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ABSTRACT

The continued increase of Resident Space Objects (RSOs) poses a serious space congestion problem, driving an ag-
gressive growth of on-orbit collision likelihood and endangering the potential of tomorrow’s space economy - one that 
is forecast to become a trillion-dollar industry by 2040. Yet, the methodologies currently employed by satellite opera-
tors for collision risk mitigation are often inadequate, non-uniform, uncoordinated, and are increasingly vulnerable to 
being overcome by events. Operators have not reached a consensus on collision avoidance risk metrics and actionable 
thresholds. There are no explicit norms of behavior for risk mitigation and coordination between operators, and space 
traffic management (STM) authority, regulation, and policy remain in their infancy. STM needs have grown to a 
global scale, involving multiple nation’s assets in orbit. Such high entropy in the collision avoidance mitigation 
processes is often the main cause of costly inefficiencies at best and potential damage to in-orbit assets at worst. 
Spacecraft tracking uncertainties and inaccuracies associated with collision avoidance risk metrics have been 
connected to higher avoidance maneuver fuel usage and a greater number of avoidance maneuvers. Such increased 
resource usage bears the financial cost to each operator, not to mention the operators whose assets might be rendered 
vulnerable by others’. Operational uncertainty of the conjuncting (“secondary”) object, due to uncoordinated 
avoidance or orbit maintenance maneuvers, can have a similar effect. Most concerning, sub-optimal and 
uncoordinated maneuvers between two oper-ator’s assets can increase the risk of collisions, and they also tend to 
increase encounter rates and the need for further avoidance maneuvers during a spacecraft’s lifetime. Lack of 
process automation significantly increases the response time of collision avoidance and further complicates 
coordination, which can grow quickly in a scenario involving mul-tiple organizations. The cost of these inefficiencies 
includes increased fuel expenditure, increased regulatory fees, the potential cost of litigation/mediation, decreased 
revenues from the utilization of vulnerable assets, increased mission downtime as more time is spent performing 
avoidance maneuvers, and decreased mission lifetime due to faster fuel depletion. Collision risk mitigation will 
soon become too costly, unless the risk metric uncertainties and deficiencies in avoidance maneuver selection, 
including lack of coordination, are simultaneously addressed. To help address the latter, we investigate a novel 
optimal avoidance maneuver framework.

Optimal avoidance maneuver planning is a complex problem, especially when automation and spacecraft coordination 
are required. The current diversity of collision avoidance processes employed by satellite operators is driven by their 
different mission requirements, long-time risk exposure, and corporate and cultural considerations, among others. 
Thus, any viable avoidance maneuver framework must be flexible and customizable, considering the mission and/or 
organization needs of each stakeholder. In this context, an optimal avoidance maneuver solution is one that best fulfills 
the interests of an organization, or of multiple organizations when coordination is considered. The framework must 
also level the playing field with respect to the scale of financial asset loss/risk encumbered by each respective party 
through means of pricing/financial risk assessment.

Kayhan Space has developed, and continues to update, an optimal avoidance maneuver framework to address the 
needs identified above. It combines a user-facing platform for asset automation configuration with an expansive ma-
neuver suggestion engine. This maneuver suggestion engine is a critical part of the avoidance maneuver framework, 
and it is the main focus of this paper. Brief commentary on the Kayhan Space avoidance maneuver framework as 
part of a broader solution to the current Space Traffic Management (STM) needs of the space industry, including the

Copyright © 2023 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) – www.amostech.com 



incorporation of rules of the road and data sharing, are also provided. The maneuver suggestion engine has a modular
design built to be highly flexible, expandable, efficient, and parallelizable. It generates maneuver tradespaces for a
conjunction event based on a variety of available settings and optimization algorithms. These algorithms all accept a
polymorphic object-oriented optimization problem model as guiding input, featuring plug-and-play metrics that can
be used as objective functions or as constraints, e.g., miss distance, probability of collision (PC), maneuver direc-
tion, shared burden between spacecraft, etc. The combination of these metrics allows for capturing the operational
constraints and interests of spacecraft owners and producing optimal avoidance maneuver suggestions. A variety of
optimization algorithms are supported, including nonlinear programming (NLP) using the Interior Point Optimizer
(IPOPT) solver, global grid search, heuristic and metaheuristic methods such as ant colony optimization, gradient
descent with Nesterov-momentum, and a trivial loop-back fixed solution. Some of these metrics and algorithms are
described in this paper, and their performance for different optimization problem case studies are characterized both in
terms of processing speed and optimality. The case studies include a combination of PC, maneuver magnitude and di-
rection, and shared-burden minimization and constraint targeting. Two lower-fidelity modeling techniques commonly
employed in avoidance maneuver generation are also characterized, specifically (1) the use of linearized dynamics
to compute spacecraft relative position changes at Time of Closest Approach (TCA) from a preceding maneuver, as
well as (2) the use of risk metrics computed at the original TCA as a proxy for metrics corresponding to the new
TCA, which is affected by the avoidance maneuver. Planned future research efforts include: characterizing the en-
tire avoidance maneuver framework, furthering its automation capabilities, supporting multi-objective functions in the
maneuver suggestion engine, and expanding the supported risk metrics and algorithms.

1. INTRODUCTION

While the space industry continues to grow at an accelerating pace, the slow evolution of space debris mitigation
practices and their adoption rate threatens the future sustainability of the space environment [1]. There is an overall
consensus that effective STM will require reducing uncertainty in space situational awareness (SSA), also referred to
as space domain awareness (SDA), standardizing actionable metrics and norms of behavior, and enabling coordination
between operators [2, 3, 4]. Multiple sectors have been advocating for establishing STM regulations and processes,
from congressional leaders [e.g., 5] to commercial operators [e.g., 6, 7, 8].

The first pillar of collision risk mitigation is conjunction risk assessment, under the umbrella of SSA. If properly
quantified, the uncertainty associated with this assessment drives the achievable efficiency of collision risk mitigation,
i.e., greater uncertainty is linked to increased maneuver rates and fuel usage. This uncertainty is tied to the collision
risk metric and spacecraft trajectory data used by an operator to quantify collision risk and drive mitigation efforts.
For a representative example of an operator’s risk mitigation processes, Alfano et al. [2] investigated the Space Data
Association [8]’s operator survey and found that operators use a diverse set of “Go/No-Go“” risk metrics and actionable
thresholds without a clear consensus. After categorizing the risk metrics, they also found that the metrics that were
the simplest to evaluate and required the least amount of input data negatively correlated with actionable conjunctions.
The same correlation is observed with trajectory uncertainty.

Different, but complementary, approaches for improving SSA data quality have been identified, from the constant
technological advancements in ground sensor capabilities and deployments, to on-orbit tracking [9, 10, 11], data
fusion [12], and higher fidelity propagation dynamics. Drag modeling is of significant importance, given it’s one the
largest uncertainty contributors [13, 14], especially with the increased solar activity expected in the near future. Data
availability for the risk mitigation process dictates the need for collaborative sharing of authoritative data, including
resident space object (RSO) ephemerides, maneuver plans, observations, dimensions, mass, and attitude profiles.
Since SSA providers usually do not have access to much of this data owned by operators, a centralized, trustworthy,
and practical repository of data is vital to the success of STM efforts and the space industry’s future.

Ineffective risk mitigation has a huge impact on the operational cost of space assets, due to faster fuel depletion, short-
ened mission lifetimes, increased mission downtime, and overall loss of revenue. According to the European Space
Agency (ESA), an average of three to four collision avoidance maneuvers are performed per year for each of their
orbiting spacecraft [15]. Critical decision-making processes involving time-sensitive risk mitigation decisions are also
adversely impacted by lack of automation and human-in-the-loop dependence, as seen extensively in many relevant
industries [e.g., 16]. STM automated frameworks have been previously proposed and prototypes investigated [e.g.,
17, 18, 19], but unifying industry interests and wide adoption remains a challenge. The relevance of maneuver sugges-
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tions must address different mission requirements, long-time risk exposure, and corporate and cultural considerations,
of each operator.

The future of the space industry depends on a practical space traffic management solution, which will require advance-
ments in three key areas: (1) conjunction assessment uncertainty improvement, (2) practical and effective maneuver
suggestion generation, and (3) automated data sharing and decision coordination. In this paper, further discussion of
the space industry’s need for STM is provided in Sec. 2, along with a partial description of a STM framework devel-
oped by Kayhan Space to address (2) and (3). The maneuver suggestion engine driving this framework is then further
described and characterized in Sec. 3 and 4 respectively.

2. SPACE TRAFFIC AND ENVIRONMENT MANAGEMENT

STM has become an increasingly discussed area of need within the operational space community, especially in recent
years with the growth of large constellations and debris-generating events in crowded orbital regimes. STM is only
one part of a holistic orbital space safety plan. STM applies specifically to operational, maneuverable satellites, and
can be thought of as the act of responsible collision avoidance coordinated at scale. From the perspective of the owner-
operator and their day-to-day workflow, the term Space Traffic Coordination (STC) is perhaps more appropriate than
STM.

Less frequently discussed than STM / STC, but equally important, is the concept of Space Environment Management
(SEM) [20]. SEM consists of longer-term actions that promote debris mitigation (prevention of new debris) and debris
remediation (cleaning up of existing debris).

Conjunction events that are between an operational satellite and a defunct RSO such as a debris fragment require
conjunction risk assessment and risk mitigation maneuver planning. Most conjunctions dealt with by owner-operators
currently fall into this category. However, conjunctions that are between two operational satellites not belonging to
the same constellation require the two entities to coordinate maneuver responsibility - a process that so far has been
painstakingly manual, fraught with potential for miscommunication, or simply non-existent.

Kayhan Space focuses its software-as-a-service (SaaS) Pathfinder platform on holistically addressing these three areas
of operational space safety for satellite operators: conjunction risk assessment, collision avoidance planning, and STC.
The focus of this paper is an in-depth technical discussion of Kayhan’s cloud-based platform for computing optimal
collision avoidance maneuvers. Kayhan is also presently unveiling the world’s first machine-to-machine interface
for autonomous STC, allowing satellite operators to pre-coordinate maneuver responsibility using industry-supported
rules of the road. Further details on these new capabilities are available upon request.

2.1 STM industry and market trends

Other entities are both affected by and also help shape the growth of the STM market. Investors, fully cognizant of
the increased threat posture of the Great Power Competition, have reviewed emerging space companies focused on the
Space Situational Awareness (SSA), Space Domain Awareness (SDA), and STM segment of the value chain, as well as
the more mature Tactical Space-based Intelligence, Surveillance, and Reconnaissance (TSISR). TSISR and SSA/SDA
providers all have developed either the hardware into which the remote sensors are integrated, or have developed the
software code designed to track, predict, and provide instructions for maneuverability for a diverse set of commercial,
as well as national security applications and customers.

The data sets produced by these providers also have specific, targeted commercial applications for the financial services
industry, insurance, and other asset-tracking business analytics providers. The macroeconomic basis and indicators to
size the SSA, SDA, and STM marketplace is provided in [21].

A detailed analysis of USG customer bases, most critically the U.S. Space Force, indicates that LEO SDA data will
yield constant demand over the next decade, rising from $157M in 2022 to $408M in 2032 (reflecting existing pro-
grams alone). Finally, an incredibly meaningful STM and SSA sub-market will grow from $12M in 2023 to $1.1B in
2032, as it accounts for 75% of the serviceable obtainable market for SSA data. This will be driven by commercial
satellite operators, e.g., Kuiper, Starlink, OneWeb, plus all commercial Earth Observation and Position, Navigation,
and Timing (PNT) providers.

These elements of viability for a SSA, SDA, and STM marketplace over the next ten years, combined with the specific
focus and investment by the Departments of Defense and Commerce into fostering these capabilities for commercial
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and national security application, makes clear that scaling SSA, SDA, and STM providers is a strong value creation
opportunity.

3. AVOIDANCE MANEUVER SUGGESTION ENGINE

The main goal of collision avoidance maneuver (CAM) generation for conjunction risk mitigation is presenting the
satellite operator with actionable solutions, i.e., solutions that fulfill the satellite’s operational constraints and ef-
fectively balance risk tolerance and maneuver cost for the involved parties. This is usually cast as an optimization
problem, where the decision variable(s), xxx, affects the trajectory of one of the satellites (or both) in a way that some
monitored risk/cost metrics are minimized, f , while others are constrained, g, to some desired range or target, li and
ui:

min
xxx

f (xxx)

s.t. li ≤ gi(xxx)≤ ui ∀i.
(1)

Many CAM advances have been made in recent years [22, and references therein]. Chan [23] summarized and com-
pared publicly known avoidance maneuvers software systems with regard to model fidelity, computational efficiency,
and accuracy. Of particular note is the work described by Bombardelli and Hernando-Ayuso [24], on the Polytechni-
cal University of Madrid’s comprehensive software tool “Optimal Computation of Collision Avoidance Maneuvers”
(OCCAM), as the fastest and one of the most accurate systems analyzed. It features three optimization strategies for
finding an avoidance impulse maneuver change of velocity vector, ∆∆∆vvv, as the decision variable, at a given maneuver
epoch: maximum miss distance for a fixed ∆∆∆vvv magnitude, minimum collision probability (Pc) for a fixed ∆∆∆vvv magni-
tude, and minimum ∆∆∆vvv magnitude while constraining Pc to be smaller than some threshold. These are formulated as
quadratic programming by leveraging relative dynamics in the b-plane, linearized analytical dynamics through the use
of a state transition matrix, Φ, and Chan’s approach for Pc computation [25]. Gonzalo et al. [22] further developed this
approach to use an linearized dynamics based on Gauss’s planetary equations and linear relative motion instead of the
Dromo orbital elements originally used.

Although computationally effective, the analytical solutions commonly described in the literature are tied to specific
optimization problem formulations. They leverage, but also rely on, assumptions for the decision variable(s), objective,
and constraint functions. Thus, these methods are unsuitable for optimization problem customization, each requiring
a dedicated analytical approach and substantially increasing the development and maintenance of these solutions.
Instead, the Kayhan Space CAM Suggestion Engine is set up to be as generic as possible, allowing for flexibility
and customization to better support satellite operators. The engine strives to be an expandable compendium of plug-
and-play avoidance algorithms, decision variables, and risk metrics that can serve as either objective or constraint
functions. The top-level assumptions of this system only include:

• Conjunction information through a populated CCSDS conjunction data message (CDM) [26]. The CDM input
provides nominal collision risk to be mitigated, as well as the spacecraft properties and states. The ability to
regenerate the conjunction information when avoidance maneuvers are considered is also required.

• A CAM algorithm must take the CDM input and produce a suggested mitigation as a maneuver plan. These
plans may contain maneuvers for each primary and/or secondary object, and the maneuvers can be of any type
supported by the Kayhan Dynamics Library, including impulse and constant-thrust maneuvers.

• A CAM algorithm is directed by an optimization problem, which must be compatible with the formulation in
Eq. 1.

The major strength of this system is that it allows for numerous customizations of an optimization problem at a
relatively cheap development and maintenance cost. This is because most of the physics-domain modeling can be
highly modular and polymorphic, enabling the use of NLP solvers with minimal extra inputs or parsing. Note that
custom avoidance algorithms that use analytical solutions to specific optimization problems are still compatible with
the above, and they could still be leveraged for performance, albeit with a higher development cost.
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Fig. 1: Kayhan Space CAM engine diagram. Blue shapes indicate engine inputs/selections. Purple-shaded shapes
indicate a collection of possible options supported, with their blue-shaped counterparts being a realization of those
supported types.

3.1 Architecture

The Kayhan Space CAM engine architecture is illustrated in Fig. 1. It is built to be modular and efficient, following
object-oriented paradigms. It expects four main external inputs: a CDM defining the collision risk to be mitigated,
an algorithm to generate tradespace epochs (dependent variable), an optimization problem to guide the mitigation
strategy, and an avoidance algorithm to generate mitigation maneuver plans given the previously listed inputs. The
maneuver plans are validated through high-fidelity propagation of the objects, taking each maneuver plan into account
around the original closest approach time, tca. With the updated object trajectories, conjunction screening is performed
to generate updated CDMs corresponding to the result of each maneuver plan, and they comprise the output maneuver
trade space. Automation of trade space selection and even iteration of other inputs is beyond the scope of this paper,
although they are also part of Kayhan’s planned STM framework.

The high-fidelity propagation and screenings are performed using Kayhan Space’s own internal dynamics library.
Several methods of collision probability are available, including those described in [27], referred to as Foster’s 2D Pc,
and [28], reffered to as Hall’s 3D Pc. Screening for secondary and tertiary conjunctions for the maneuvered object is
performed against an RSO catalog in the Kayhan Space STM framework, and it’s also beyond the scope of this paper.
Currently, the CAM engine does not take into account secondary/tertiary conjunctions directly in the optimization of
∆∆∆vvv.

The output tradespace maneuver plans are each populated by an independent execution of an avoidance maneuver
algorithm at a specific algorithm epoch talg. These epoch times are dictated by the tradespace epoch algorithm, which
outputs a list of times talg prior to tca. The list of talg generated by the tradespace algorithm is also used during the pre-
propagation of the reference ephemerides for the primary and secondary objects ahead of the maneuver optimization,
efficiently providing the high-fidelity state and state transition matrix, Φ, for the object between the earliest talg and
tca. Three tradespace algorithms have been implemented: a uniform grid, an antipodal grid that computes the times
when the primary satellite is at the antipode point relative to the conjunction in its orbit, and a custom grid. The
antipodal grid search algorithm is useful for finding the most effective maneuver times, as numerical analyses suggest
that tangential maneuvers at antipodal locations tend to result in global minima for common optimization problems.
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Note that the algorithm epoch talg, the reference epoch for the avoidance algorithm, is decoupled from the maneuver
times, tcam, generated by the algorithm, i.e., the algorithm is allowed to generate maneuvers outside the algorithm
epoch, talg, as required by the mitigation strategy chosen. For the analyses in this paper, all generated maneuvers are
impulsive with tcam = talg.

The next two sections explain the optimization problem and avoidance algorithm concepts and their implementations.

3.2 Optimization Problem

Following the design philosophy of the engine, the optimization problem allows for a modular plug-and-play config-
uration. It is defined by a list of decision variables, an objective function, and a list of constraint functions, illustrated
in Fig. 1 and following the generic formulation in Eq. 1. Note that within the context of this section, optimization
variables and optimization functions refer interchangeably to their implementation as an object, as defined in object-
oriented programming.

The decision variable selection dictates the solution space dimensionality for the optimization problem. The domain
of the decision variables must also be defined, bounding the solution space. Currently, only two decision variables are
supported: an impulse maneuver’s ignition epoch and delta-V vector. Only, the impulsive maneuver delta-V vector
decision variable is characterized in this paper. Support for additional variables, e.g., variables used to define a non-
impulsive maneuver, is relatively easy by virtue of the modular programming paradigms used, i.e., it can be concisely
implemented without any architectural changes. An initial guess can also be given to initialize the decision variable
for some classes of optimization problem solvers, which could be computed by leveraging the analytical solution or
empirical knowledge for specific problems.

The objective and constraint functions can be populated by a common list of optimization functions described in the
next section. Each function is required to, at a minimum, support its evaluation at a given realization of the decision
variable list, returning a single float value, i.e. the output has a single dimension.

The objective function is usually treated as a cost function by the avoidance algorithms and minimized. Objective
functions can also be flipped by having their evaluations multiplied by −1, i.e., so their minima become maxima and
vice-versa. Only a single objective function is currently supported, and future expansion to multi-objective support is
planned.

Constraint functions are set up by also providing a valid range, i.e., a minimum and maximum value, for which a
realization of the decision variable will be considered valid if the constraint is within the desired range.

3.2.1 Optimization Functions

As described in the previous section, the optimization functions (programming construct) that can be realized as
objective or constraint functions for an optimization problem must, at a minimum, implement the evaluation of that
function at a given decision variable coordinate of the optimization problem domain. Additionally, implementation of
first and second-order partials, i.e., the gradient and hessian, may also be implemented and can be leveraged by the
avoidance algorithms being used if supported or required.

Because propagation is usually the most expensive computation in avoidance maneuver modeling, the computation
cost of an optimization function evaluation is usually tied to the epoch to which the risk metric corresponds and the
earlier maneuver performed. As such, metrics related to maneuver properties are usually cheap to compute, whereas
conjunction metrics corresponding to state changes at tca are more expensive. Lower fidelity propagation or surrogate
models may be used where appropriate to improve performance. Linearized dynamics from the pre-propagation
of the object’s trajectory, described in Sec. 3.1, are computationally free during optimization function evaluations.
Additionally, because tca is the time when[

rrr(t)primary − rrr(t)secondary
]
·
[
vvv(t)primary − vvv(t)secondary

]
= 0, (2)

tca is sensitive to trajectory changes. Thus, risk metrics that depend on tca require additional screening to update
the original tca using updated trajectories. Alternatively, first-order approximation of tca shift can be computed by
linearizing Eq. 2, or risk metrics can be evaluated at the original tca instead, if accuracy loss is acceptable. The
accuracy and performance of these model simplifications are investigated in the Sec. 4.1.
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Table 1 presents the list of supported optimization functions and their features. The second and third columns indicate
whether first and second-order derivatives with respect to the relevant decision variables are supported or not; the fourth
column indicates whether the metric is computed at the original or new tca. The last column shows the propagation
model used to compute the metric. Each of the functions is described in the following subsections.

Table 1: Optimization functions considered in this work and their feature list.

Metric Gradient Hessian Orig./New tca Prop. Model
Delta-V Magnitude Squared Yes Yes N/A N/A
Delta-V Axis Projection (Squared) Yes Yes N/A N/A
Delta-V Azimuth Yes Yes N/A N/A
Delta-V Elevation Yes Yes N/A N/A
Delta-V Magnitude Squared Combination Yes Yes N/A N/A
Miss Distance (Numeric) No No Both Supported Linearized and Full Dynamics
Miss Distance (Analytic) Yes Yes Orig. tca Only Linearized Only
Probability of Collision (Numeric) No No Both Supported Linearized and Full Dynamics
Chan’s Pc Depth of Intrusion Yes Yes Orig. tca Only Linearized Only

3.2.1.1 Delta-V Magnitude Squared, ∥∆∆∆vvv∥2 The delta-V magnitude squared is used as an alternative to comput-
ing the magnitude of the maneuver ∆∆∆vvv and as a proxy for maneuver fuel usage since their extrema overlap and the
square is cheaper to compute. It is given by

f (∆∆∆vvv) = ∆∆∆vvv ·∆∆∆vvv, (3)

and the gradient and hessian can be easily derived for both an impulse and constant thrust maneuver. The metric is
associated with a particular maneuver decision variable, so for example, several ∥∆∆∆vvv∥2 constraints can be associated
with multiple maneuvers of the optimization problem for either primary or secondary objects.

3.2.1.2 Delta-V Axis Projection (Squared), ∆∆∆v̂vv · ûuu The projection of the delta-V vector onto a user-defined di-
rection can be used to align a maneuver closest to a given direction or set up a cone constraint. The square of the
projection can also be used, which is useful in collapsing the projection sign and allowing for a mirrored projection,
e.g., a posi/retro-grade in-track maneuver. It is given by

f (∆∆∆vvv) = ∆∆∆v̂vv · ûuu, (4)

where âaa denotes a unit vector of aaa, and the user-defined direction, ûuu, is given as a pair of elevation and azimuth angles
in the Radial In-track Cross-track (RIC) frame (See Fig. 2). When set as a constraint, range bounds can be inputted as
an angle measure instead of its cosine for greater convenience in setting up a cone constraint. Again, the gradient and
hessian can be easily derived, and the metric can be set to track any of the maneuvers in the optimization problem.

Fig. 2: Diagram of azimuth and elevation angles describing a vector in the RIC frame.
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3.2.1.3 Delta-V Azimuth az∆∆∆vvv and Elevation el∆∆∆vvv These two independent functions return the azimuth and ele-
vation angles of a maneuver delta-V in the RIC local frame (See Fig. 2). The azimuth function is given by

f (∆∆∆vvv) = arctan
(

∆∆∆vvv · îii
∆∆∆vvv · r̂rr

)
, (5)

where r̂rr and îii are the radial and in-track unit vectors. The elevation is given by

f (∆∆∆vvv) = arctan
(

∆∆∆vvv · ĉcc
|MMMccc ·∆∆∆vvv|

)
, (6)

where the MMMccc operator projects a vector onto the cross-track plane, i.e., MMMccc = − ˜̂ccc · ˜̂ccc, and ˜̂ccc is the skew-symmetric
matrix for cross-product operation (ĉcc×aaa = ˜̂ccc ·aaa).

Note that when azimuth is set as a constraint, the original constraint bounds are internally transformed, and f (∆∆∆vvv)
is adjusted to fit completely within the unit circle to avoid wrap-around discontinuities. This allows the original
constraints to describe an interval outside the nominal −π < az∆∆∆vvv < π domain, e.g., 3/4π < az∆∆∆vvv < 5/4π is supported.
The range of these two function is thus: az∆∆∆vvv ∈ R and −π/2 < el∆∆∆vvv < π/2 in rad. The gradient and hessian can be
easily derived, and the metrics can be set to track any of the maneuvers in the optimization problem.

3.2.1.4 Delta-V Magnitude Squared Combination, ∥∆∆∆vvv∥2 Delta-V magnitude squared of two maneuvers in the
optimization problem, from either spacecraft, are combined together by either a sum or subtraction depending on
user choice. It is useful in constraining a shared-burden optimization problem, where the maneuver delta-V burden is
shared between primary and secondary objects. It is given by

f (∆∆∆vvv) = ∆∆∆vvva ·∆∆∆vvva ±∆∆∆vvvb ·∆∆∆vvvb, (7)

and the gradient and hessian is a trivial derivation from Sec 3.2.1.1. This function could easily be modified to a
weighted difference scaled by total delta-V, where a user-defined maneuver cost can be input for each maneuvering
spacecraft, enabling greater flexibility for a cost-shared coordinated avoidance maneuver.

3.2.1.5 Miss Distance (Numeric), ∥rrr∥ This miss distance metric is the Euclidean distance between the two con-
juncting objects at tca, and requires knowledge of the object’s relative states at tca. This is usually computed through
the screening process described in Sec. 3.1. In the simplest approach, computing miss distance for a given maneuver
plan requires propagating the maneuvering spacecraft forward from the start of the maneuver to a window of time
around the original CDM’s tca and screening for a conjunction within that time. The propagation and, to a lesser
extent, screening are expensive computations, but this optimization function also offers cheaper alternatives to the
propagation and screening.

As already discussed in Sec. 3.1, states and state transition matrix, Φ, are computed for a window covering all algo-
rithm epochs. So expensive propagation can be avoided by employing linearized dynamics to compute state changes
at the original tca due to an earlier maneuver.

For avoidance maneuvers with a relatively small impact on relative position, the miss distance at the original tca, with
updated states for objects that maneuvered, may be used as a reasonable approximation for the miss distance at the
updated tca. This is particularly useful when the metric is used as an objective function instead of as a narrow constraint
target, since extrema locations are similar albeit at different depths.

Additionally, a closed-form expression of the gradient and hessian for this metric is non-trivial to compute when
propagation and screening are used since they both involve complex mathematical operations. The first-order approx-
imation of tca shift can be computed by linearizing Eq. 2 and using linearized dynamics, which makes it possible to
compute the gradient of the miss distance. However, the analytical computation of the Hessian requires the inclusion
of the second-order dynamical effects, which are not easily accessible. Therefore, this metric is not supported by
optimization problem solvers that require direct first- and second-order partials, though they could still be numerically
computed, e.g., through finite differencing. When the dynamics are linearized and higher-order effects are ignored, an
analytical formulation is possible, as discussed in the next function.
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3.2.1.6 Miss Distance (Analytic), ∥rrr∥ By leveraging the state transition matrix, Φ, from a single propagation of
the primary with no avoidance maneuver to the desired maneuver time, a relationship between maneuver ∆∆∆vvv and
change in relative position can be found

rrr = rrr0 +TTT ·∆∆∆vvv, (8)

where rrr0 is the original relative position, and rrr is the new relative position. T can include the first-order effect of tca
shift, but in the simplest case, TTT is the 3×3 upper-right corner of the Φ(tca, tcam) with tca being the original TCA. This
simplification is employed throughout the paper unless otherwise mentioned.

For ease of implementation, the system uses the miss distance squared, namely ∥rrr∥2 = rrr · rrr. This metric is a special
case of a more generic quadratic form f (∆∆∆vvv) = rrr ·QQQ · rrr. Given the linear mapping of the maneuver to the change in the
relative position at tca in Eq. 8, the general quadratic form becomes

f (∆∆∆vvv) = rrr ·QQQ · rrr = (rrr0 +TTT ·∆∆∆vvv) ·QQQ · (rrr0 +TTT ·∆∆∆vvv)

= ∆∆∆vvv ·TTT T ·QQQ ·TTT︸ ︷︷ ︸
AAA

·∆∆∆vvv+2rrr0 ·QQQ ·TTT︸ ︷︷ ︸
ccc

·∆∆∆vvv+ rrr0 ·QQQ · rrr0︸ ︷︷ ︸
d

= ∆∆∆vvv ·AAA ·∆∆∆vvv+2ccc ·∆∆∆vvv+d. (9)

This quadratic form can be used to construct a special class of optimization problems such as quadratically constrained
quadratic programming (QCQP) where analytical or more efficient solution methods are available as demonstrated in
[22, 24]. The miss distance squared can be computed from Eq. 9 with QQQ = III3.

3.2.1.7 Probability of Collision (Numeric), Pc The probability of collision measure depends directly on the con-
junction, i.e., closest approach, between the two objects, specifically on their relative position, uncertainties, and
spacecraft shape. There are different approaches to computing Pc with varying assumptions in the literature.

The widely accepted measure of Pc is given by Foster’s formulation [27], also known as 2D Pc. This work uses the
same implementation as the publicly available NASA CARA Analysis Tool [29]. Similar to the discussion in the
numeric miss distance in section 3.2.1.5, the computation of its gradient and Hessian is non-trivial if we assume full
nonlinear dynamics. The 2D Pc itself involves a complex and nonlinear integral over the hard body radius of the
encounter plane. In addition, since any avoidance maneuver will cause a change to tca, Pc would have to be computed
with respect to the new tca.

While the global search algorithm (Sec. 3.3.2) can be used to optimize Foster’s Pc directly without access to its partial
derivatives, the faster optimal algorithm (Sec. 3.3.4) cannot. Instead, Chan’s formulation for computing Pc [25] can
provide a useful approximation for optimization through the use of its intermediate depth of intrusion parameter, v,
and it’s described next in Sec. 3.2.1.8.

Primary

Secondary
(Origin)

B-plane

Fig. 3: Schematic of B-plane coordinate frame.

3.2.1.8 Depth of Intrusion, v In Chan’s method, the 2D integral of a circular area with an elliptic Gaussian is
converted to a 2D integral of an elliptic area with a circular Gaussian as discussed in Chap. 4 and 5 in [25]. As a result,
Pc can be given as the following Rician distribution

Pc(u,v) = e−v/2
∞

∑
m=0

vm

2mm!

(
1− e−u/2

m

∑
k=0

uk

2kk!

)
, (10)
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where

u =
r2

A

σξ σζ

√
1−ρ2

,

v =

[(
ξ

σξ

)2

+

(
ζ

σζ

)2

−2ρ
ξ

σξ

ζ

σζ

]
/(1−ρ

2).

(11)

(12)

The parameter u depends only on the covariance and hard body radius, whereas the depth of intrusion v is a function of
the relative position in the B-plane. The B-plane coordinate frame is shown in Fig. 3, and the same definition as [22] is
used; η-axis is in the relative velocity direction; ξ -axis is in vvvsecondary × η̂ηη direction; ζ -axis is in ξ̂ξξ × η̂ηη direction. The
parameters u and v are defined in terms of the combined covariance at tca, i.e., CCCprim +CCCsec, expressed in the B-plane
coordinate frame and marginalized along η-axis as per the assumption of 2D Pc:

BCCCmarginal =

[
σ2

ξ
ρσξ σζ

ρσξ σζ σ2
ζ

]
. (13)

−1 < ρ < 1 is the correlation coefficient, and rA is the hard body radius (radius of the combined cross-section of the
primary and secondary).

By definition, u > 0. Thus, in Eq. (10) the second term in the parenthesis is bounded

0 < e−u/2
m

∑
k=0

uk

2kk!
< e−u/2

∞

∑
k=0

uk

2kk!
= 1. (14)

Therefore,

0 <

(
1− e−u/2

m

∑
k=0

uk

2kk!

)
< 1, (15)

where the above converges to 0 as m → ∞. This result, along with the fact that v > 0, means that there is some constant
0 < α < 1 such that

∞

∑
m=0

vm

2mm!

(
1− e−u/2

m

∑
k=0

uk

2kk!

)
<

∞

∑
m=0

(αv)m

2mm!
= eαv/2. (16)

Thus an inequality for Chan’s Pc can be derived

Pc(u,v)< e−(1−α)v/2, (17)

demonstrating that minimizing Pc is equivalent to maximizing the depth of intrusion v.

Note that, more generally, v can be rewritten in terms of the covariance CCC of the 3D joint distributions of the relative
position,

v = rrr ·MMMη ·CCC−1 ·MMMη · rrr, (18)

where MMMη =− ˜̂ηηη · ˜̂ηηη , and rrr, η̂ηη , and CCC are in the same frame. Eq. 18 shows that v is the squared Mahalanobis distance of
the marginalized 2D Gaussian distribution on the B-plane. Assuming the linear mapping in Eq. 8, Eq. 18 is equivalent
to the quadratic form in Eq. 9 with

QQQ = MMMη ·CCC−1 ·MMMη (19)

Thus, Chan’s 2D probability of collision can be used to define a quadratic programming problem.

Given, u and v, Chan’s Pc can be computed following Eq. (10) using the recursive formulation in [25]. The zeroth-order
approximation, m = 0, which might be appropriate for small objects, simplifies to

Pc ≃ e−v/2(1− e−u/2). (20)

By inverting this relationship, an approximation of the depth of intrusion, v, that corresponds to a given Pc can be
found

v = 2ln
(

1− e−u/2/Pc

)
. (21)

This equation is used to convert Pc bounds given to the avoidance maneuver engine into the depth of intrusion, v,
bounds.
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3.3 Avoidance Algorithms

The avoidance algorithms that sit at the core of the Kayhan Space CAM engine are responsible for outputting a
suitable avoidance maneuver plan given an optimization problem setup. Currently supported avoidance algorithms are
described later in this section.

The only common requirement across all avoidance algorithms is that optimization problems are populated with ob-
jective functions and constraint functions that can be evaluated at a given decision variable realization. However, each
avoidance algorithm is allowed to have further requirements on an optimization problem setup, i.e., avoidance algo-
rithms are not required to be compatible with all optimization problem configurations. As such, some optimization
problems, variables, or functions may be implemented specifically to support certain avoidance algorithms. For ex-
ample, a family of avoidance algorithms may require that optimization function objects can also return the function’s
gradient at evaluation.

3.3.1 Fixed Maneuver Plan

The simplest avoidance algorithm simply returns a user-defined maneuver plan, regardless of the optimization prob-
lem. A maneuver plan template can also be provided, and dynamically modified to use the algorithm epoch, talg, as
the maneuver time. Paired maneuvers are supported in this fashion, where the second maneuver in the pair is set to
the next talg in the tradespace. This is the cheapest algorithm to compute, and in many geometric scenarios, it can be
tuned to return the optimal solution for certain optimization problems, e.g., at conjunction antipodes, miss distance is
the most sensitive to maneuvers in the in-track direction for common conjunction geometries.

3.3.2 Global Grid Search

The global grid search algorithm evaluates an optimization problem’s objective and constraint functions over the whole
domain of the optimization decision variables, discretized to a uniform grid. The grid size is an algorithm input, and the
minimum inside the solution space is guaranteed to be global over the discretized space, assuming appropriate choice
of grid size to match the smoothness of the optimization functions. For each grid point, the constraint function is first
evaluated, followed by the objective function, but only if the constraint is met. The gradient and hessian for the metrics
are not needed, but they can also be computed if desired. This algorithm suffers from the “curse of dimensionality”
with respect to the number of solution space dimensions, i.e., the number of decision variables and the grid resolution.
However, since the evaluations are independent, the problem is “embarrassingly parallel”, and parallelization options
are part of the algorithm inputs. This is the most flexible algorithm, capable not only of finding the globally optimal
solution to an optimization problem but also of illustrating the evaluated metrics and their gradients in the solution
space for research (e.g. Figs 7, 8 and 9 in Sec. 4)

3.3.3 Gradient descent with Nesterov Momentum

A more efficient traversal of the solution than the global grid search, gradient descent uses the objective function’s
gradient to indicate the local direction of a minimum. The gradient used can be an approximation, thus not imposing
any requirement on the optimization functions used in the optimization problem. As with any gradient descent, only
local minimization is guaranteed, which is sensitive to the initial guess. The gradient descent is extended with Nesterov
momentum [30] to improve the convergence rate and decrease convergence to shallower local minima. Currently, this
algorithm is only partially implemented, and only minimization of an in-track impulse maneuver delta-V with a single
constraint risk metric, e.g., target Pc, using a gradient approximation, is supported.

3.3.4 Interior Point Optimazation

Another gradient-based method and more efficient traversal of the solution space, this algorithm wraps around IPOPT
developed by COIN-OR [31] for solving NLP problems. The NLP solver requires the gradient and Hessian of the
objective and constraint functions. Similar to the gradient descent, only local minimization is guaranteed, which can
be sensitive to the initial guess.
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3.3.5 Ant Colony Optimization (ACO)

This algorithm wraps around pagmo’s implementation of Ant Colony Optimization (ACO) [32]. ACO is a metaheuris-
tic global optimization algorithm, categorized as a stochastic, gradient-free (i.e., zeroth order), and population-based
evolutionary algorithm. The algorithm is inspired by ants’ behavior to find the shortest path to food sources from
their nest via indirect communication with their pheromones [33]. Pagmo’s implementation is mainly based on the
extended ACO, which is designed to solve non-convex mixed-integer nonlinear optimization problems [34]. Out of
many metaheuristics offered by pagmo, ACO was chosen due to its ability to handle constrained optimization prob-
lems without gradient information, and potentially support future expansion to mixed-integer domain problems. Other
pagmo algorithms could also be leveraged in the future. As a new addition to the Kayhan CAM engine, this paper
does not include any characterization of ACO as an avoidance algorithm.

4. AVOIDANCE MANEUVER SUGGESTION ENGINE PERFORMANCE

The performance, for both optimality and computational efficiency, of the maneuver suggestion engine is presented in
this section for a handful of optimization problem and avoidance algorithm combinations, followed by some discussion
on the results. A collection of seven randomly picked low-earth orbit (LEO) CDMs are used as the collision risk input
to be mitigated by the engine. These CDMs describe conjunctions between about 400 to 600 km, with miss distances
ranging from 20 to 20 000 m and Pc from 1.5 × 10−2 to 5.5 × 10−5. An impulsive maneuver delta-V for the primary
spacecraft is setup as the sole decision variable, with the exception of the shared-burden case where an impulsive
maneuver for the secondary spacecraft is also considered. The requested tradespace epochs, which equal the impulse
maneuver epoch, is composed of five distinct times between roughly 15 to 12 hours before tca, aligned to start at a
conjunction antipode.

The summary of the performance results for several runs of the avoidance maneuver engine are presented in Table 2.
Six categories of mitigation strategies are investigated:

1. A simple fixed 1 cm/s maneuver, either posigrade or retrograde based on sign of the relative state radial separa-
tion (pulled from a CDM), i.e., retrograde if primary is lower at tca;

2. Maximization of miss distance with a delta-V magnitude constraint (Sec. 3.2.1.1) of less than or equal to 1 cm/s;

3. Minimization of probability of collision with a delta-V magnitude constraint of less than or equal to 1 cm/s;

4. Same as (3) but with the added delta-V projection constraint (Sec. 3.2.1.2) set to only allow maneuvers along
the in-track axis (posi- or retro-grade);

5. Minimization of probability of collision, with primary and secondary impulsive maneuver delta-V set as a
decision variables and constrained to have equal magnitude and combined sum less than or equal to 1 cm/s
(Sec. 3.2.1.4);

6. Minimization of delta-V magnitude with Pc constrained to be less than or equal to 1 × 10−6.

Each category holds highlighted combinations of avoidance algorithms and optimization problems, including:

• Fixed maneuver (Sec. 3.3.1), global grid search (Sec. 3.3.2), IPOPT (Sec. 3.3.4), and Nesterov gradient descent
(Sec. 3.3.3) algorithms,

• Numeric miss distance (Sec. 3.2.1.5) and probability of collision (Sec. 3.2.1.7), with non-linear vs. linear dy-
namics at original vs. update tca, analytic miss distance (Sec. 3.2.1.6), and Chan’s depth of intrusion (Sec. 3.2.1.8).

For global grid searches, a cell linear size of 0.2 cm/s is used for total of 1331 points in the ±1 cm/s domain.

The computation time, delta-V magnitude, miss distance (numeric), and probability of collision (numeric) for each
tradespace epoch of every CDM for a given row in Table 2 (an avoidance algorithm and optimization problem com-
bination) are compared to the corresponding results from the fixed maneuver strategy at each tradespace epoch. The
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results are averaged across all CDM tradespaces (five epochs per CDM, for seven CDMs, yielding a total of 35 maneu-
ver plans) and displayed on the main columns of the table. The average log10 Pc and overall convergence failure rate
are also displayed. Note that the miss distance and probability of collision used for this comparison are the validated
metrics from high-fidelity propagation and screening of each maneuver plan as described in Sec. 3.1, independent of
optimization problem used. Fig. 4 showcases an example tradespace for one of the studied CDMs, with an extended
number of tradespace epochs and a limited number of the mitigation strategies in Table 2.

Table 2: Summary of the performance of several maneuver plans output by the engine, for different mitigation strate-
gies and combination of avoidance algorithm and optimization problem. The columns shows the average improvement
(blue) or worsening (red) of a particular metric with respect to the corresponding fixed maneuver algorithm, for any
given maneuver plan across all CDM tradespaces investigated.

Algorithm Average Across CDM Tradespaces Failure
(Opt. Problem Notes) ∆ Elapsed Time ∆ Delta-V Mag. ∆ Miss Distance ∆ 2D Pc log10 Pc Rate

1) Fixed Posi-/Retro-Grade Impulsive Maneuver for Primary Spacecraft
Fixed Imp. Man. 0% 0% 0% 0% -4.4 0%

2) Maximize Miss Distance with Delta-V Magnitude Constraint
Grid Search (F,N) 8071% 0% 5% 9% -4.4 0%
Grid Search (L,N) 173% 0% 0% 0% -4.4 0%
Grid Search (L,O) 136% 0% 0% 0% -4.4 0%

Grid Search (Analytic) 5% 0% 0% 0% -4.4 0%
IPOPT (Analytic) 4% 0% 0% 0% -4.4 0%

3) Minimize Pc with Delta-V Magnitude Constraint
Grid Search (L,N) 168% 0% -12% -21% -4.7 0%
Grid Search (L,O) 138% -1% -27% 21% -4.7 0%

Grid Search (Chan’s v) 7% 0% -11% -22% -4.7 0%
IPOPT (Chan’s v) 1% 0% -10% -23% -4.7 0%

4) Minimize Pc with Delta-V Magnitude and In-track Direction Constraints
Grid Search (L,N) 9% -2% -10% -17% -4.7 0%
Grid Search (L,O) 8% -10% -22% 19% -4.7 0%

Grid Search (Chan’s v) 12% 0% -9% -19% -4.7 0%
IPOPT (Chan’s v) 4% 0% -9% -19% -4.7 0%

5) Minimize Pc with Delta-V Magnitude and Shared-Burden Constraints
IPOPT (Chan’s v) 23% 0% 125% -8% -4.5 0%

6) Minimize Delta-V Magnitude with Pc ≤ 1×10−6 Constraint
Grid Search (L,N) 448% 541% 95% -86% -6.1 14%
Grid Search (L,O) 351% 228% 41% -49% -5.2 6%
IPOPT (Chan’s v) 0% 730% 103% -87% -5.8 0%

Nesterov (L,N) -5% 525% 224% -99% -8.0 60%
Nesterov (Chan’s v) 4% 525% 208% -98% -8.0 57%

F Full dynamics, L Linearized dynamics
N New tca, O Original tca

Overall, the first three categories show unsurprising results regarding optimality. Miss distance maximization (2) aligns
well with fixed posi-/retro-grade in-track maneuvers (1). Pc minimization solutions (3) achieve lower Pc by diverging
from (1) and (2), with possible maneuver off the in-track axis, at certain tradespace epochs. When the maneuver is

Copyright © 2023 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) – www.amostech.com 



1.4

1.6

1.8

2.0

2.2

M
is

s 
Di

st
an

ce
 

(k
m

)

Original CDM
Fixed Imp. Man.
Max MD IPOPT (Analytic)
Min PC IPOPT (Analytic)
Min PC IPOPT In-Track (Analytic)
Min PC IPOPT Shared-Burden(Analytic)

15.0 12.5 10.0 7.5 5.0 2.5 0.0 2.5 5.0
Maneuver Time (Hours before TCA)

2 × 10 5

3 × 10 5

4 × 10 5

6 × 10 5

Pr
ob

ab
ili

ty
 o

f
Co

lli
si

on

Avoidance Maneuver Tradespace for an Example CDM

Fig. 4: Sample tradespace of avoidance maneuver plans for one of the tested CDMs. The miss distance (top) Pc
(bottom) metrics shown are from high-fidelity propagation and screening of each maneuver plan, independent of
optimization problem used.

constrained to lie on the in-track axis (4), the Pc minimization does not achieve results as low as (3), but they are
still better than (1) and (2), since the opposite in-track direction sometimes yields an increase in miss distance but a
decrease in Pc. Similar behavior is observed with the shared-burden minimization of Pc (5), where Pc minimization
achieved is better than in (1) but not as well as in (3), due to the constraining geometry of two maneuvering spacecraft.

The linearized dynamics provide an acceptable approximation of the full dynamics for this data set, as can be observed
in the global grid search for miss distance maximization. This was the only category to include a full dynamics run
due to its computational cost. In contrast, original versus new tca modeling proved to be a less acceptable model
approximation. There are no obvious issues with the global grid search cell size chosen and the smoothness of the op-
timization problems, yielding a good balance between performance and discretization error. Chan’s depth of intrusion
shows higher performance over numerical Pc. These modeling approximations are further explored below in Sec. 4.1.

The Pc targeting at minimum delta-V magnitude (6) demonstrated large increases in delta-V since the desired target
Pc usually required more than the 1 cm/s of previous categories. Global grid search at updated tca and IPOPT using
Chan’s depth of intrusion both performed reasonably well in this category, averaging close to the target Pc, though
the grid search had a higher convergence failure due to stricter convergence criteria. The Nesterov gradient descent
did not perform as well, with higher convergence failure and overshooting of the target Pc, but as already described in
Sec. 3.3.3, the algorithm is not yet fully implemented. The gradient approximation in this case is binary, and a poor
substitute for the optimization function’s gradient.

With regards to performance, avoidance algorithm run times for optimization problems using analytic optimization
functions show negligible difference when compared to the trivial fixed maneuver algorithm, i.e., the final validation of
the maneuver plan, propagation and screening, dominate the computational cost in these cases. One row, for Nesterov
(L,N), shows a performance increase because of early convergence failure bypassing maneuver plan validation, e.g.,
from an empty maneuver plan. The global grid search for the shared-burden case, even if only using the cheaper
Chan’s depth of intrusion, would have greatly suffered from the “Curse of dimensionality” already discussed, since
the decision variable array grows from three to six dimensions squaring the solution space.

4.1 Modeling Approximations: Linearized Dynamics, tca Update, and Chan’s Depth of Intrusion

The modeling approximation discrepancies presented in Table 2 are further explored in this section.

The use of linearized dynamics as a cheaper surrogate model for the full spacecraft propagation dynamics was already
shown above to greatly decrease the computational cost with small loss in optimality. The global grid search for
maximization of miss distance with linearized dynamics was 80x faster than its full dynamics counterpart, which
showed a negligible gain in the miss distance maximization of just 5%. Using the same global search data generated
for Table 2, the discrepancies between the full dynamics versus linearized cost functions evaluated over the whole
solution space, i.e., for every discrete delta-V combination, is shown in Fig. 5. The discrepancy between the delta-V
coordinates corresponding to the minimum of the cost functions in this solution space is also plotted in Fig. 5. It shows
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the majority of the cost function discrepancy in this space is within 1.5 km, with some higher discrepancies observed
and about 10% of the minima shifted from one side of the solution space to its opposite counterpart, from global
minima to local minima. The discrepancy should not impact optimization in most cases, where the global minimum
is much deeper than other minima. But even for cases where the global minimum is not as distinct from other local
minima, the sub-optimal local minima in this case will be close enough to the global minima that it may not matter
for the application. Regardless, due to this shift of the minima with this model approximation, a validation of the
suggested avoidance algorithm output, maneuver plan, is warranted just as described in 3.1.
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Fig. 5: Errors associated with the full dynamics vs. linearized cost function evaluations across all global grid search
tradespaces, for CDM miss distance maximization. The left plot shows the histogram of these errors, and the right
plot shows the delta-V difference between the global minimum of the two cost function spaces.

The issues observed for using original versus updated tca modeling are similar to those identified in the previous
paragraph but exacerbated, as seen in a similar analysis shown in Fig. 6. The performance gain is much smaller, while
minima shift is much less robust. More often, global minima for the original tca cost function actually correspond to
local minima of the updated tca cost function, e.g., as illustrated in Fig. 7. The Pc minimization was specifically chosen
for this analysis to highlight this issue with robustness. The Foster 2D PC implementation in NASA CARA codebase
[29] assumes the input states are at the closest approach, and the relative position is on the B-plane. Thus, when the
2D PC is evaluated at the original tca, the computation incorrectly assumes a larger miss distance, incorporating the
relative position displacement along η-direction, which explains the robustness issue.

Also in Fig. 6, the discrepancy between the numeric 2D Pc at the updated tca is compared against the analytic Chan’s
depth of intrusion. A sample of the cost functions for both are shown in Figs. 8 and 9, respectively. Chan’s depth
of intrusion metric is not as sensitive to tca changes because the relative position vector is mapped onto the B-plane,
making the metric insensitive to the position shift along η-direction. The difference between Foster 2D PC at the
original tca and Chan’s PC highlights the significance of B-plane mapping to compute a miss vector. Since they share
extrema locations, the depth of intrusion metric comes out as a suitable replacement for numeric 2D Pc as a cheaper
objective function.

Finally, note that these approximations will limit the accuracy of constraint targeting. This holds especially true for
the use of Chan’s Pc depth of intrusion to target a 2D Pc.

5. CONCLUSION

The future of the space industry hinges on the establishment and wide adoption of STM and SEM policies and infras-
tructure. The main advancements required for STM were discussed in this work, in particular practical and effective
maneuver suggestion generation, and automated data sharing and decision coordination. The current and projected
market value of the STM industry was also discussed. To address these key areas of conjunction risk assessment, col-
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Fig. 6: Errors associated with the (1) original vs. updated tca (blue) and (2) Chan’s depth of intrusion (green) cost
function evaluations across all global grid search tradespaces, for CDM Pc minimization. The left plot shows the
histogram of these errors, where Chan’s depth of intrusion is transformed into Chan’s Pc for proper comparison. The
right plot shows the delta-V difference between the global minimum of the two cost function spaces.

(a) Cost function for numeric Pc at updated tca.

−45

−40

−35

−30

−25

−20

−15

−10

−5

lo
g1

0(
2D

PC
)

(b) Cost function for numeric Pc at original tca.

Fig. 7: Cost function for numeric Pc at updated and original tca on the solution space domain (with delta-V magnitude
constraint), for a specific CDM and algorithm epoch corresponding to the same position in the orbit as the upcoming
conjunction. A black circle indicates the global minimum in each case.
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(a) Cost function at t0. (b) Cost function at t1.
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(c) Cost function at t2.
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Fig. 8: Cost function for numeric Pc at updated tca on the solution space domain (with delta-V magnitude constraint),
for a specific CDM and algorithm epoch. The algorithm epochs correspond to five uniformly-spaced times, t0 through
t5, between two antipodal times around 12 hours prior to tca. A black circle indicates the global minimum in each case.

lision avoidance planning, and STC, Kayhan Space continues to improve its software-as-a-service (SaaS) Pathfinder
platform. In particular, the avoidance maneuver suggestion engine driving Kayhan’s coordinated avoidance maneuver
framework was described and characterized in this paper. The engine’s architecture, which was designed to solve
the need for performant, comprehensive, and easy expandability, was presented at a high level. The supported opti-
mization problems and avoidance algorithms were detailed. The engine’s performance for certain collision mitigation
strategies, including (1) maximization of miss distance, (2) minimization of Pc, and (3) minimization of delta-V while
targeting maximum Pc, were characterized, along with several constraints, such as maneuver direction and shared-
burden between spacecraft. Successful collision mitigation was consistently observed in each category of mitigation
strategy for some common avoidance algorithms and optimization problem setup. The performance of certain mod-
elling simplifications were also characterized including the use of linearized dynamics and Chan’s depth of intrusion,
and their suitable domain clarified. Future work planned includes characterizing Kayhan’s end-end avoidance ma-
neuver framework, and several additions to its avoidance maneuver engine. These additions may include support for
multi-objective problems, new avoidance algorithms, decision variables, and optimization functions.
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(f) Cost function for Chan’s depth of intru-
sion at updated tca for algorithm epoch t5.

Fig. 9: Cost function for Chan’s depth of intrusion on the solution space domain (with delta-V magnitude constraint),
for a specific CDM and algorithm epoch. The algorithm epochs correspond to five uniformly-spaced times, t0 through
t5, between two antipodal times around 12 hours prior to tca. A black circle indicates the global minimum in each case.
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