integrate
tasking techniques with the VADeR observatory, a Python interface to the underlying C++ models implementing de-
centralized MCTS was developed using SWIG [17]]. In simulation, looser assumptions on necessary observations may
be made, allowing for a shorter decision cadence. During observatory operation, the tasking procedure is performed
over a receding horizon while data collection for the prior tasking decision is performed. Tasking decisions are as-
sumed over a longer horizon of two minutes while shorter exposures are taken within the observatory. This admits
redundancy for cases in which poor imagery is collected and allows for observation of space objects over longer orbital
arcs.

Copyright © 2023 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) — www.amostech.com



Algorithm 1 Dec-MCTS over random graphs.

Input: belief b, objective g, fyax, T, d
QOutput: optimal action for local agent i
7 + initialize D-UCT tree
1<0
ag < ]
a; < H
comm + [|
while 7 < t,,,4 do
for 7 iterations do
T < simulate(.7,b,d, a;,8,1)
tt+1
aj <— It(g)
if increased outdegree needed then
comm <— [comm,rand([1,...,K]\ (iU comm))]
transmit(comm, a; Ua;)

return qg;

> Received action trajectories for other agents
> Optimal action trajectory
> outward edges for communication

> D-UCB applied recursively

Algorithm 2 Dec-MCTS Simulation Loop.

function SIMULATE(.Z,b,d,a;), 8,1)

if d = 0 then return .7 ,0

a < WIDEN(.7)

d «DRAW(a(;,|</))

b« T(b,aud)

r« g(b,aud ,b')—g(b,d,T(b,ad))

ifa ¢ C(.7) then
C(T) <+ {a,b r}
T a,ry < ROLLOUT(Z a,b',d — 1,a;,8,1)
R(t) < r+yry

else
Ta,ry +SIMULATE(Z a,b',d — 1,a(, 1)
R(t) < r+yry

N(T)+N(T)+1

visits(.7) «—visits(.7) Ut

0(a) + Xar,(7)

function WIDEN(.7)
if C(7) <N(Z)% then
a +NEW(b, C(7))
else
a<+1I,

return a

> Take received or random action for other agents

> Discounted empirical average reward return .7, Q(a)

> Simulate new action

> Take maximized D-UCT arm.
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3. VADER OBSERVATORY OPERATIONS AND AUTOMATION

It is worthwhile to provide an overview of the VADeR observatory as a whole with specific focus on the necessary
automation steps taken to empirically validate the decision-theoretic tasking methods. The VADeR observatory, in-
stalled at the University of Colorado at Boulder in July 2021, fields a suite of optical, infrared, and event sensors.
The primary telescope in the observatory, ”SITH”, is a 0.6 meter {/6.5 corrected Dall-Kirkham optical tube with an
approximate diagonal field of view of 44 arcminutes that operates in the visible spectrum using an array of Sloan
filters. Alongside the primary telescope, the observatory also operates a coaligned array, "PANOPTICON”, of four 0.2
meter /3 Riccardi-Honders astrographs of approximate diagonal field of view of 2.82 degrees. Each astrograph on the
coaligned telescope utilizes a different supporting sensor, and the observatory may use this system for observation with
Sloan filters in the visual spectrum, optical spectroscopy, observation in the infrared spectrum, and rate observation
using an event sensor. This instrument may also be reconfigured to stack imagery in the visual spectrum or yield a
mosaiced field of view of 5 degrees. All instruments in the observatory are operated using Planewave L600 mounts,
allowing for slews of up to 25 degrees per second and accurate rate tracking of space objects.

A variety of developments were required to ensure safe autonomous operation over a variety of systems. A visualiza-
tion of the observatory architecture is provided in Figure[T] In order to safely utilize observatory sensors, constraints
are placed on mount control and dome operation. In order to open the VADeR dome, weather APIs are utilized to
ensure cloud cover, precipitation probabilities, wind speeds, and humidity remain below desired thresholds. In the
future, automated visual inspection of any snow cover using security cameras will also be applied. To autonomously
operate observatory mounts, the VADeR dome must also be opened.

LEIA

_ Raw/processed
Mounted Drive - imagery datastore
Measurement/catalog
store
CHEWY ,
Observatory Control
SITH
Pyro5
Server SITH Camera
Weather Processing
SSH
> SITH Mount
STRATA tasking Estimation
PANO
Pyro5
l COM Setver | PANO Camera(s)
| DOME (Serial over ETH) |
SSH PANO Mount

Fig. 1: Operations diagram for the VADeR observatory

Autonomous operation of the VADeR observatory also requires coordination between a variety of systems. The
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VADeR CHEWY server acts as the central node in autonomous operation, managing any control input, image pro-
cessing, tasking, and estimation threads. The server stores generated data over a mounted drive and interfaces remotely
with telescope control systems. A client-server architecture is utilized for imaging with each telescope camera, and
both the SITH and PANOPTICON mounts are tasked via SSH. Finally, the VADeR dome is operated over a networked
serial interface.

3.1 Data Processing and Imaging

This section outlines the processing and source extraction pipelines utilized within the observatory. Each processing
step is abstracted such that custom methodologies may be applied, and methods are exemplified specifically for the
sCMOS sensors utilized within the observatory for visual spectrum applications. A visualization of the processing
pipeline as a whole is presented in Figure

Raw image and

header Calibration Data Mount Status Astrometry Indices GAIA Star Catalog
\ 4
Cal. Frame »! Source Identification N Sidereal and rate- > P.omft S.ourf:e
Subtraction tracked astrometry Discrimination
EEEEE—
\ 4
N . ) Photometry
State Estimation <€ Data Association < Star Subtraction < L
Calibration

Fig. 2: Image Processing pipeline for the VADeR observatory

Within the observatory, bias and dark frames consistent with the exposure length are captured each campaign prior to
observation. Because the sSCMOS sensors used are relatively nonlinear in exposure time, dark frames at the exposure
time are necessary for accurate subtraction of dark current. In addition to these frames, flat field images are necessary
for correction of vignetting within images, a feature that is especially prominent for the 0.2 meter optical systems.

A variety of methods may utilized for subtraction of background noise from imagery, and a mix of open source and
custom methodologies may be applied, including iterative sigma clipping and mode estimation [18], sigma clipping
and box interpolation, and iterative polynomial fitting [19]. The resultant background-subtracted image may then be
expected to be zero-mean and adequately prepared for source identification. Optionally, additional procedures such as
registration of hot pixels and correction of edge pixels may be applied.

Largely, the source identification process makes use of the well-documented Source Extractor library [20]. Within
Source Extractor, a pyramidal convolution is applied to threshold and merge sources above a specified photometric
signal to noise ratio. For point sources within the image, this methodology may be used to accurately identify the
point source centroid, and for streaking sources in an image, the methodology may be used to identify streak centroids
corresponding to the location in the image of the streaking object at the midpoint of exposure. Streaks act as a
somewhat challenging problem for deblending potentially separate objects, but Source Extractor is often used for such
processes with use cases for objects such as extended galaxies. Generally, saddle points are utilized to make deblending
decisions, and since one may expect that a bright streak is resolved in an image as a multivariate combination of error
functions [21]], Source Extractor most commonly identifies streaks as a single source.

The resultant pixel locations of source centroids are then applied to generate an astrometric solution for the telescope
field at the midpoint of exposure. This result is generated using the Astrometry.net library [22] and the 2MASS
star catalog [23[]. With information sourced from mount statuses on approximate pointing and a priori knowledge of
approximate sensor field of view, this solution is generated on the order of milliseconds. As a result, pixel information
at the midpoint of exposure can be translated into angular information on the celestial sphere. Augmenting this process
with accurate timing and high-frequency information on mount slew rates, one may then describe pointing throughout
the exposure.
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Fig. 3: Apparent magnitudes plotted against photometric SNR and detection rates for the SITH telescope.

Because the 2MASS catalog generally only includes stars with apparent magnitude of 15 or brighter, the GAIA DR3
catalog is applied for star subtraction processes and photometry estimation. Currently, the data release consists of
known apparent magnitudes for approximately 1.8 billion sources with a limiting magnitude of 21 [24]. Sources in
the catalog are matched using k-d trees, and a regression between known apparent magnitude and image photometric
SNR may be formed. The resultant regression may then be used to estimate the apparent magnitude of detected space
objects. Additionally, matched objects may then be subtracted from the image. Subtracting stars from imagery is
relatively straightforward when stars are realized as point sources, but is challenging when stars streak through the
sensor field of view. In such cases, many artifact detections can be left in imagery, necessitating multi-target tracking
methods for data association. The star registration process is visualized in Figure [3] and used to demonstrate an
approximate limiting magnitude of 18 for a 30 second exposure using the SITH telescope.

A source may then be associated with angular and photometric information, and it remains to associate observations
with prior state estimates or new tracks. For this problem, a variety of methods may be incorporated, including joint
probabilistic data association, [25]], multiple hypothesis tracking [26], or finite set statistics [27]. Currently, for rate-
tracked imagery, a Gaussian Mixture Probability Hypothesis Density Filter is used to confirm tracks from sequential
imagery [27]]. Detections may then be gated for a specific track, and the resultant measurement set can then be
associated with a catalog object. The effects of this process are visualized in Figure [ where 11 images are taken
centered on the ECHOSTAR 11 satellite with two other geostationary objects in the field of view. The dynamical
evolution of tracks and measurement updates in the full state space may then be considered in a variety of manners,
most commonly using the Unscented Kalman filter [28]. Orekit is utilized within this context for state and uncertainty
propagation [29].

4. CISLUNAR CATALOG MAINTENANCE

We now consider application of the decentralized MCTS methodology to a tasking problem in cislunar space akin to
prior cislunar catalog maintenance simulations [8]]. Here, we narrow the focus of the problem to a set of 100 SOs placed
in Halo orbits about the Earth-Moon L1 and L2 Lagrange points. Each object intermittently performs stationkeeping
maneuvers that are utilized in the truth trajectories for these states, and four agents are tasked to maintain state estimates
on all objects in the catalog. Observers may make detections every 120 seconds, and a combination of two lunar
surface observers and a space-based observer placed in a L2 Northern Halo orbit are utilized. In addition, the sensing
architecture is augmented with a space-based observer placed in a L1 Northern Halo that is also 1:1 resonant with
the Earth-Moon synodic period. The L2 Halo observer is instantiated at perilune, while the L1 Halo observer is
instantiated at apolune, such that each observer occupies a largely distinct subset of state space throughout simulation,
since observer periods are equivalent. The lunar observers are placed at the lunar north and south poles. The simulation

Copyright © 2023 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) — www.amostech.com



4000

3500

3000 -

]
2500

Y (pix)

1500
o

e
1000
o

500

2000 -

®
Lo

500 1000 1500 2000 2500 3000 3500 4000

Declination (deg)

-5.95+

-6.05 -

-6.15

-6.25

-59+

-6.11

-6.21

-6.31

o000 C0O®O0OO®O® o

185.4

185.5

185.6

185.7

185.8

X (pix) Right ascension (deg)

(a) Initial satellite and clutter detections across 11 images of (b) Final geostationary tracks plotted in right ascension and
ECHOSTAR 11. declination.

Fig. 4: Successful data association using Gaussian Mixture PHD filters.

Specification Lunar | Space-based
Aperture (m) 0.2 0.5
f-number 3 7

Pixel pitch (um) 5 5

QE 0.8 0.9

Read noise (pix/s) 2.0 2.0

Optical Transmission 0.756 | 0.756
Atmospheric Transmission | 1.0 1.0

Table 1: Space and ground-based sensor specifications for decentralized cislunar catalog maintenance.

is approximately instantiated at new moon, with an epoch Julian date of 2459153.5. The sensor models are outlined
in Table[Tl

We first consider the scenario with all sensors operating in a decentralized manner, with sensor communication every
500 tree search iterations. A MCTS rollout heuristic is applied for each sensor that incorporates state uncertainty
alongside detected maneuver information and dynamical knowledge of maneuver potential [9]. Specifically, the trace
of projected state uncertainty into the observer field of regard is utilized as a measure. If the trace of the projection is
significantly larger than that of measurement uncertainty, the observation offers significant information gain. In addi-
tion, information from the Cauchy-Green Stress Tensor is incorporated to inform maneuver utility, and the resultant

sample weight is rescaled if the studied object previously maneuvered [9]. Each component weight may be expressed
as

o tr(H;PHT) _ pit+Tie) 0
T Xu(HPHT) P Y pi(t+ T 1)
with the full sampling weight
0 =& (VO + M0 ) & = { 11—ty > TOmt — 1y < T. 2)

Reduction of space object covariance traces is applied as a reward. In the presented results, a depth d = 20 is used
for a search time #; of 4 seconds for each observer. A discount ¥ = 0.99 is used. Positional and velocity covariance
traces across the catalog are first presented in Figure[5] We find that the ensemble of sensors utilized are sufficient
to maintain state estimates across the catalog of SOs, with approximate median 3 — ¢ positional uncertainties of 2
kilometers and velocity uncertainties of 10 millimeters per second across 27 days of simulation. Note that one object
is lost after a large maneuver at approximately 17 days into simulation.
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Fig. 6: State uncertainties projected into the field of regard of an observer at the lunar north pole.

It is also worthwhile to discuss the structure of the velocity uncertainty contours presented in the Figure. At any point
in the simulation, the largest uncertainty contours evolve on the order of a meter per second; these spikes correspond
with maneuver epochs for each epoch, and the largest velocity uncertainties in the catalog at a given time are generally
associated with objects that have recently maneuvered. These structures are also clearly visible in Figure[6] in which
state uncertainties are projected into the field of regard of the lunar north pole observer. Generally, these uncertainties
evolve on the order of 10 arcseconds 3 — o, but clear spikes are visible on the order of several arcminutes as maneuvers
occur. These structures are a direct result of the adaptive process noise methods that enable correction of state estimates
as measurement residuals increase in norm.

Very interesting structures may be noted when studying the objects tracked by each sensor in greater detail. Figure[7a
first visualizes the number of unique objects that each sensor tracks. The full catalog is observed by approximately
2 hours of real time, and the L1 Northern Halo observer is found to be most impactful in the initial periods of the
simulation. This is a direct result of the solar phase angle leading to little lunar illumination from the perspective
of the L1 observer. Because the simulation is instantiated at new moon, the moon is quite illuminated from the
perspective of the L2 observer, and thus, that observer struggles to observe many objects that evolve about L1. On the
other hand, as the simulation nears full moon at approximately 14 days into simulation, the L1 Northern Halo observer
is challenged to observe objects evolving about L2. This structure is clearly represented in Figure [7b, in which the
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Fig. 7: Tasking data features tracking maneuvering objects in cislunar space.

percentages of the total population the space-based observers detect over a sliding window switch near full moon. It is
also worthwhile to briefly discuss the lunar surface observers placed at the lunar north and south poles. Both observers
consistently track a subset of the population, and each detects all initially visible objects relatively quickly, on the
order of several hours. Other objects then slowly evolve into each sensor’s field of regard, and all objects are observed
by each sensor by the maximal orbital period in the catalog, on the order of 9 days.

Comparing the presented results to prior research [9] studying cislunar space objects through maneuvers, the combina-
tion of lunar surface and space-based observers admits an increase in positional resolution, while velocity uncertainties
are relatively comparable between cases. This suggests that increasing the number of observers utilized is less of a
factor in the reduction of velocity uncertainties; an alternative observer feature that may be more successful in this
regard would be the utilization of a sensor with much greater pixel resolution. If such a sensor were incorporated,
subsequent observations would offer greatly increased velocity information, leading to a greater reduction in velocity
uncertainties. Another critical factor when considering velocity uncertainties is the presence of many maneuvers. Ve-
locity uncertainties are greatly increased around maneuver epochs, likely leading to long-term challenges in reduction
of uncertainties in velocity space.

Finally, it is useful to briefly demonstrate that estimators remain consistent in this scenario. Figure [§] visualizes state
uncertainties alongside estimation error for a random object in the catalog, demonstrating successful state estimation.
Note that some estimation error may be expected, since the object must be observed to initiate the correction process.
This briefly occurs between 14 and 16 days, but is corrected after a maneuver at approximately 17 days into the
simulation. It it also interesting to note several periods during which it appears the object was weakly observable or
unobservable. Most prominently, no observation appears to occur between 5 and 9 and between 11 and 12 days into
the simulation. Maneuvers during the sample case largely appear to be accounted for.

4.1 Robustness to Communication Failures

We now additionally consider a modification to the prior scenario in which communication failures occur over a subset
of the simulation. In this case, no communication is possible with the L2 Northern Halo observer between 3 and 9 days
into the simulation; during this period, the L2 observer must operate in isolation, while the lunar and L1 observers
coordinate without the isolated observer. It is first useful to characterize the catalog uncertainties as a whole across
the simulation. Between 3 and 9 days, the connected observers and the isolated observer have a differing notion of
state estimates across the catalog, and when communication with the isolated observer is resolved, observations from
all observers are processed sequentially over the period of isolation to form a common catalog between all observers.
A visualization is given of the catalog used by connected observers between days 3 and 9 in Figure[0]and the isolated
observer in Figure [10}

First considering Figure [0} we observe catalog uncertainties that are quite similar to those presented in the prior
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Fig. 8: Successful state estimation with decentralized sensor tasking.

100 104 T : T T : 100

90 . 90
T 10} 3

80 £ 80

70 z 70
210 ]

60 g 60
(5]
>

50 £ 50
<

40 5 40
Q
E

30 30
z

20 2 20
20'E E

10 10

" " " 1 L 0 10-2 1 1 1 1 L 0
5 10 15 20 25 5 10 15 20 25
Time (days) Time (days)

(a) Percentage of 3 — o positional uncertainties below contours (b) Percentage of 3 — ¢ velocity uncertainties below contours

over time in cislunar space.

over time in cislunar space.

Fig. 9: Catalog uncertainty contours in the view of the three observers that remain in communication.
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Fig. 10: Catalog uncertainty contours for the isolated observer over a lunar synodic period.

section. In this case, a single object is lost earlier in the simulation, while the remainder of the catalog maintained to
approximate median uncertainties of 1 kilometers 3 — ¢ in position and 5 millimeters per second 3 — ¢ in velocity.
During the period in which the L2 Northern Halo observer is isolated from the remainder of the sensing architecture,
slight changes from the original case may be noted. Between 3 and 9 days, a slight increase in positional and velocity
uncertainties across the catalog occurs, with median uncertainties reaching approximately 3 kilometers in position
by 9 days. When information on the tasking history of the isolated observer suddenly becomes available at this
time, the catalog immediately shifts back to covariance levels that are quite comparable to the fully connected case.
Interestingly, there is little shift in velocity uncertainties, a feature that suggests it would be quite likely that lunar
sensors and a L1 Northern Halo observer were sufficient to maintain the catalog over the period of isolation. This
result further demonstrates the robustness of decentralized MCTS to challenges in communication, even in scenarios
where space objects are maneuvering.

We next may consider structures in the catalog uncertainties from the perspective of the isolated observer. Figure [I0]
visualizes these uncertainties, and it is especially critical to study the Figure between 3 and 9 days into simulation.
One may note that uncertainties increase somewhat quickly over this gap, with median positional uncertainties for
the isolated observer reaching approximately 20 kilometers 3 — o by 9 days. While the observer continues to detect
objects during the period of isolation, the observations it makes are not sufficient to maintain the catalog, though a
subset of the catalog appears to stabilize at approximately 6 days into simulation, a feature that is more apparent in the
velocity contours. The behavior of the isolated observer during this period may also be compared to the prior case in
which the L2 Halo agent was never isolated. Figure 1] visualizes trends in objects tasked during the isolated case, and
the structures present here are almost identical to those presented in Figure[7] As such, the isolated observer continues
to visit all objects that it is able to observe, again supporting the robustness of the MCTS methodology.

It is briefly worth revisiting structures in estimation error for this scenario, and a random object is selected for visual-
ization. Figure [I2] visualizes estimation error for an object following a L1 Northern Halo orbit with three prominent
maneuvers at 6, 14, and 22 days into simulation. The estimator is largely consistent throughout the simulation, with
a brief period during which positional errors exceed 3 — o covariances. Smoothing results were note logged in this
scenario, so maneuver estimates are not visualized, but covariances successfully account for maneuvers in each case
and grow to approximately 0.2 meters during each maneuver epoch. Because of a diversity of viewing geometries,
few structures in uncertainties or estimation error as a function of orbital phase are observed.

Finally, it is useful to consider whether uncertainty projections into measurement space remain small enough that cus-
tody is maintained for all objects. Figure T3] visualizes measurement space projections, again for the lunar north pole
observer, and while spikes occur around maneuver epochs, uncertainties are largely maintained to several arcseconds
3 — o in measurement space. Compared to Figure[f] a small increase in projected uncertainties occurs between 3 and 9
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Fig. 12: Estimation error structures with decentralized MCTS tasking and communication failures during observation.
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Fig. 13: State uncertainties using decentralized MCTS with communication failures projected into the field of regard
of an observer at the lunar north pole.

days as the L2 Northern Halo is isolated, with uncertainties increasing to 10 arcseconds on average during this period.

The results of this scenario establish robustness of decentralized MCTS to failures in communication, and safe opera-
tion over large gaps in communication is an ideal feature for space domain awareness in the cislunar regime.

5.  OBSERVATORY TASKING
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Fig. 14: A geostationary catalog projected onto the surface of the Earth.

The tasking methods presented in this paper are next applied asynchronously with the observatory control, imaging,
and processing pipelines outlined in Section III with the overall goal of maintenance of a large catalog of space objects.
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An example campaign is performed with decentralized MCTS studying the local geostationary environment. Tracks
are maintained for a total of 141 space objects following near-geostationary orbits, with data collected between the
dates of May 1st, 2023 and May 9th, 2023. The catalog is visualized as a set ground tracks in Figure As is
visible, the catalog consists of a mix of active, publicly known geostationary objects and defunct objects operating in
graveyard orbits about the geostationary belt. The catalog is instantiated on May 1st, 2023, using Two-Line Elements
and conservative uncertainties.

In Figure we first present catalog uncertainties with tracking using a combination of optical observations and
intermittent full state updates sourced from Two-Line Elements. Three data tasking periods are incorporated in the
study; the first occurs during the first four hours of observation, the second occurs for four hours at 5 days into the
study, and the last occurs at 8 days into the study. Significant reductions in state uncertainties may be noted during the
periods of observation, and each period is framed in the Figure, while periods without observation are made opaque.
Two-Line Element-based updates are also performed at five noted points in the study, at approximately 1.5, 3.5, 6, 7,
and 7.5 days into the test scenario. These updates ensure that state uncertainties don’t grow so large that custody is
lost, a feature that is especially relevant because of initially conservative 3 — ¢ uncertainties of 45 kilometers in each
position axis and 300 millimeters per second in each velocity axis.

The majority of the catalog is eventually maintained with positional uncertainties on the order of 1 kilometer for
the vast majority of the catalog and velocity uncertainties on the order of 100 millimeters per second 3 — ¢. This is
consistent with the results presented in Chapter 5, but because of weather constraints, it was challenging to consistently
observe the catalog. This motivates further data collection in Fall 2023, with the goal of nightly observation over at
least a one week period. Additionally, the catalog should have been instantiated with much less conservative initial
state estimates. It is also worth noting that several objects needed to be reinstantiated because of filter divergence.
This was likely a result of small maneuvers that are expected to be quite common for geostationary objects, and a
reasonable solution to this issue is the utilization of filters such as the unscented Optimal Control-Based Estimator
[30, 9] in a manner that could be integrated with industry standards for propagation such as Orekit. Such a filter
would better account for scenarios in which measurement residuals quickly become large as a result of maneuvers.
Another potential source of these errors could be uncertainty in the astrometric solutions found using Astrometry.net,
as well as inconsistent rates at which astrometric solutions were found for imagery. Because stars are resolved in
imagery as small streaks, it is likely that incorporation of a matched filter using the expected profile of stars from
mount information could improve pointing estimation.

It is also useful to visualize detection capabilities during periods where observatory tasking is performed. The total
number of objects tracked on two nights of observation are visualized in Figures [I6]and[T7} Note a discrete spike in
the second case, where a TLE update was performed midway through the tasking period. In each case, approximately
120 of the 141 space objects were visited. More detailed analysis could be performed considering visits by sensor,
since one may expect more objects to be detected by the PANOPTICON sensor, because of a larger field of regard,
while the SITH sensor offers more detailed measurement updates.

These results demonstrate the utility of the methods presented in this paper for online and decentralized sensor tasking
in a near-optimal manner. Physical results validate the underlying algorithms and motivate use of Monte Carlo Tree
Search in more complex sensor tasking scenarios. MCTS shall continue to be applied to the VADeR observatory,
considering the long-term impact of autonomous sensor tasking on observatory operations.

6. DISCUSSION AND CONCLUSIONS

This paper presents contributions that greatly augment the autonomous capabilities of optical sensors across a variety
of domains, including the VADeR observatory. We first present a methodology for decentralized sensor tasking that
scales to many-sensor tasking problems that is demonstrated for a challenging cislunar space object tracking problem.
We then outline pipelines developed for safe operation, autonomous imaging, image processing, and data association.
These tools are then utilized alongside a Pythonic interface to MCTS libraries to autonomously task the VADeR
observatory. Several nights of autonomous observation were performed demonstrating MCTS as a viable algorithm
for autonomous space domain awareness in a real scenario. State estimates are maintained for the public catalog of
geostationary objects visible from Boulder, Colorado, with further studies planned in the coming months.
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Fig. 15: Catalog uncertainty traces over three nights of observation using the VADeR observatory.
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