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Abstract

This paper presents results of a research work on a decision support problem investigating the allocation of operating time 
of passive optical sensors (telescopes) associated with participation in the operation of a wide-area observation network. The 
problem is formulated as a multi-objective optimisation task with constraints extended by a modified Pareto front solution 
selection method. The main feature of the presented algorithm is the representation of decision variables in the form of 
binary numbers with limited precision, which allows selection between sensor modes. Two experiments are presented in this 
paper. First, all the sensors expected to participate in the network were subject to optimisation. Second, involved the use 
of expert knowledge to establish the core of the network under construction based on the selected resources. Consequently, 
these resources have been omitted during the optimisation process in this experiment. Our results show that some sensors 
are strongly preferred by the algorithm. We also note a certain level of equivalence of selected sensors with respect to the 
criteria considered. Therefore, our conclusion is that the selection of sensors to construct the target network requires human 
intervention and consideration of criteria not included in the formal definition of the task. The approach adopted in this work 
provides an effective support in the decision-making process. It allows elimination of decisions that have no rational basis in 
the adopted criteria.

1. INTRODUCTION

In recent decades, there has been a significant transformation in the field of astronomical observations. Significance of 
data obtained from a single sensor has been greatly improved by incorporating observations from multiple sensors working 
simultaneously [1]. This paradigm shift, is crucial for the existence of the space surveillance and tracking (SST) systems. It 
underlines the fact that the synergy between observations from different sensors is of great importance for understanding the 
processes affecting the motion of objects orbiting Earth, including artificial satellites [2]. With the increased importance of 
these multidimensional data sets, there has also been an increased need to effectively manage and utilize them [3].



The main objective of modern SST sensor networks is not only to supply the necessary data, but also to provide the required
redundancy while taking into account the economic aspects of operational activities. This requires a thoughtful — optimized
— approach to network architecture that balances technical soundness with financial prudence. Today’s network architectures
must therefore take into account both the complexity of data acquisition, processing, and transmission and the realities of
budget constraints. These requirements are not exclusively imposed in the SST domain. They are typical for decentralized
sensor networks used, for example, for environmental monitoring [4].

The problem of designing the architecture of a sensor network concerns more than just the structure of the network. Also, it
involves aspects of data fusion techniques, real-time processing, and, increasingly, economical issues as these interact strongly
with one another [5]. This is a direct result of the characteristics of the process dynamics, where the quality of the information
obtained from the system depends on the distribution and characteristics of sensors providing the data as well as the algorithms
processing them [6].

It is a natural phenomenon that the increase in the amount of innovations in data provision is crucial for extracting information
about the process [7]. In the scope of the geographically distributed sensor network systems this is done using data processing
(fusion) algorithms [8, 9]. One of the primary tools used in this regard is the Kalman filter well recognized for its extensive
applications in various fields of science and industry [10]. Equipped with efficient algorithms and computing power one can
provide real-time processing capabilities. However, this is reflected in the cost of investment and maintenance of the resulting
system. Hence, it is essential to give special attention to the design of such systems with particular focus on methods that
allow to make an optimal choice according to the indicators adopted for the project [11].

This is also the case for the SST sensor networks [12]. The inherent uncertainty related to the available information on the
natural dynamics of the process under consideration — the characteristics of motion of space objects in Earth’s orbits —
imposes certain requirements or preferences for the distribution of sensors as well as their type and mode of operation. This
allows one to look at the problem of SST network design as an optimization problem characterized by a number of evaluation
criteria and constraints.

Taking into account constraints, i.e. limitations set by the sensor operators along with the economic and technical indicators
on the operational capacity of the equipment, the report illustrates a set of possible solutions and the related consequences.

The study is intended to assist the decision-making process related to optimized selection of sensors declaring an interest
in participating in the operation of SST sensor network. The proposed method allows one to consider multiple selection of
both objectives and constraints. The latter include not only limitations set by the sensor operators and network managers but
also the economic and technical indicators on the operational capacity of the equipment. In contrast to other approaches, this
work focuses on tools and algorithms to support decision-making in an optimized manner. To this end, it uses multi-objective
optimization framework to formulate decision problem. The goal is to provide an overview of feasible trade-off decision
that, in general, span between the quality of the supplied data, redundancy, and the operational cost of the infrastructure.
The solution of the problem is being sought by applying evolutionary optimization strategy based on multi-objective genetic
algorithms [13, 14, 15, 16]. Moreover, decision support is enhanced by a pre-selection mechanism among the Pareto optimal
population of solutions. For this purpose, the gray relational coefficient (GRC) was used [17].

The contribution of the article is as follows.

• A multi-objective optimization approach to SST network design is introduced. It allows independent consideration of
multiple assessment criteria. The approach systematically organizes possible choices of network architectures using the
Pareto optimality concept.

• The developed decision support mechanism is intended to help decision makers manage both economic and performance
factors in a sustainable manner. The algorithm allows the incorporation of external computing engines to evaluate the
performance of network elements (sensors). In the case under consideration, an expert-based assessment was used.

• A method for selecting a limited, representative number of solutions from the Pareto front was proposed to simplify the
decision-making process. The method is based on the GRC index. A beneficial feature of this approach is its ability to
produce samples without using arbitrary preferences. For this purpose, the method employs data normalization based
on utopia points.

• The presented mechanism enables to take into account factors related to ownership of the components and individual
economic goals expressed through declared availability to participate in the creation of the network.
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The reminder of this paper is organized in the following manner. Section 2 introduces the formulation of the network design
problem using a multi-objective optimization framework. In Section 3 methods and algorithms proposed to deliver decision
support tool are presented. A practical use case of the proposed method is presented in Section 4. In particular, the conditions
of the experiment, tools and algorithm configurations are presented, and the results are discussed. Section 5 summarizes the
paper.

2. PROBLEM FORMULATION

Let ωS denote an individual passive optical sensor (telescope) submitted by its owner as a candidate to participate in a world-
wide sensor network (WSN). Only a carefully selected sensor group (ΩWSN) of all submitted sensor candidates (ΩWSNC) is to
be selected for operations, thus ωS ∈ ΩWSN ⊆ ΩWSNC.

Given each sensor is identified by a unique name (ωSN) and, with no loss to the generality of the formulation, can operate
in either surveillance or tracking mode (ωST ∈ ΩT

def
= {‘S’, ‘T’}), its further characterization is provided by considering the

n-tuple:
ωS

def
= (ωSN, ωST, ωSP, ωSD, ωSDM, ωSC, ωSVLA) , (1)

where: ωSP ∈ ΩP denotes an indicator that determines the sensor performance, ωSD recommended working time of the
sensor, ωSDM is the maximum (specified by the owner or operator) declared working time of the sensor, ωSC determines the
cost per hour of working time, ωSVLA ∈ ΩVLA signifies sensor localization with accuracy to geographic region — very-large
area (VLA), considering:

ΩVLA
def
= {‘Europe’, ‘Asia’, ‘South Africa’, ‘North America’, ‘South America’, ‘Australia’} . (2)

Therefore, given the aforementioned setup, a natural manipulated variable (xxxFTE) in the task is identified as a list specifying
the recommended working time to be assuaged to selected sensors candidates considered to participate in the SST sensor
network. Hence:

xxxFTE
def
=

[
ωSD1, ωSD2, . . . , ωSDnSN

]T
, (3)

where (·)T denotes a transposition of element (·) and nSN is the total number of all sensors included in ΩWSNC, operating in
single mode with respect to ΩT.

As some sensors may declare their participation as either sensors operating in tracking or surveillance mode, which is impor-
tant due to the operational limitations discussed in the following paragraphs, an additional variable, to select operating mode,
is introduced:

xxxT
def
=

[
ωST1, ωST2, . . . , ωSTnST

]T
, (4)

where nST denotes the total number of all sensors included in ΩWSNC, capable of operating, interchangeably, in both considered
modes provided by ΩT.

Finally, a vector of decision variables is defied as:

xxx def
=

[
xxxT

FTE, xxxT
T
]T

. (5)

The sensor’s contribution to the SST sensor network is not arbitrary and is subject to constraints (C). These, include the
network designers’ (stakeholders’) architectural and economical preferences and the participants’ desired involvement, are
quantified in the following manner.

C1 : The preferred by network designers declared percentage of each sensor operating time should remain within predefined
bounds, in reference to the maximum operating time, if the sensor is selected, hence:

ΩC1
def
= {ωS : 0.2 ≤ ωSD ≤ 1∨ωSD = 0} . (6)

C2: The percentage of contributed time declared for sensors located in Europe operating in survey mode should not exceed
an allowable cap value of 1 full-time equivalent (FTE), which yields:

ΩC2
def
=

{
ωS : ∑ωSD ≤ 1 ∧ ωST = ‘S’ ∧ ωSVLA = ‘Europe’

}
. (7)
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C3: The percentage of contributed time declared for all sensors included in WSN operating in survey mode should not
exceed an allowable cap value of 2 FTE, thus:

ΩC3
def
=

{
ωS : ∑ωSD ≤ 2 ∧ ωST = ‘S’

}
. (8)

C4: The percentage of contributed time declared for sensors located in Europe operating in tracking mode should not exceed
an allowable cap value of 1 FTE, hence:

ΩC4
def
=

{
ωS : ∑ωSD ≤ 1 ∧ ωST = ‘T’ ∧ ωSVLA = ‘Europe’

}
(9)

C5: The percentage of contributed time declared for all sensors included in WSN operating in tracking mode should not
exceed an allowable cap value of 2 FTE, therefore:

ΩC5
def
=

{
ωS : ∑ωSD ≤ 2 ∧ ωST = ‘T’

}
. (10)

C6: The recommended percentage for contributed time should not exceed the maximum specified by the sensor owner
(operator) for each individual instrument, which reads:

ΩC6
def
= {ωS : ωSD ≤ ωSDM} . (11)

Given Ci, ∀i ∈ 1,6, the feasible problem set yields:

ΩFPS
def
=

⋂
i∈1,6

ΩCi, (12)

where
⋂

denotes a set intersection and (·),(··) signifies an interval in the set of integers between (·) and (··).
The assessment of the selection of sensors and their involvement in the operation of the SST network under design is carried
out by adopting the following criteria.

O1: The total number of sensors contributing to the WSN under design.

O2: The sensor performance index is based on the operational evaluation of the sensor.

O3: The network distribution over anticipated VLAs.

O4: A yearly operational cost normalized using average market prizes.

Considering H to denote the Heaviside function the assessment criteria (O1 – O4) are quantified as follows:

O1 : J1(ωS)
def
= ∑

ωS∈ΩSN

H (ωSD) , (13)

O2 : J2(ωS)
def
=

∑
ωS∈ΩSN

(ωSD ωSP)

∑
ωS∈ΩSN

ωSD
, (14)

O3 : J3(ωS)
def
=

1
nVLA

∑
i∈ΩVLS

√
∑

ωS(i)∈ΩSN

ωS(i), (15)

O4 : J4(ωS)
def
= ∑

ωS∈ΩSN

ωSD ωSC, (16)

where nVLA denotes the total number of geographical areas listed in the (2).

The pursued solution is to determine the percentage of sensor working time involved in the operation of the SST network
under design allowing maximization of the criteria O1 – O3 while minimizing O4. Solving a mixed task combining min and
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max operators in a direct way is not practical. Therefore, for implementation purposes, without any loss to the problem under
consideration, a vector of objectives is assumed to be defined as:

JJJ (ωS)
def
= [−J1(ωS),−J2(ωS),−J3(ωS), J4(ωS)]

T . (17)

Taking (5), (12) and (17) enables one to pose the problem of SST network design as a multi-objective optimization task with
constraints, which yields:

Ω
∗
J = min

xxx
JJJ (ωS (xxx)), subject to: ωS (xxx) ∈ ΩFPS ⊆ ΩSN, (18)

where ωS (xxx) emphasizes the dependency of sensors considered on the operating mode and percentage of their contribution
— operational time involvement (5) — in the activities of for WSN under design.

In addition, taking the argument set of the above multi-criteria optimization task as Ω∗
x, the following holds:

Ω
∗
J = JJJ (Ω∗

x) . (19)

In addition, Ω∗
x is a set of proposed solutions for the SST network design task which indicates the percentage of sensor

operating time, optimized with respect to the adopted criteria O1 – O4.

The scope of further considerations is specified by adopting the following set of assumptions.

Assumption 1 It is assumed that the set of Ω∗
J is ordered in the Pareto sense.

By the virtue of Assumption 1, the set of proposed solutions (Ω∗
J ) to a problem consists of elements having such a charac-

teristic that any change in the selection of a solution that improves a certain assessment criterion cannot take place without
deteriorating another (the inverse is also true).

Assumption 2 It is assumed that the sensor’s performance index ωSP is determined on a discrete rating scale from 1 to 6,
thus:

ΩP
def
= 1,6. (20)

Assumption 3 It is assumed that the sensor performance index takes into account the characteristics of the object, the quality
of the generated data, reliability and response to disturbances affecting its operation.

Assumption 3 enables decoupling of the design method presented in the paper from the method of evaluating the performance
of sensors. This means that it is possible to use any method of evaluation of sensor performance as long as it allows the result
to be obtained as a single value.

3. METHODS AND TOOLS

Given the nature of the task (18) and the order in the solution space imposed by the Assumption 1 for the purpose of finding
the numerical solution of the task, the NSGA-III algorithm [15] was employed. The subsequent steps of the algorithm are
described in the following paragraphs of Subsection 3.1. The details regarding constraint handling are provided in Subsec-
tion 3.2. A pre-selection mechanism devoted to restrict the number of solutions to a limited number of representative elements
is given in Subsection 3.3.

3.1 Evolutionary algorithm

First, an initial population of decision variables (xxx) is randomly drawn as vectors of floating point numbers with limited
precision with the assumption of a uniform distribution between 0 and 100 (xxxFTE) and binary values (xxxT). At this point the
(initial) population may consist of individuals both meeting and exceeding the constraints. Second, the initial population
is evaluated based on the adopted criteria O1 – O4. Taking the elementary stopping criterion as the maximum number of
generations, as long as it remains unsatisfied, the algorithm proceeds with the evolutionary process.

During the evolution process, the successive steps of the algorithm use the mechanisms of natural selection, crossover, muta-
tion, and two dedicated operators to take into account the characteristics of the problem. The natural selection is implemented
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using tournament selection [18]. In case of crossover operator two independent mechanisms are used. First to handle float-
ing point numbers. Second to provide support for binary valued part of xxx. In the former case a simulated binary bounded
crossover operator is applied. In the latter case a two point operator is used. A similar distinction was applied to the selection
of mutation operators. For floating-point encoded part of xxx the polynomial bounded mutation operator is invoked. In case of
a binary encoded part of xxx a simple flip bit mechanism is used. The two additional operators used are designed to adapt the
numerical conditions of the population to the characteristics of the task being solved. The task of the first additional operator
is to attract an independent individual of the population closer to the constraints on the FTE. The second proposed operator
guards the numerical precision adopted in the calculation by making adjustments to the genes (values in xxxFTE) of individuals
accordingly.

The workflow of the algorithm is presented in Fig. 1.

Start

Initial population

Evaluation

Stopping
criterion is
satisfied?

Natural selection
(based on fitness)

Crossover operators

Mutation operators

Additional 1
(constraint attraction)

Additional 2
(adjust precision)

Stop

No

Yes

Figure 1: NSGA-III based algorithm workflow

3.2 Constraint handling

Among the mechanisms typically used to account for the constraints of the optimization task in the evolutionary process is
the penalty function method [19]. In this study, this method was used for C1 – C6. Thus, the implementation of the constraints
consisted of adding a penalty to all objective functions (O1 – O4), according to the relationships shown below.
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In the case of C1, the penalty function was used in the quadratic form given by:

h1
def
= ∑h1 i, (21)

where:

h1 i (xxx) =

{
0 , if ωS ∈ ΩC1

5+3(1−100∗ (0.1−ωSi)
2) , otherwise

. (22)

In contrast, the C2 - C6 constraints used a linear penalty function, following:

C2 : h2 (xxx) =

{
0 , if ωS ∈ ΩC2

0.5+∑ωSD −1 , otherwise
, (23)

C3 : h3 (xxx) =

{
0 , if ωS ∈ ΩC3

0.5+∑ωSD −2 , otherwise
, (24)

C4 : h4 (xxx) =

{
0 , if ωS ∈ ΩC4

0.5+∑ωSD −1 , otherwise
, (25)

C5 : h5 (xxx) =

{
0 , if ωS ∈ ΩC5

0.5+∑ωSD ≤ 2 , otherwise
, (26)

C6 : h6
def
= ∑h6 i, (27)

where:

h6 i (xxx) =

{
0 , if ωS ∈ ΩC6,

1+ωSD −ωSDM, , otherwise
. (28)

In the case of constraints C2 – C6, the (classical) penalty function in its quadratic form is abandoned in favor of linear functions.
This treatment was intended to strengthen the mechanism against exceeding the constraints in the case of minima located close
to the constraints.

3.3 Solution pre-selection

Typically, the evolutionary algorithm generates a diverse set of Pareto optimal solutions. This makes the task of decision-
making laborious due to the large number of available options. To simplify the selection process (decision-making) a pre-
selection method based on the GRC is implemented. Further insight into this approach is provided in the subsequent paragraph.

Subsequent steps of the proposed selection method are as follows:

Step 1: Select only scenarios for which the number of sensors is maximum.

Ω
∗
J r1

def
=

{
ωS ∈ Ω

∗
J : J1(ωS) = max

ω∈Ω∗
J

J1(ω)

}
. (29)

Step 2: Restrict the selection to 10% of scenarios, with the best performance index:

Ω
∗
J r2

def
=

{
ωS i ∈ Ω

∗
J r1 : ∀i∈1..(N

Ω∗
J r1

−1)J2(ωS i)> J2(ωS i+1), i < 0.05NΩ∗
J r1

}
. (30)

Step 3: Span the results over cost (16) and network distribution (15) objectives.

Step 4: Select Pareto optimal solution with respect to the objective functions selected, in Step 3:

Ω
∗
J r3

def
= argmin

xxx
[−J3,J4] (ωS), subject to: ωS ∈ Ω

∗
J r2. (31)

Step 5: Use GRC [17, 20] to select final set of results candidates (network architectures) for final decision-making.

The application of the above procedure makes it possible to significantly reduce the population of solutions to those represen-
tative, reflecting the strategic objectives adopted in the decision-making process.
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4. RESULTS

This section sequentially presents the preparation of the experiment (Subsection 4.1), the configuration of the method used to
solve the decision support task (Subsection 4.2), and the results obtained along with a discussion (Subsection 4.3).

4.1 Experiment setup

The algorithm input data — considered sensor candidates — is given in Table 1. There is a direct relation of the data in Table 1
with the problem characteristics (Section 2), in terms of sensor name (ωSN), operational mode (ωST), sensor performance
(ωSP), maximum FTE (ωSDM), cost per hour (ωSC), and location (ωSVLA). The last column is used to calculate the objective
— yearly operational cost (O4).

Table 1: Sensor candidates (ΩWSNC)

Name Operation Sensor Maximum Normalized VLA Night time
(ωSN) mode (ωST) performance (ωSP) working time (ωSDM) cost (ωSC) (ωSVLA) on-site

[-] (S/T) (1–6) [% of FTE] [1/h] [-] [h/y]
A (S)urvey 3 66% 1,005 Europe 3557
B (S)urvey 4 50% 0,992 Europe 3351
C Both (S/T) 5 50% 1,005 Europe 3556
D (S)urvey 3 50% 1,003 Europe 3198
E Both (S/T) 6 35% 1,005 Europe 3186
F (S)urvey 6 15% 0,991 Europe 3664
G Both (S/T) 6 20% 1,004 Europe 3447
H (S)urvey 6 50% 1,020 North America 3634
I (S)urvey 6 40% 0,991 Southern Africa 3653
J Both (S/T) 6 60% 1,005 Southern Africa 3717
K Both (S/T) 6 80% 0,976 Australia 3662

4.2 Methods and tools

The NSGA-III based algorithm presented in Section 3 has been implemented using Python 3.10. For numerical calculations,
the precision of floating-point decision variables was assumed to be equal to 5. This is in line with 5% points granularity
in terms of working time contribution (ωSD) composing the xxxFTE part of the decision vector xxx. In turn, the parameters
characterizing the algorithm’s workflow are listed in the Table 2.

Table 2: Evolutionary algorithm configuration parameters

no. Value Description
1 700 total number of generations
2 0.1 probability of using one of crossover operators (simulated binary bounded or two point)
3 0.8 probability of using one of the mutation operators (polynomial bounded or flip bit)
4 0.05 probability of using a dedicated mutation operator
5 10 total number of algorithm runs

4.3 Results and discussion

By applying the presented method (Section 3) to the WSN design problem (18), a 4-dimensional set of non-dominated —
Pareto-optimal — solutions was obtained using the presented input data (Table 1). A projection of the solution set onto a
3-dimensional subspace, ignoring the cost (O4) is presented in Fig. 2.
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Figure 2: Pareto front projection on O1 –O3 subspace

Due to the discrete nature of the first objective function (O1), it was decided to divide the non-dominated solutions into series
with respect to the number of sensors. As a consequence, this enables to represent subsets of the front in a 3-dimensional
space. In Figs. 3 and 4, the subsets, generated for the maximum number of 11 and subsequently 10 sensors considered, are
shown, respectively.

Figure 3: Pareto front projection on O1 –O3 subspace considering 11 sensors
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Figure 4: Pareto front projection on O1 –O3 subspace considering 10 sensors

Analyzing the set of non-dominated solutions, it can be seen that for the assumed number of sensors, the points are arranged
along a certain straight line intersecting the objectives subspace. The situation can be analyzed in the context of O3 relative
to O2 at the selected values of O1 and O4. From this viewpoint, one can observe the existence of solutions for which the
preservation of a high value of the quality index (O2) does not force significant changes (deterioration) in the parameter of
distribution across the VLA (O3). In the case of network system operating costs (O4), the situation is different. A change
in the network performance index (O2) and network distribution (O3) force a change — an increase — in costs (O4). Hence
flows the conclusion that an increase in the quality of network operation is associated with a higher cost of maintenance, as
one would actually expect.

By comparing Case 1 and Case 2 (Figs. 2 – 4) it is possible to see how the possibility of adding an additional "K" sensor
influences the design of the network. It is observed that adding a sensor enables one to design a network with a larger number
of sensors. Apparently, it also allows to increase both the network dispersion (O3) and its quality (O2), which is directly
related to the sensor parameters (e.g., VLA and quality).

According to the adopted method of limiting the set of solutions to the decision problem (Section 3.3), a set of representative
proposals for WSN architecture was generated. The population of results thus restricted has the characteristic that the higher
the value of the GRC, the closer the solution is to the utopian point in the solution space of task (18) — see Fig. 5.

Figure 5: Reduced Pareto front with GRC coefficient
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The selected 10 network architectures having the highest GRC for both Case 1 and Case 2 are shown as Tables 3 and 4.

Table 3: Top 10 GRC network architecture candidates in Case 1

Sensor name Desired sensor contribution (mode)

A 20%(T) 20%(T) 25%(T) 20%(T) 20%(T) 25%(T) 25%(T) 20%(T) 20%(T) 20%(T)
B 20%(T) 20%(T) 20%(T) 20%(T) 20%(T) 20%(T) 20%(T) 20%(T) 20%(T) 20%(T)
C 20%(S) 20%(S) 55%(S) 60%(S) 60%(S) 60%(S) 60%(S) 45%(S) 55%(S) 55%(S)
D 25%(T) 45%(T) 20%(S) 20%(S) 20%(S) 35%(S) 35%(S) 35%(S) 35%(S) 35%(S)
E 35%(S) 20%(S) 20%(S) 20%(S) 20%(S) 20%(T) 20%(S) 20%(S) 20%(T) 20%(S)
F 15%(T) 15%(T) 20%(S) 20%(S) 20%(T) 20%(S) 20%(T) 20%(S) 20%(S) 20%(T)
G 20%(T) 20%(S) 80%(S) 80%(S) 80%(S) 80%(S) 80%(S) 80%(S) 80%(S) 80%(S)
H 50%(T) 50%(T) 15%(T) 15%(T) 15%(T) 15%(T) 15%(T) 15%(T) 15%(T) 15%(T)
I 40%(T) 40%(T) 50%(T) 50%(T) 50%(T) 50%(T) 50%(T) 50%(T) 50%(T) 50%(T)
J 45%(S) 60%(S) 40%(T) 40%(T) 40%(T) 40%(T) 40%(T) 40%(T) 40%(T) 40%(T)
K 80%(S) 80%(S) 25%(T) 25%(T) 25%(T) 20%(T) 20%(T) 30%(T) 20%(T) 20%(T)

FTE tracking Europe [-] 1.00 1.00 0.85 0.80 1.00 1.00 1.00 0.85 0.95 0.95
FTE survey Europe [-] 0.55 0.60 0.60 0.60 0.40 0.55 0.55 0.75 0.55 0.55
FTE tracking [-] 1.90 1.90 1.75 1.70 1.90 1.90 1.90 1.75 1.85 1.85
FTE survey [-] 1.80 2.00 1.95 2.00 1.80 1.95 1.95 2.00 1.90 1.90

O1 [-] 11 11 11 11 11 11 11 11 11 11
O2 [-] 4.96 5.11 4.94 4.96 4.96 5.20 5.20 5.00 5.08 5.08
O3 [-] 2.66 2.73 2.67 2.68 2.68 2.72 2.72 2.68 2.69 2.69
O4 [-] 3.64 3.84 3.66 3.67 3.67 3.80 3.80 3.69 3.70 3.70

GRC 0.75 0.75 0.73 0.72 0.72 0.70 0.70 0.69 0.69 0.69

Table 4: Top 10 GRC network architecture candidates in Case 2

Sensor name Desired sensor contribution (mode)

A 20%(T) 20%(T) 20%(T) 20%(T) 20%(T) 20%(T) 20%(T) 20%(T) 20%(T) 20%(T)
B 35%(T) 20%(T) 20%(T) 20%(T) 20%(T) 20%(T) 20%(T) 20%(T) 20%(T) 20%(T)
C 20%(S) 45%(S) 60%(S) 60%(S) 60%(S) 55%(S) 60%(S) 60%(S) 55%(S) 55%(S)
D 25%(T) 45%(T) 35%(S) 35%(S) 35%(S) 35%(S) 25%(S) 35%(S) 35%(S) 35%(S)
E 35%(S) 35%(S) 20%(S) 40%(S) 25%(S) 30%(S) 45%(S) 30%(S) 40%(S) 35%(S)
F 15%(T) 15%(T) 20%(S) 20%(S) 20%(S) 20%(S) 20%(S) 20%(S) 20%(S) 20%(S)
G 20%(S) 20%(S) 15%(T) 15%(T) 15%(T) 15%(T) 15%(T) 15%(T) 15%(T) 15%(T)
H 50%(T) 50%(T) 50%(T) 50%(T) 50%(T) 50%(T) 50%(T) 50%(T) 50%(T) 50%(T)
I 40%(T) 40%(T) 40%(T) 40%(T) 40%(T) 40%(T) 40%(T) 40%(T) 40%(T) 40%(T)
J 60%(S) 60%(S) 45%(T) 45%(T) 45%(T) 45%(T) 45%(T) 45%(T) 45%(T) 45%(T)

FTE tracking Europe [-] 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
FTE survey Europe [-] 0.75 1.00 0.75 0.95 0.80 0.85 0.90 0.85 0.95 0.90
FTE tracking [-] 1.85 1.90 1.90 1.90 1.90 1.90 1.90 1.90 1.90 1.90
FTE survey [-] 1.35 1.60 1.35 1.55 1.40 1.40 1.50 1.45 1.50 1.45

O1 [-] 10 10 10 10 10 10 10 10 10 10
O2 [-] 4.14 4.33 4.14 4.29 4.18 4.14 4.18 4.21 4.21 4.18
O3 [-] 2.13 2.21 2.14 2.19 2.16 2.15 2.18 2.17 2.18 2.16
O4 [-] 3.14 3.43 3.18 3.38 3.23 3.23 3.34 3.28 3.33 3.28

GRC 0.75 0.75 0.71 0.70 0.68 0.67 0.67 0.67 0.66 0.66

The following Figs. 6 – 9 illustrate the network architectures for the two highest GRC values for both Case 1 and Case 2. The
maps shown illustrate the use of tracking and survey sensors in various VLAs. In addition, in the lower left corner there is a
summary describing the allocation of resources between the sensors in the network.
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Figure 6: Sensor network architecture (Case 1, GRC= 0.75, column 1)

Figure 7: Sensor network architecture (Case 1, GRC= 0.75, column 2)
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Figure 8: Sensor network architecture (Case 2, GRC= 0.75, column 1)

Figure 9: Sensor network architecture (Case 2, GRC= 0.75, column 2)

Analyzing the network architectures designed by the algorithm (Figs. 6 – 9) for both Case 1 and Case 2, certain distinctive
features can be observed. In each case, the proposed representative solutions — network architectures — consist not only of
different sets of sensors, e.g., Figs. 6 and 8. In fact, even in case of the same sensors being considered it is possible to observe
different proposals for their operating modes, as well as contributions in operating times, e.g., Figs. 6 and 7.

The above-mentioned features illustrate that a multi-objective problem can have many combinations of Pareto-equivalent
solutions. Moreover, the proposed mechanism for limiting the size of the set of proposed solutions to a certain representative
subset preserves the diversity. That is, the proposed solutions are easily distinguishable. This gives the decision-maker

Copyright © 2023 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) – www.amostech.com 



freedom of choice, which enables to consider soft requirements — not included in the algorithm code. These can be, for
example, conditions of a political nature that are difficult to code.

5. CONCLUSIONS

This paper describes a proposed decision support method for the design of a world-wide SST network. The proposed solutions
were generated by solving a multi-objective optimization task with constraints. For this purpose four quality indicators were
adopted, as well as constraints of the task resulting from organizational conditions and preferences of sensor operators. In
addition, a method was developed to limit the population of possible (Pareto optimal) solutions to a certain small group of
representative cases — proposed network architectures. The goal is to ease the network design on a decision-making level.

Further research plans include, among others, the following activities. Focus on solutions dedicated to explore the decision
space in the vicinity of constraints. Carrying out the optimization in stages in order to improve the resolution of the Pareto
front approximation in the areas indicated by the decision maker.

CRediT authorship contribution statement
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