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ABSTRACT

Current Directed Energy Directorate programs using active imaging, including that of space-based objects, and long-
range laser communications are currently limited by the degree to which the physics of the atmosphere is understood.
Improving the models used to describe strong atmospheric turbulence offers a means to advance these critical capabil-
ities and to develop a deeper understanding of the physical processes driving these fluctuations.

To characterize atmospheric turbulence near the Air Force Research Laboratory’s (AFRL) Maui Space Surveillance
Complex, located at 10,023 feet above sea level on Haleakala, over 400 GB of optical wavefront data collected during
the Extended Range Comprehensive Atmospheric Optical Sensor (ERCAOS) campaign in April 2019 has been inves-
tigated for fractal properties. This analysis was performed using the well-known box counting algorithm and was run
on Hokule’a, the Maui High Performance Computing Center’s (MHPCC) IBM POWERS system. Additional rescaled
range analysis and multifractal detrended fluctuation analysis (MF-DFA) has been performed on this data to further
understand the variability of turbulence over time. This work supports previous findings that atmospheric turbulence
is multifractal in nature.

1. INTRODUCTION

Atmospheric turbulence has been found to exhibit fractal properties, specifically multifractal properties, with a scale-
dependent structure that can be characterized using standard fractal analysis techniques [1, 2, 3]. These techniques
includes methods of measuring the fractal dimension and other quantities that aim to identify and describe fractal
structure, characterizing the complexity and scaling properties of various physical systems.

It is suspected that optical wavefront measurements offer a means to observe and characterize the turbulence through
which the optical source is being viewed. This paper describes efforts to determine the fractal dimension and time-
series variability of wavefront intensity data collected during the ERCAOS campaign.

2. DATASET

The Extended-Range Comprehensive Atmospheric Optics Sensing (ERCAOS) dataset is the result of a campaign con-
ducted during April 2019 as part of a collaboration between researchers from the University of Dayton and AMOS
personnel. A polychromatic beacon (PCB) transmitter projecting at wavelengths of A = 532 nm, A = 1064 nm, and

A = 1550 nm was stationed at the NOAA Mauna Loa Observatory on Hawaii Island’s Mauna Loa volcano at an
elevation of 3397 meters above sea level. Multiple 30.5 cm-diameter Meade telescopes located at the Maui Space
Surveillance Complex on the summit of Haleakala were used as receivers, employing various sensors for data collec-
tion. These telescopes were stationed at an elevation of 3058 meters, with a total beam propagation path of 149.2 km
from the source.

Wavefront measurements were stored in HDF5 files as Ny x 244 x 240 arrays where each of the Ny frames were
collected at a constant frame rate for a total duration of 30 seconds. Data was collected by a pupil-plane photo array
and a focal-plane photo-array with a 4 x 4 lenslet array in the optical path. For this analysis only data collected in
pupil plane mode was considered. This includes A = 532 nm wavelength data collected at 211 frames per second
collected using a Mission-Oriented Reconfigurable Speckle-Average Phase Retrieval (MORSAPR) wavefront sensor
and A = 1064 nm wavelength data collected at 59 frames per second using a Multi-Aperture Phase Reconstruction
(MAPR) wavefront sensor[4, 5].

Approved for public release; distribution is unlimited. Public Affairs release approval #AFRL-2023-4326.

Copyright © 2023 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) — www.amostech.com



3. METHODS

Multiple methods have been applied to search for, and characterize, the fractal properties of atmospheric turbulence
imprinted on a traversing optical wavefront. First, wavefront intensity was investigated via the box counting approach
to quantify fractal scaling by measuring the two-dimensional fractal dimension D, of each collection [6]. Secondly,
rescaled range analysis was performed to study temporal variability. This was then extended following the gener-
alized multifractal detrended fluctuation analysis (MF-DFA) algorithm described by Kantelhardt et al. to search for
multifractal properties in the wavefront data [7].

3.1 Measuring Fractal Dimension

To measure the fractal dimension of ERCAQOS wavefront intensity data via the box counting algorithm, the first step
was to assign iso-scalar surfaces to the data. For each frame of each collection iso-scalar surfaces were identified as
regions with pixels above a threshold value 7 determined by the factor a relative to the maximum value in the input

image frame / by
T =max(I)/a. (1)

Fig. 1: Six example frames from the ERCAOS dataset showing wavefront intensity collected in the pupil plane con-
figuration and the corresponding iso-scalar surface boundaries (to the right of each wavefront image).
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The classical box-counting algorithm was applied to determine the fraction of boxes containing part of the surface
contours as a function of box size. Box sizes of 2, 4, 8, 16, 32, and 64 were used for threshold factors of 2.0 and 4.0
and the results were written to an SQLite database with each entry containing a file id designator, the threshold factor
a, the box size s, the frame number, and the box count fraction.

The fractal dimension D, provides a measure of the geometric complexity for a physical system, such as atmospheric
turbulence [1]. For a 2-dimensional system, such as single frame optical wavefront images,

dlogN; (1)

D, =—
2 dlogA

2
where N, (1) is the number of boxes containing contour boundaries and A is the length scale (or box size) being
considered.

An example of a logA vs logN, (A1) plot for a single file is shown in Figure 2 for both threshold values used. Here
fractal dimensions D, of 0.452 and 0.493 are displayed as lines of best fit for iso-scalar threshold factors of 2.0 and
4.0, respectively. Measured fractal dimensions for ERCAOS data from the 3rd, 5th, and 9th of April 2019 are provided
in Figures 3-5, separated by day, iso-scalar surface threshold parameters, and sensor used for data collection. Each
data point represents the measurement made from one HDFS5 file (see Figure 2). Only data collected in the pupil plane
configuration were considered for the fractal dimension analysis.

Inspection of these fractal dimension measurements shows a dependence on iso-scalar surface threshold for data
collected using the MORSAPR sensor that is far less pronounced for data collected with the MAPR sensor. For
the April 5th and April 9th, fractal dimension D, measured with a threshold factor of a = 4.0 was, on average,
0.490£0.217 and 0.451 +0.202 larger, respectively, than D, measured when the threshold factor was taken as a = 2.0
for MORSAPR data collections. For the same dates, fractal dimension was 0.020 £ 0.036 and 0.090 & 0.027 larger
when a = 4.0 for data collected using the MAPR sensor. The difference AD, for each collection on these dates is
shown in Figure 6. It is unclear if this difference is wavelength dependent, or if it can be explained by some other
phenomena.

3.2 Rescaled Range Analysis

Next, rescaled range analysis was performed on the ERCAOS dataset to characterize the apparent variability of
the wavefront intensity over the time-span of data collections. This variability is quantified by the Hurst exponent,
which describes the increase in the rescaled range as the time series increases. To make this measurement for a
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Fig. 2: Log-log plot of the boundary coverage as a function of box size. Data points and linear least-squares fits are
shown for threshold factors of ¢ = 2.0 (in black) and a = 4.0 (in blue).
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Fig. 3: Fractal dimension over subsequent collections made on 3 April 2019 for threshold factors a = 2.0 and 4.0.

There is an average fractal dimension difference of 0.312 +-0.061 depending on the threshold chosen.
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Fig. 4: Fractal dimension over subsequent collections made on 5 April 2019 for threshold factors a = 2.0 (left) and

4.0 (right).

one-dimensional time series, the cumulative deviate series z; is determined from a sequence of partial summations

i
=2
2= Z ()’k _ys)
k=1
where Y, is the sub-sample mean of the series of y; values. The range series R; is determined by
R, = max {z;} —min{z}
and the rescaled range is then
(R/S), =Rs/ 0
where sample standard deviation oy is given by
1/2
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Fig. 5: Fractal dimension over subsequent collections made on 9 April 2019 for threshold factors a = 2.0 (left) and
4.0 (right).
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Fig. 6: Difference in measured fractal dimension by choice of threshold factor for 5 April 2019 collections (left) and
9 April 2019 collections (right) by sensor. For April 5, the mean AD, = 0.020 £0.036 for data collected with the
MAPR sensor, and AD, = 0.490 £ 0.217 for data collected with the MORSAPR sensor. With the April 9 collections,
AD, = 0.090£0.027 for the MAPR data compared to AD, = 0.451 +0.202 for the MORSAPR data.

The Hurst exponent H is determined by fitting a power-law expression to the sequence of (R/S), values
(R/S), = as" (7)

where a is a constant and s represents the size of the series [8, 9, 10, 11, 12, 13].

Figure 7 provides an example of a log-log plot of R/S vs the scale length s for data collected with the MAPR sensor in
pupil mode on April 6. The total wavefront intensity summed over the entire frame was determined for each frame in
the collection, and the rescaled range was then determined using the algorithm described above. A linear least-squares
fit to the plotted data points provides the measured Hurst exponent H = 0.626.

In Figure 8, measured Hurst exponents determined in the same manner are plotted by recorded run number for selected
MAPR and MORSAPR sensor data collected in pupil mode. From these cases, H = 0.606 £=0.203 for data collected
on April 5 using the MAPR sensor, and H = 0.552 +0.214 for MORSAPR data collected the same night. For the
April 9 data, H = 0.566 + 0.234 from MAPR and H = 0.606 +-0.226 from MORSAPR collections.

These measurements suggest that the wavefront data collected during the ERCAOS campaign has a long range corre-
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Fig. 7: Log-log plot of R/S over the scale length s. The slope of the linear least-squares fit line gives the Hurst exponent
for this time series. For the time series shown, H = 0.626.
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Fig. 8: Hurst exponents for selected files from April 5 (left) and April 9 (right) collections. April 5 MAPR mea-
surements yielded a mean H of 0.606 = 0.203 while MORSAPR measurements of H = 0.552 £0.214. From data
collected on April 9, H = 0.566 +0.234 from MAPR measurements and H = 0.606 + 0.226 from data collected on
the MORSAPR sensor.

lated structure, indicated by measurements falling within 0.5 < H < 1. Conversely, anti-correlated structure would be
signified by Hurst exponents in the range of 0 < H < 0.5, while H = 0.5 indicates an uncorrelated series [7]. Long-
range correlated datasets tend to cluster in a particular direction, rather than exhibiting wild randomness, with future
values more likely to be influenced by earlier values.

3.3 Detrended Fluctuation Analysis

Additional fractal characterization can be achieved via detrended fractal analysis (DFA) which provides information
about fractal scaling properties and long-range correlations in time-series datasets. In the simplest case, without the
presence of underlying trends in the data, monofractal scaling behavior can be quantified by a single scaling exponent,
the Hurst exponent. In some cases, different scaling exponents may exist over different scale regimes. And in cases
where underlying trends lead to long-range correlations in a dataset, multifractal detrended fluctuation analysis (MF-
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DFA) can be utilized to describe the scaling behavior.

As provided by Kantelhardt et al. [7], the generalized MF-DFA process for a one-dimensional time series x; of length
N is performed by first generating a series of cumulative deviations from the mean of the series

(i)=Y b () ®)
k=1

fori=1,...,N. The profile ¥ (i) is then divided into 2N; segments; Ny = int(N /s) non-overlapping segments of equal
length s starting from Y (1) and another N, segments of length s starting from Y (N) and working in the opposite
direction.

A least-squares fit is used to determine the local trend for each of the 2N; segments, where linear, cubic, or higher
order polynomials y, can be considered, referred to as DFA1, DFA2, DFA3, etc. This process eliminates trends of
order m-1 from the original series x; [7].

The variance is given by

oz(s,v)zl2{Y[N—(V—Ns)s+i}—yv(i)}2 ®)

for v = N, +1,...,2N;, with yy, (i) as the fitting polynomial in segment v. Next, the ¢ order fluctuation function is
obtained by averaging over all segments

1 2N /2 ]/q
F,(s)= {21\7 Y [F*(s,v)) } (10)
S y=1

with g # 0. Log-log plots of F; (s) versus s for various values of ¢ can be used to illustrate the scaling behavior of the
fluctuation functions. For large values of s, if x; is long-range power-law correlated,

Fy(s) ~ sha (11)

where h, represents the generalized Hurst exponent. For a stationary timeseries, 4, is equivalent to the standard Hurst
exponent H. A significant dependence of /, on g indicates multifractal behavior, with small and large fluctuations
scaling differently. Furthermore, one may also consider the multifractal scaling exponent 7, which is given by

T, = qhy—1. (12)

A mono-fractal series is indicated by a linear g-dependence on 7, while a multifractal series will exhibit a non-linear
T, [14].
q

The MF-DFA method produces inaccurate results when working with a strong anti-correlated time series, where A,
approaches zero. A modified technique, which involves integrating the time series before performing the MF-DFA,
can be utilized to produce reliable generalized Hurst exponents in these cases [7]. Here Equation 8§ is replaced by a
double summation,

7 (i) ;me1 (13)
=1

and the generalized fluctuation functions Fq (s) are related to , by

Fq(s)wsﬁ‘f = shatl, (14

Motivated by h, values approaching zero and a poor linear fit to log(F;) vs log(s) data, generalized Hurst exponents
were also measured from log () in several cases as a comparison. Figure 9 shows log(F,) vs log(s) plotted for a range
of g values with linear least-squares fits superimposed. An included plot of the fit residuals shows close agreement at
longer segment lengths. The Fq case for the same data is illustrated on the right side of the same figure. Here the fit is
generally improved for small segment lengths but produces slightly larger residuals at larger values of s. The resulting
generalized Hurst exponent /i, and multifractal exponents 7, are plotted in Figure 10 for various values of ¢. It can
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Fig. 9: Log-log plots of the MF-DFA?2 fluctuation functions are shown for a range of ¢ values as a function of 5. The
slopes of the linear least-squares fits shown represent the generalized Hurst exponent, with the residuals to this fit
plotted beneath. The left side shows the fluctuation functions F,(s) described above, while the right side gives the
modified fluctuation functions £, (s).
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Fig. 10: Plots of the generalized Hurst exponent and multifractal scaling exponent for the fluctuation functions F,(s)
and F(s) shown in Figure 9. Quantities obtained via F,(s) are denoted as blue circles with a solid blue connecting
line and quantities from F,(s) are given as orange triangles with a dashed connecting line. Both cases use MF-DFA2
segment polynomial fits y,.

be seen that /1, and 7, derived from either approach are in strong agreement for g < 0, but start to deviate for positive
values of g.

When considering a range of polynomials for yy, the trends in A, and 7, are very similar. Figure 11 shows DFAI,
DFA2, and DFA3 trends removed for each length s segment over the same data time series. In all cases &, is shown to
vary with g; along with the non-linear profile of 7, this indicates a multifractal time series. Here A for the DFA2 case
is a very close match to H = 0.626 which was measured for the same example case (see Figure 8) as expected [3].
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Fig. 11: The q dependence of the generalized Hurst exponent £, (top) and corresponding multifractal scaling exponent
7, (bottom) is shown for MF-DFA1, MF-DFA2, and MF-DFA3.

4. SUMMARY

The ERCAOS dataset contains over 400 collections of wavefront intensity measurements made during April 2019
using laser projections from the NOAA Mauna Loa observatory on Hawaii Island to receiver telescopes set up 149.2
km away at the Maui Space Surveillance Complex on Haleakala. The two-dimensional fractal dimension D, has been
measured using the box counting method for data collected across three different nights. Furthermore, range-scale
analysis was performed on data collected over two nights. Measurements of the Hurst exponent suggest long-range
correlated structure in atmospheric turbulence. This is also supported by measurements of the generalized Hurst
exponent using multifractal detrended fluctuation analysis on select collections. The generalized Hurst exponent and
the associated multifractal scaling exponent indicate multifractal structure in the ERCAQOS turbulence profiles, which
agrees with previous measurements made elsewhere.
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