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ABSTRACT

Performing Space Domain Awareness (SDA) on the cislunar volume is infeasible with any single Electro-Optical or
Infrared (EO/IR) sensor system. This difficulty results from factors such as the vast expanse of cislunar space, the
chaotic dynamic conditions, and the time-varying illumination backgrounds across the volume. These complications
necessitate the development of collaborative networks of distributed space-based sensors to close coverage gaps of
existing Earth-based infrastructure and enable persistent cislunar SDA.

We show progress on optimizing the distributed sensor optimization problem from the lens of not only the performance
of technologies but also operational constraints that are unique to the Cislunar domain. Models representing both of
these factors have been assembled into software packages to enable a Model-Based Systems Engineering (MBSE)
analysis of the problem. In order to perform optimization studies across the library of potential models, we have further
developed a rapidly configurable Multi-Disciplinary Analysis and Optimization (MDAO) modeling framework. The
MDAO framework uses object-oriented programming techniques to standardize model interfaces and allow them to
be integrated into a unified optimization environment that is extended from NASA’s OpenMDAO package. At the
optimization stage, this MDAO system leverages genetic algorithms to produce the optimal choice of technologies and
designs with respect to desired operational performance metrics. The end result is a modular software package that
can be used to execute optimizations across a range of present and future cislunar technologies and designs.

We provide an overview of how the metrics for sensor detection performance and orbit maintenance costs can be
integrated into a library of optimization metrics. These metrics were used to assess the performance of distributed
sensor networks consisting of observers spanning the cislunar space. Sensor detection performance is quantified by the
percentage of the coverage over time, whereas the maintenance costs are quantified by orbit instability and navigation
uncertainty. These cost metrics are used to optimize the SDA architecture while considering the operational challenges
of deploying and maintaining distributed sensors within the chaotic cislunar volume. We present our results in the form
of a Pareto front of non-dominated solutions to each of the specified performance metrics and detail changes in how
architecture optimization changes once our operational cost metrics are considered.

1. INTRODUCTION

Recent market research surveys indicate that upwards of 250 lunar missions with economic costs totaling $100 Billion
dollars are expected by the year 2030 [1]. The increased amount of lunar-bound traffic necessitates the develop-
ment of Space Domain Awareness (SDA) networks to monitor satellite motions in the Beyond Geostationary (xGEO)
region. While there are currently many commercial, national, and international assets available to surveil the near-
Earth regimes of Low-Earth Orbit (LEO), Medium Earth Orbit (MEO), and Geostationary Orbit (GEO), these existing
surveillance systems are not readily extendable to the cislunar domain [2].

One of the primary reasons for this is that lunar gravity cannot be neglected or treated as a perturbation to a dynamic
model for cislunar object tracking as in the case of dynamic models of near-Earth orbiting satellites [3]. Cislunar
satellites are affected by both the Earth and the Moon’s gravitational forces; their motion must therefore be modeled
using three-body dynamics which are well known to be chaotic even for simplified approximations [4]. An additional
complication to performing tasks such as Initial Orbit Determination (IOD) on satellites in the cislunar region from
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near-Earth infrastructure is that objects in cislunar space can appear to move very slowly from the perspective of an
observer based on the Earth’s surface or even orbiting the Earth; this means that there may be insufficient geometric
diversity for generating reliable IOD position and velocity estimates of the cislunar satellite’s motion [3]. Finally,
from the perspective of electro-optical sensor tasking, the vast volume of the cislunar regions poses challenges for
detecting object signatures, let alone consistently tracking the objects [5]. The Earth-Moon distance is roughly 10×
greater than GEO altitude and certain low-energy transfers can have apogees extending to approximately 1.5 million
kilometers, which is roughly five times the Earth-Moon distance [2, 5]. This represents a nearly 1000× increase in
coverage volume relative to the volume extending out to GEO orbit that the current United States Space Force (USSF)
SDA infrastructure is tasked with monitoring [2]. In addition to collecting sufficient numbers of photons for detection
of assets, certain viewing geometries can pose substantial challenges for detection of lunar-bound assets. In particular,
the Air Force Research Laboratory (AFRL) has termed a conical section of approximately 30◦ surrounding the Earth-
Moon direction as the “cone of shame” due to the inability to detect dim targets against the relatively bright backdrop
of the lunar surface [6]. The need to decrease sensor standoff ranges and increase the geometric diversity of electro-
optical observations makes distributed space-based constellations a desirable solution to overcome the limitations of
near-Earth and Earth-based SDA infrastructure.

There have been several recent studies that focused on optimizing the surveillance of the cislunar volume via dis-
tributed space-based sensors. Many of these studies focus on optimizing some variation of the percentage of a
search-volume that is considered “visible” to the architecture over time [3, 5, 7, 8, 9, 10, 11]. While the definition
of “visibility” varies across these studies, the ultimate findings of all of these studies indicate that there is no single
cislunar orbit family that solves the challenge of continuously detecting objects in the cislunar volume over extended
periods of time. These results indicate that a diverse array of space-based assets must be deployed in order to provide
geometric and spatial diversity to overcome the challenges of surveilling the cislunar volume using electro-optical
means [3, 11]. These studies, however, ultimately fall short in that they do not consider cost factors that could poten-
tially render orbital families with high detection performance infeasible from an operational perspective. In this paper,
we propose several novel optimization metrics that capture these cost factors and combine them into a cost function
that considers not only detection performance but also the operational challenges of performing station keeping and
maintaining inertial positioning of a surveillance asset.

This paper is organized as follows: In Section 2, we introduce the modeling of motions in the Earth-Moon system
under three body conventions and cover the concept of equilibrium orbits that are desirable for long-term cislunar
surveillance. In Section 3, we introduce several existing and new optimization metrics, which span from considering
percentage visibility to new operational cost factors for station keeping and inertial navigation. In Section 4, we
introduce the cost functions over which space-based constellations will be optimized, and the Multi-Disciplinary
Analysis Optimization (MDAO) framework that is leveraged to optimize said cost functions over configurable design
reference missions. In Section 5, we introduce the design reference mission for this study that optimizes over the
observability of targets spanning a conical volume centered on the Earth-Moon direction in the rotating Earth-Moon
frame. Finally, in Section 6 we present results on the optimal space-based architectures in the context of two different
cost functions: (1) the percentage search-volume visible to the architecture over time, and (2) a combined metric of
the percentage search-volume visible to the architecture over time and the costs due to orbit instability and optical
navigation uncertainty.

2. CISLUNAR DYNAMICS

Motion within the Earth-Moon system is typically approximated by using Circular Restricted Three-Body Problem
(CR3BP) dynamics. Under the dynamics of the CR3BP, a spacecraft of negligible mass undergoes motion due to the
gravitational influence of two primary bodies (Moon and Earth) that are approximated as point masses [12]. In order
to simplify the equations of motion, the position and velocity of the spacecraft are expressed in terms of a non-inertial
coordinate system that rotates with an angular velocity of magnitude equal to the rate of rotation of the primary masses
moving in circular orbits about their barycenter [3]. These approximations are typically highly successful for modeling
the motion of spacecraft traversing the cislunar domain due to the relatively low eccentricity of the Moon’s orbit and
the small effect of the Sun’s gravitational effect, especially in the vicinity of the Earth or Moon [4].

In terms of the non-inertial rotating frame, the acceleration of a spacecraft at position rD undergoing gravitational
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Fig. 1: Diagram of the rotating frame of the Circular Restricted Three-Body Problem (CR3BP). A spacecraft of
negligible mass (m3 ≈ 0) at non-dimensional position (r) is acted upon by two primary masses oriented along the
x-axis of the rotating frame. Approximate positions of equilibrium points (L1-L5) are shown in green for locations
where the gradient of the pseudopotential (∇U) approaches a value of zero [3, 11].

force by a large primary mass at location r1D and a smaller primary mass located at location r2D is written as [13, 12]:
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where G is the gravitational constant, m1 and m2 (with m1 ≥ m2) are the masses of the two primary bodies, and ω

is the magnitude with which the rotating frame spins about the z-axis with angular velocity −→
ω = [0, 0, ω]T [13, 3].

From this equation, we can see that the two primary masses are oriented along the x-axis of the rotating frame, with
the geometry outlined in Figure 1.

The subscript D in Equation 1 denotes that the units are dimensionalized. This means that the units are expressed
according to SI unit conventions. According to standard astrodynamics conventions, the state vector components
of spacecraft are nearly always non-dimensionalized when propagating motion under the CR3BP [13, 12]. In order
to generate non-dimensional positions, all position vectors are therefore scaled by a Distance Unit (DU) equal to
the distance in between the primary masses given by: DU = |r1D − r2D | ≈ 384,400 km. Similarly, the masses of
the primary bodies are scaled by 1 Mass Unit (MU) given by: MU = m1 +m2. This introduces a mass ratio µ =
m2/(m1+m2)≈ 0.012277471 that is used to describe non-dimensionalized masses of the two primary bodies. Finally,

the SI times are scaled by a Time Unit (TU) that is given by: TU = 1/ω =

√
|r1D−r2D |3
G(m1+m2

)≈ 4.348 days. [3, 12]. After

performing this non-dimensionalization, the equation of motion in the rotating frame take on the simpler form of [3]:
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where the subscript D has been dropped to signify the equation of motion are non-dimensionalized, and ρ1 and ρ2
denote the non-dimensional distances from the spacecraft to the large and small primary bodies, respectively. For the
remainder of the paper, we will assume that all position and velocity vectors are non-dimensional unless explicitly
stated otherwise.

The form of the non-dimensional acceleration of Equation 2 allows for the expression of CR3BP dynamics in terms
of a psuedopotential (U) [5]:

U =
x2 + y2

2
+

1−µ

ρ1
+

µ

ρ2
(3)

∂U
∂x

= ẍ−2ẏ (4)

∂U
∂y

= ÿ+2ẋ (5)
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∂U
∂ z

= z̈ (6)

The pseudopotential U and it’s partial derivatives allow for exploration of equilibrium points (also known as libration
points) of the Earth-Moon system as described under CR3BP dynamics [3]. At such equilibrium points, the gravita-
tional forces acting on a spacecraft are balanced due to the gradient of the psuedopotential (∇U) approaching a value
of zero [3, 14]. Orbits that are centered on such equilibrium points are attractive to consider because they allow for
stable periodic orbits within the chaotic CR3BP system at potentially minimal fuel cost [13, 12]. As we will discuss in
Section 3.2, however, the stability (and therefore station-keeping fuel cost) can vary substantially both within orbital
families and across different libration point orbits.

The topic of equilibrium points of the CR3BP are discussed in great detail in the work of Fowler and Paley [3], and
will therefore only be briefly discussed here. The first three libration points (denoted L1. L2, and L3) lie along the
x-axis of the rotating frame of the CR3BP system and can be solved for by setting ∂U/∂ z = ∂U/∂x = 0. This leads to
the following solution for the locations of these points in the rotating frame in terms of the spacecraft coordinates [3]:

rL1 = ((1−µ)−ρ2, 0, 0) (7)

rL2 = (ρ2 +(1−µ), 0, 0) (8)

rL3 = (−ρ1 −µ, 0, 0) (9)

The remaining two main libration points (termed L4 and L5) are found by computing the points at which the distances
primaries to the spacecraft are equal (i.e. ρ1 = ρ2 = 1). The solution to ∂U/∂ρ1 = ∂U/∂ρ2 = 0 at these points shows
that the L4 and L5 points form equilateral triangles with respect to the two primary masses [3]. These points therefore
have the following coordinates in the rotating non-dimensional frame:

rL4 =

((
1
2

)
−µ,−

√
3

2
, 0

)
(10)

rL5 =

((
1
2

)
−µ,+

√
3

2
, 0

)
(11)

From Equations 7-11, a few observations can be made regarding potentially useful equilibrium points for cislunar
surveillance. One is that the L3 point is located on the farther side of the larger primary mass (i.e. the Earth) with
respect to the smaller primary mass (i.e. the Moon), rendering it of limited interest for monitoring major lunar-bound
traffic. The other is that the L4 and L5 points are symmetric with respect to the x-axis of the rotating frame, meaning
that they provide similar observability for monitoring lunar-bound traffic traveling in the +x direction of the rotating
frame. For these reasons, our study will only consider the surveillance capability of a select set of orbits centered
about the L1, L2, and L4 equilibrium points, with the specific orbital families presented later on in Table 1.

In this study, the CR3BP equations of motion defined by Equations 4-6 are propagated over non-dimensional time via
the State Transition Matrix (STM) denoted as Φ. The STM is defined according to the following initial value problem:{

Φ̇(t) = A(x(t))
Φ(t) = I6×6

(12)

where A is the Jacobian of the CR3BP and x(t) is the state vector consisting of the position and velocity of the
spacecraft at a given moment of time (t) [5].

3. CISLUNAR SURVEILLANCE METRICS

In this section, we present our proposed performance and cost metrics for optimizing the cislunar surveillance problem.
In Section 3.1, we present a metric that quantifies the the percentage of the search-volume visible to the architecture
over time. Various forms of this metric have been utilized in SDA studies for optimizing the cislunar surveillance
problem [8, 3, 11, 5]. While the percentage search-volume metric has been useful for optimizing factors such as stand-
off distances and phasing of cislunar satellites, it does not consider operational costs of maintaining a constellation.
Therefore, in Sections 3.2-3.3 we present metrics that quantify the costs of orbit instability and navigation uncertainty.
These additional metrics allow us to quantify the operational challenges of maintaining distributed sensors within the
chaotic cislunar volume, as will be presented in Section 4.1.
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3.1 Target Detectability Metric

In order for a space object to be “visible” to an electro-optical telescope, the space object must be sufficiently bright
[11] and the telescope aperture must be adequately sized to collect a sufficient number of target photons to enable
detection [15]. To capture both of these considerations, our performance metric for target detectability is adopted
from previous work by Vendl and Holzinger in which they optimized the fraction of time for which a space object’s
apparent magnitude was higher than a sensor’s cutoff visual magnitude [11]. In this paper we refer to this metric as
the percentage of the search-volume visible to the architecture over time, and note that it is the community standard
for optimizing cislunar surveillance networks [8, 3, 11, 5].

Vendl and Holzinger’s metric treats the target as a spherical satellite of diameter dT that reflects incident radiance with
specular reflectance (ρs) and Lambertian reflectance (ρd). This shape approximation leads to a closed-form solution
of the reflected radiance [16], and consequently allows for the apparent magnitude of the target of a target at location
r being observed by a telescope at location o to be computed as [11]:

mT (t) = mS −2.5log10

(
dT

2

|r(t)−o(t)|2
[

ρs

4
+ρd pd(ϕ(t))

])
, (13)

where mS =−26.74 is the apparent magnitude of the Sun, and ϕ is the solar phase angle defined as a function of the
Sun’s location (s) relative to the target and observer locations as [11]:

ϕ(t) = arccos
(
(o(t)− r(t)) · (s(t)− r(t))
|o(t)− r(t)||s(t)− r(t)|

)
, (14)

and pd(ϕ(t)) is a closed form solution for a scattering function that defines how a diffusely reflecting sphere scatters
incident radiance as a function of solar phase angle [11]:

pd(ϕ(t)) = (2/3π)(sin(ϕ(t))+(π −ϕ(t))cos(ϕ(t))) (15)

Based on our goal of minimizing the apparent magnitude of the target (mT ), a few observations can be drawn on
constellations that will lead to the optimal target-solar-observer geometry at an instantaneous moment of time. From
the factor |r(t)− o(t)|−2 in Equation 13, we can see that minimizing mT requires the cislunar surveillance asset to
continuously maintain low standoff distances from the target. From Equation 15, we can see that minimizing mT also
requires that the cislunar surveillance telescope be phased with respect to the sun such that the observer maintains low
solar phase angles with respect to the target’s position. These deductions provide guidelines on how we can minimize
the apparent magnitude of a target at an instantaneous moment of time. However, we truly desire to know how well a
given surveillance asset can maintain custody of a cislunar target over extended durations of time.

Accordingly, Vendl and Holzinger suggested that the apparent magnitude of a target be evaluated over all time steps
of the simulation duration to generate a Cumulative Distribution Function (CDF) of target apparent magnitudes from
the perspective of an observer’s trajectory [11, 5]. After generating this CDF, a cutoff visual magnitude (mco) is used
to evaluate the target’s apparent magnitude against the limiting visual magnitude of a deployed telescope’s optical ca-
pabilities [15]. The visibility performance metric of a single target is then considered as the target apparent magnitude
in the CDF that meets a requirement that for α-percent of the simulation time steps the target apparent magnitude is
greater than the cutoff apparent magnitude, denoted as MT (α) [11]. Using this framework, the target is deemed visible
for the duration of the mission in the context of the telescope’s limiting magnitude (mco) and a desired percentage time
of custody (α) if it satisfies the equation [5]:

MT (α)≤ mco (16)

A diagram outlining the concepts of this metric is shown in Figure 2. In our study, the visibility performance metric
used in the optimization framework is defined as the percentage of the total distributed targets (Γv) in the cislunar
volume that are visible for the mission duration according to Equation 16. For clarify, our approach for computing the
Γv factor follows from Algorithm 1 of Visonneau et al’s optimization study [5].

3.2 Stability Cost Metrics

For a given orbit about an equilibrium point, a stability index for this orbit can be computed by evaluating the eigen-
values of its monodromy matrix. The monodromy matrix (Φ(P)) corresponds to the STM evaluated after propagation
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Fig. 2: A diagram outlining the concepts of Vendl and Holzinger’s visibility metric [11]: (a) An candidate observer
monitoring fixed targets within a volume of interest captures measurements in the form of visual magnitude; (b) the
time history of visual magnitude measurements for each target is converted into a Probability Density Function (PDF);
(c) the PDF is converted into a Cumulative Density Function (CDF) and the percentage level necessary for successful
custody over the time of simulation (α) is used to derive signature MT (α) that represents the percentage of time that
the object is under custody for α% of the time.

of the spacecraft for it’s period (P) [5]. The eigenvalues of the monodromy matrix have several interesting properties,
including: (1) appearing in reciprocal pairs, and (2) one pair of eigenvalues always being equal to unity due to the
periodicity of the orbit [17]. Excluding the trivial pair, the largest eigenvalue of the monodromy matrix (λmax) may
used to compute a single metric that describes the stability of the corresponding orbit [5]:

σ =
1
2

(
λmax +

1
λmax

)
(17)

It has been shown that a larger value of the stability value of the stability index (σ ) is correlated with a faster departure
from the reference [17].

3.3 Navigation Performance Metric
Achieving superior inertial navigation performance is critical to ensure that cislunar surveillance activities such as
orbit determination and sensor tasking can be accomplished effectively. Studies have shown that uncertainty in an
observer’s position can flow downstream into cislunar orbit determination solutions [18], that precise navigation es-
timates are required for planning stationkeeping maneuvers [19], and that certain equilibrium point orbits require
more precise positioning and velocity knowledge in order to maintain periodicity of the orbit [20]. For these reasons,
the performance of planned navigation algorithms is important to consider when optimizing a cislunar surveillance
network.
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Typically, the performance of navigation algorithms is assessed by via the output of Linear Covariance (LinCov)
approaches or Monte-Carlo simulations of filtering algorithms. While these are proven methods, the computational
expense of carrying out tens to hundreds of randomized runs in a MDAO optimization routine is infeasible. These
complications necessitate the use of numerical methods that can provide a scalar metric of navigation performance that
can be computed on the fly during an MDAO run. We utilize the observability gramian that measures the sensitivity
of a chosen navigation algorithm output to the initial conditions of the cisunar surveillance satellite for this purpose
[3, 21]. The local observability gramian for a given dynamical system is defined as [21]:

P(x0) =
∫

∆T

t0
Φ

T (t)HT (t)H(t)Φ(t)dt , (18)

where x0 is the initial state vector, Φ is the fundamental matrix describing the system linear dynamics, and H is
the measurement Jacobian for the output of the navigation algorithm [3]. Computing the observability gramian is
computationally expensive for cislunar systems because it requires calculation of the matrix Φ that is dependent on
the instantaneous position and velocity of a cislunar asset [22]. A less computationally expensive mode of computing
the local observability gramian was therefore suggested in [21]. The (i, j) components of this approximated (N ×N)
local observability gramian are given for an N-dimensional state vector by [21]:

P∗(x0)i, j =

(
1

4δ 2

)∫
∆T

t0

(
y+i(t)−y−i(t)

)T(
y+ j(t)−y− j(t)

)
dt , (19)

In Equation 19, y±k(t) is the output at time t resulting from an initial state vector that has been perturbed according
to x±k = x0 ± δek, where δ > 0 is a small displacement and ek for k ∈ [1, ...,n] is the kth unit vector in Rn [3]. The
gramian of Equation 19 is faster and more repeatable to compute than the form in Equation 18 because it only requires
the ability to simulate the observed dynamical system, which can easily be accomplished with first-order Ordinary
Differential Equation (ODE) solvers [5, 9]. In order to assess the degree of observability of the initial state vector
(x0) from a series of navigation outputs, the condition number of P∗(x0) is calculated [3]. The condition number for
a matrix is defined as the ratio of the largest local singular value to the smallest. Intuitively, a large condition number
indicates that the problem is ill-conditioned because the output resulting from a small change in the initial state in one
direction substantially outweighs the effect on the output due to a change in another direction [21]. Therefore, in our
optimization routine we seek to minimize the condition number of Equation 19 because this means that the cislunar
orbit corresponding to the initial state vector has more stable navigation performance with respect to a perturbation in
initial position and velocity.

For this study, we assume that cislunar assets will be performing navigation via Optical Navigation (OPNAV) of the
apparent lunar horizon. Historical modes of performing horizon-based OPNAV have used the iterative limb-scanning
technique pioneered during the Voyager mission. This method is known to sometimes produce biased results, an effect
that can be largely removed using the Christian-Robinson algorithm [23, 24], which is now briefly summarized. The
interested reader can refer to the derivation in [23] for the full details.

The goal of the Christian-Robinson OPNAV algorithm is to solve for the center of the celestial body relative to the
camera frame (rC). The algorithm skips the intermediate conic fit step by factoring the celestial body’s symmetric
shape matrix (AC) into the form AC = BT B. Carrying out this factorization allows for the celestial body position
vector to be transformed via r′C = BrC. A diagram of this concept and the line-of-sight geometry for a space-based
camera is shown in Figure 3. By solving for the conic-fit of the celestial body using the transformed vector r′C, the
problem is re-framed into a simpler form in which navigation is carried out by tracking the horizon of a unit sphere
[24]. The Christian-Robinson algorithm therefore translates the problem of horizon based OPNAV into the problem
of solving for the vector r′C. A derivation shows this vector can be related to line-of-sight vectors targeting the center
of the celestial body (rC) and detected horizon points along the surface of the celestial body (εC) via [23]:

r′C =

(
1

cos2 φ ′ −1
)− 1

2
n′ , (20)

cosφ
′ =

(BεC)
T (BrC)

||BεC|| ||BrC||
, (21)

n′ =

(
1

cosφ ′

)
BrC

||BrC||
, (22)
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Fig. 3: Diagram of the transform of the Christian-Robinson algorithm being applied to a horizon-based optical naviga-
tion problem. An invertible transform (B = T c

p D) is applied to camera line of sight vectors targeting the center (rC) and
horizon points (εC) of a planetary body. This transform converts the optical navigation problem from one focused on
a celestial body with principal axis dimensions (a, b, c) to one targeting a celestial body with unit and equal principal
axis dimensions (a′ = b′ = c′ = 1) [23].

B = D TC
P , (23)

where n′ is a vector that is in the direction of r′C with a magnitude that is functionally related to the distance between
the camera and the celestial body center, TC

P is the known attitude matrix that transforms a vector expressed in the
camera frame to that same vector expressed in the celestial body frame, and D = diag(1/a,1/b,1/c) for a celestial
body with principal axis dimensions (a, b, c) [24]. While not explicitly stated for simplicity, the body vectors in the
camera frame (rC, εC) and the attitude transformation matrix (TC

P) are both a function of time t for a space-based asset
that is traversing the cislunar volume. The computed vector r′C(t) serves as the navigation output (i.e. y(t)) that is
used to represent our dynamical system in Equation 19. Therefore, the condition number for P∗(x0) quantifies the
observability of the initial cislunar state vector given a series of lunar horizon OPNAV measurements obtained by a
cislunar surveillance asset in our optimization study.

An important distinction between our implementation and the Christian-Robinson algorithm is that in the Christian-
Robinson algorithm the vector n′ is estimated via least squares solution across multiple detected horizon points from
an image of a celestial body [23]. Because our metric calculation does not rely on simulated imagery of horizon
points, we compute the vector n′ directly from geometry and add a zero-mean Gaussian error with standard deviation
σHL = 0.07 pixels to model the effect of sub-pixel horizon localization on the derived solution of n′ [25].

4. OPTIMIZATION OF DISTRIBUTED CISLUNAR SURVEILLANCE NETWORKS

The metrics that were introduced in Section 3 provide the means to assess the ability of a space-based surveillance
asset to both detect target assets and maintain orbital stability over time. We combine these metrics into two different
multi-objective optimization function formulations in this paper in order to assess the difference in network design
architectures when considering operational cost factors versus when solely considering detection capability. We then
introduce the Multi-Disciplinary Analysis and Optimization (MDAO) framework that is used to minimize these two
different cost functions via evolutionary optimization techniques and generate the optimal surveillance network for a
design reference mission.

4.1 Multi-Objective Cost Functions
The standard approach that is currently utilized in the SDA community for optimizing distributed cislunar architectures
is to maximize the the percentage of a volume of interest that is considered to be “visible” to the candidate network
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architecture over the extended period of surveillance [3, 5, 8, 11]. The visibility metric normally varies by study, with
some studies considering it as a probability of detection [8] and others considering it as the apparent magnitude [5, 11].
Both of these metrics essentially encapsulate how the combined effects of target-to-observer standoff distance and solar
phase angle geometry influence the number of photons that will be incident onto an asset’s telescope aperture [5]. Our
approach for quantifying the detection capability of a surveillance asset adopts the apparent magnitude definition of
Vendl and Holzinger that was outlined in Section 3.1 [11]. This metric forms our “standard” cost function that solely
considers the detection capabilities of an architecture for cislunar surveillance:

JS(CN) = min
CN

(−Γv) , (24)

where the vector CN is an (N × 3) surveillance network vector consisting of the observer parameters of N different
constituent spacecraft (ci for i ∈ [1,N]) that make up the candidate surveillance network:

CN = [c0,c1, ... ,cN ] , (25)

and the constituent spacecraft are defined by a cislunar orbital family, a period within that family (Pi), and the relative
initial phasing offset of the observer from the initial state vector (ϑi) [5]:

ci = (Familyi ,Pi ,ϑi) , (26)

While the standard cost function of Equation 24 is useful for comparing the relative detection capability of different
architectures, it does not capture any information about operational cost factors. For example, if the ∆V required
for station-keeping in an orbital slot with high detection performance is prohibitive, then the recommendations of
architectures derived using Equation 24 may not be not useful for operational planning [3]. In order to account for
this potential discrepancy, we augment the “standard” cost function with “operational” cost and performance metrics
as outlined in Sections 3.3 to 3.2. This new cost function is then represented as:

JS+O(CN) = min
CN

(
−Γ̄v, σ̄ , κ̄,

)
(27)

where Γ̄v is observer-averaged visibility metric of the candidate surveillance network (Section 3.1), σ̄ is the observer-
averaged stability metric for the candidate constellation (Section 3.2), and κ̄ is observer-averaged logarithm of the
condition number of the observability Gramian for horizon-based optical navigation (Section 3.3). Our novel opti-
mization metric of Equation 27 represents an approach which is tailored to consider the operational challenges of
deploying and maintaining distributed sensors within the challenging cislunar volume. Additionally, it considers the
optical navigation derived uncertainty in an observer’s estimated position in the form of κ̄ , which can influence both
network maintenance and orbit determination solutions.

Both the standard cost function (Equation 24) and the operational cost function (Equation 27) were optimized over
a range of potential observer combinations. Table 1 details the full search space of potential values for usage in
Equation 26. There were in total 7 different cislunar families considered for optimization of surveillance of the
cislunar highway. The range of potential periods (Pi) for each family varied according to the achievable range under
the CR3BP dynamics. Additionally, the initial phasing of each candidate orbit (ϑi) was allowed to vary discretely
in order to achieve the appropriate solar phase angle conditions to maximize observability of the targets that were
distributed along the cislunar highway. In order to vary this initial phasing, we performed the operations on the initial
state vector of each candidate orbit according to the rotation operation outlined by Vendl and Holzinger [11].

4.2 Multi-Disciplinary Analysis and Optimization (MDAO)

The cislunar dynamics propagator (Section 2), the cost models of interest (Section 4.1), and the simulation design space
(Section 5) were all integrated into a unified modeling environment using a custom Python-based Multi-Disciplinary
Analysis and Optimization (MDAO) framework. Models and costs metrics are integrated into the environment via
wrapper scripts that translate codes for engineering analysis from their native language (i.e. Matlab, Python, Julia,
etc.) into standardized interfaces that can be interpreted by a common data parser. These standardized models are then
packaged into a library and loaded into the modeling environment at runtime based on a user-defined configuration.
Loaded models are compiled into modeling environment based on National Aeronautics and Space Administration’s
(NASA) open-source OpenMDAO Python package [26]. This approach allows the modeling environment to be rapidly
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Table 1: Orbital families considered for optimization of the distributed cislunar surveillance network in this study.

Family ID Family Period Range (days) ϑ [Min, Max] (degrees)
1 L1 Lyapunov 11.93 - 33.00 0◦, 360◦

2 L2 Lyapunov 14.95 - 36.41 0◦, 360◦

3 L1 Northern Halo 7.99 - 13.84 0◦, 360◦

4 L2 Northern Halo 3.18 - 15.14 0◦, 360◦

5 L1 Southern Halo 7.99 - 13.84 0◦, 360◦

6 L2 Southern Halo 3.18 - 15.14 0◦, 360◦

7 Distant Retrograde Orbit (DRO) 1.81 - 27.95 0◦, 360◦

configurable and highly customizable. A diagram of the workflow of the MDAO framework that is leveraged for this
study is shown in Figure 4.

As shown in Figure 4, each model and its associated wrapper are bundled into modules and packaged within a unified
library (“Model Library”). All desired models for a design reference mission can then be individually loaded and
compiled into a modeling environment at runtime (“Model Loader”). This modularization allows a user to quickly
setup different cost functions (i.e. Equation 24 vs. Equation 27) with minimal additional coding input. This is made
possible by OpenMDAO’s powerful data management tools. Once each model has been loaded into the environment
OpenMDAO fully connects each model, such as the Christian-Robinson optical navigation algorithm (Section 3.3) and
the cislunar dynamics propagator (Section 2), and manages the flow of data between them. As OpenMDAO receives
information from the various models and cost functions, OpenMDAO’s built-in optimization drivers (“OpenMDAO
Solver”) iteratively solve for ideal solutions to the specified cost function and outputs the final result to the user for
further analysis (“Data Writer”).

The simple genetic algorithm (“SimpleGADriver”) optimization driver built into OpenMDAO was chosen as the solver
for this analysis, in part due to its support for multi-objective optimization, and both constrained and unconstrained cost
functions [27]. A detailed discussion of genetic algorithms can be found in many different sources (i.e. [28]), therefore
only a brief overview will be discussed here. In general, a genetic algorithm attempts to replicate the evolutionary
processes found in nature to identify optimal solutions to engineering problems. The value of each design variable is
decomposed into a series of binary bits which function as genes. At the initial epoch, a set of cases (i.e. “population”)
is generated wherein each member contains a randomly generated set of genes to be evolved over the course of the
simulation. At the end of each epoch, each member of the population is evaluated using the modeling environment to
determine the system’s response as given by the cost function. This response is then used to rank each member of the
population: members of the population with the largest cost response are eliminated from the population, while those
with the smallest cost are used to seed the population of the next generation. The evolutionary epoch cycle is repeated
until the cost of each subsequent generation fails to sufficiently improve on the cost of the previous generation [28].

Fig. 4: The Multi-Disciplinary Analysis and Optimization (MDAO) framework created for optimization of custom
cislunar Space Domain Awareness (SDA) design problems and cost objectives.
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Fig. 5: Diagram outlining the geometry of the target volume of interest (left) and the equidistant targets spaced
throughout this volume in the MDAO simulation (right).

There are several advantages to leveraging genetic evolutionary algorithms over other optimization drivers. Because
genetic algorithms are non-gradient based methods, and they are more robust to irregular or discontinuous design
spaces. Additionally, genetic algorithms do not require a scalar objective function meaning that they can be used to
identify multi-dimensional pareto fronts. Finally, genetic algorithms are easily parallelizable due to each member of
a given population being independently evaluated within each epoch. One notable downside of genetic algorithms,
however, is that they can potentially take slower and more irregular paths towards optimal solutions to a cost function
due to their reliance on random evolution of populations across epochs [28, 27].

While the “standard” cost function of Equation 24 is a scalar, the proposed “operational” cost function of Equation
27 is multi-dimensional. While it is possible to create a weighting function to convert the cost vector of Equation 27
into a scalar objective function to identify a single ideal solution, this approach would limit design space visibility.
Instead of trying to identify a single solution which minimized all of the cost criteria, the optimization driver was used
to identify the set of solutions which each minimize some portion of the cost criteria, known as the “Pareto Front.”
The “Pareto Front” is composed of design solutions which are non-dominated, meaning they minimize at least one
cost metric more than any other solution. Using this approach, it is possible to identify how changing the weight of
each cost metric alters the ideal solution in a post-optimization qualitative analysis [29].

5. SIMULATION SETUP

Our goal in this study is the optimize the capability of a surveillance satellite to monitor the cislunar volume over time.
We therefore evaluate sensor detection performance when targeting a volume covering an approximately 25◦ solid
angle extending from from the geostationary (GEO) belt out to the Earth-Moon L2 point. This choice is motivated by
previous optimization studies [11, 5] that consider this region to be of high interest due to the high volume of Moon-
bound traffic that will traverse this region and the limited ability for Earth-based telescopes to adequately surveil
the region due to lunar brightness drowning out satellite signatures [2]. Targets were distributed in an equidistant
manner across this truncated cone of interest, and each of the considered distributed space-based sensors computed
the apparent visual magnitude of each target at every timestep for the duration of the simulation. A diagram of the
distribution of the targets within the rotating frame is shown in Figure 5. The targets were assumed to have reflectance
properties (ρs = 0, ρd = 0.2) and a diameter of dT = 1 meter. The telescope that was attempting to detect these objects
was taken to have a apparent magnitude cutoff mco = 18, and we set the requirement that it detected objects with this
apparent magnitude for α = 85% of the duration of the simulation.

Along with the target and telescope properties, the orientation of incident solar radiation relative to the rotating frame
is a critical quality for determining observablity according to the solar phase angle term of Equation 14. In this work,
the solar direction is defined relative to an arbitrarily chosen initial reference epoch for the solar position at initial
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Table 2: Table of simulation parameters used to generate the multi-objective optimization cost functions in this study.

Parameter Unit Value

Initial Epoch (t0) Time and Date 2022 JAN 01 00:00:00.000
Campaign Duration (∆T ) Days 365
Time Step Seconds 1440
Number of Targets - 259
Target Diameter (dT ) Meters 1
Target Specular Reflectance (ρs) - 0.0
Target Diffuse Reflectance (ρd) - 0.2
Cutoff Apparent Magnitude (mco) - 18
Fraction of Time Visible Requirement (α) % 85
Offset for Condition Number in Position (δp) - 0.001
Offset for Condition Number in Velocity (δv) - 2π(0.001)/ P
Number of Spacecraft (N) - 3, 5, 7

time (t0). The initial epoch time for our study was chosen to be equal to a value of t0=‘2024 JAN 01 00:00:00.000’.
The JPL NAIF SPICE data is then used to obtain the vector from the Earth-Moon barycenter to the Sun at all times
relative to this initial epoch (t − t0). For all simulations, the Sun-direction vector is extracted at each time step where
the observation is to be simulated over the duration of the simulation ∆T = 365 days, based on the assumption that
one year is a sufficiently long period of time to produce a generalized result for seeing all potential solar geometries
relative to the ecliptic plane [3].

The simulation properties for the targets, detectors, and the solar conditions is shown in Table 2. These simulation
parameters were used to optimize the two different cost functions provided in Equations 24 and 27, with the results
over these simulation parameters presented in Section 6.

6. RESULTS

6.1 Single-Objective Optimization: Maximizing Percentage Search Volume Visible over Time

We first optimize the genetic algorithm over the orbital Families from Table 1 using the simulation parameters in Table
2 for the cost function in Equation 24. This optimization result represents the current approach in the SDA community
in which we only optimize the percentage of the search volume that is visible over time without consideration of the
potential complexities with preserving the constellation for long durations. As was discussed in Table 2, this was
performed for three different numbers of spacecraft (N): 3, 5, and 7.

Because only a single parameter was considered for the MDAO optimization on the cost function of Equation 24, we
plot these results in the form of bar charts rather than a pareto front. Figures 6 (a)-(c) show the maximum Γv values
for cases that survived all evolutionary cycles of the genetic MDAO optimizer. Each bar chart is segmented along the
x-axis by the number of unique observers that comprised each of the cases. This discrete segmentation of the cases by
number of unique families in the surviving constellation is meant to reveal insight on the the angular and geometric
diversity of constellations in the surviving cases from the evolutionary cycles.

For the case of N=3 observer constellations, Figure 6 (a) highlights that augmenting a surveillance constellation with
just a second unique cislunar family can improve the constellation’s ability to maintain low standoff distances with
a larger proportion of the target cislunar volume across time. As will be shown, the optimal constellation for N = 3
satellites in Figure 7 reveals that in order to maximize the percentage of time that the cislunar highway is visible, the
surveillance orbits should be centered about diverse equilibrium points of the Earth-Moon rotating frame such as the
Moon and the Earth-Moon Lagrange L1 point [3]. The benefits of distributed observer diversity in both equilibrium
point and angular distribution can be used to explain the jump in average visibility when going from just a single
unique cislunar family (Γv = 0.645) to two unique cislunar families (Γv = 0.78) for the N = 3 case in Figure 6 (a).

These results generally hold with some exceptions when the optimizer was allowed to consider N = 5 and N = 7
spacecraft for the constellation as is seen in Figures 6 (b) and (c), respectively. One exception that can be seen in Fig-
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Fig. 6: The maximum Γv values resulting from the MDAO genetic algorithm optimization of Equation 24 for the case
of a constellation of (a) N=3, (b) N=5, and (c) N=7 satellites.

ure 6 (b) is that there is a negligible increase in Γv when going from just a single unique cislunar family (Γv = 0.8881)
to five unique cislunar families (Γv = 0.8884) for constellations consisting of N = 5 surveillance assets. This result
is slightly misleading, as the diversity is occurring across period and phase within a single cislunar family. As will
be shown later, surveillance constellations consisting solely of the Distant Retrograde Orbit (DRO) family provided
high levels of observability of up to Γv ≈ 0.89 when the assets were dispersed across the full period range considered
in Table 1 and at the same time were properly phased to overcome exclusion zones pointing towards the sun, earth,
and moon. This trend can also be seen for the N = 7 results in Figure 6 (c), where the single unique family case has
a nearly equal Γv value to the seven unique family case. However, we note that the optimum solution for the N = 7
constellation occurs when four unique cislunar families are considered in the sureveillance constellation, providing
evidence that cislunar orbit and equilibrium point diversity can improve custody maintenance. In summary, we be-
lieve that the distribution of MDAO optimization results in Figures 6 (a) through (c) confirm previous findings that
angular, geometric, and phasing diversity across a surveillance constellation critical to optimizing cislunar surveillance
performance [3, 5, 7, 9].

The parameters of the global optimum constellations for the values of N considered when performing genetic algorithm
optimization using the cost function of Equation 24 are shown in Table 3. Additionally, we provide plots of the
trajectories for these parameters when plotted over a single period in Figure 7. These results were generated without
consideration of any operational cost factors, which were incorporated into the optimization process to produce the
results shown in the next section.

For the N = 3 case, the optimal surveillance constellation consists of two unique cislunar families: the DRO family,
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Table 3: Orbital parameters for the optimal constellations when using the standard cost function of Equation 24 in the
MDAO genetic algorithm optimizer.

N Γv Orbit Family Orbit ID Orbital Period (days) ϑ (degrees)

3 0.7799 DRO 7 15.253 242.824
L1 Lyapunov 1 29.549 131.412

DRO 7 13.490 1.412

5 0.8880 DRO 7 21.423 135.529
DRO 7 22.011 104.471
DRO 7 22.794 232.941
DRO 7 21.913 331.765
DRO 7 22.305 271.059

7 0.9073 DRO 7 22.990 227.294
DRO 7 14.567 208.941

L1 Halo Southern 5 10.771 295.059
DRO 7 13.294 24.000
DRO 7 18.779 230.113

L1 Lyapunov 1 30.195 152.471
L1 Halo Southern 5 10.565 304.941

and a Lyapunov orbit centered about the L1 equilibrium point. We note that the genetic algorithm optimizer chose
the DRO orbits that are approximately of the same period, but that differ in angles by greater than 180◦ in phase.
This makes intuitive sense, as one DRO observer can always maintain an appropriate solar phasing with respect to the
frustum of interest, as has been shown in previous studies [5, 11].

For the N = 5 case, the genetic algorithm optimizer chose a constellation consisting of only DRO orbiters in order
to maximize Γv. The optimizer also identified other, more diverse constellations, that had very similar values of Γv,
however, the DRO-only constellation had the highest performance. This suggests that the Γv metric is multi-polar
with respect orbit family selection, meaning there are multiple architectures that produce local maxima in terms of
Γv. Considering Γv as the only performance metric it is not possible to distinguish between each maximum without
considering other factors.

For the N = 7 case, there were three unique families in the optimal constellation, an increase in the number of unique
cislunar families relative to the N = 5 case that was just discussed. Like in the N = 5 case, the DRO family that can
be considered in-plane (i.e. of higher expected stability) featured prominently in this optimal result despite the fact
that the optimizer did not consider stability or navigation cost factors when arriving at the optimal constellations of
Table 3. This suggests that the DRO family can provide high visibility performance on the cislunar volume of interest
if the observers have sufficient diversity in phasing and period, as in the case of the three constituent DRO satellites
in Figure 7 (c). A second observation that can be noted for the N = 7 case is that there are two out-of-plane L1 Halo
Southern orbits in the optimal N = 7 constellation of Figure 7 (c). Table 3 reveals that these two orbits have nearly
identical phasing and periods, suggesting that they may provide nearly identical visibility into the frustum of interest
over time. This suggests that there may be a saturation in the visibility performance that can be obtained for N ≥ 5
observers for the volume of interest in Figure 5 and simulation parameters of Table 2, which is supported by the bar
charts in Figure 6 (b) and (c).

6.2 Multi-objective optimization: Incorporation of Operational Cost Functions

The optimal constellations for various N values in Figure 7 and Table 3 were arrived at by only considering the visibility
performance of the constellation over time via Equation 24. As was discussed in Section 3, Equation 24 does not
consider the cost factors associated with navigating individual satellites and maintaining them in their nominal orbits
via stationkeeping maneuvers over time. In order to explicitly incorporate these factors into the genetic algorithm
optimization, we developed a multi-objective optimization formulation with the cost metrics in Equation 27. This
equation has cost factors that approximate the costs of performing stationkeeping and horizon-based optical navigation
over the duration of the mission.
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Fig. 7: Optimal constellations when using the standard cost function of Equation 24 in the MDAO genetic algorithm
optimizer for the case of (a) N =3, (b) N =5, and (c) N =7 observers in the constellation.Copyright © 2023 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) – www.amostech.com 



Table 4: Orbital parameters for the optimal constellations when using the operational cost function of Equation 27 in
the MDAO genetic algorithm optimizer.

N Γv Orbit Family Orbit ID Orbital Period (days) ϑ (degrees)

3 0.5714 DRO 7 15.253 242.824
DRO 7 29.549 121.412
DRO 7 13.490 1.412

5 0.8880 DRO 7 21.423 135.529
DRO 7 22.011 104.471
DRO 7 22.794 232.941
DRO 7 21.913 331.765
DRO 7 22.305 271.059

7 0.8996 DRO 7 22.990 227.294
DRO 7 14.567 208.941
DRO 7 10.771 295.059
DRO 7 13.294 24.000
DRO 7 18.779 230.118
DRO 7 30.195 152.471
DRO 7 10.565 304.941

To evaluate one example of the Pareto optimal solution, we convert this equation into a single-objective optimization
by assigning the weights to each objective. In this initial study, we chose to assign 1/2 to the visibility metric, and
1/4 each to the remaining metrics; however, we note that the weighting can be rapidly adjusted and the simulation
re-run due to the configurable MDAO framework that was presented in Section 4. Using this weighted cost function
in the genetic algorithm optimizer led to the “operationally informed” optimal constellations in Figure 8 and Table 4.
One point that immediately becomes apparent from this result is that the optimizer has minimized the weighted cost
function by forming constellations consisting solely of the DRO family for the N = 3, N = 5, and N = 7 simulations.
For example, for the N = 3 problem the use of Equation 27 as opposed to Equation 24 has led to a family consisting of
three DRO observers in Figure 8 (a) as opposed to the two DRO observers that comprised the optimal orbit of Figure
7 (a). In other words, the optimizer exchanged an L1 Lyapunov observer for an additional DRO observer, which led to
a nearly 27% decrease in visibility performance from a value of Γv = 0.7799 (Table 3 for N = 3) to Γv = 0.571 (Table
4 for N = 3). The Lyapunov observer that was substituted had a stability index on the order of approximately σ ≈ 50,
while the DRO observer had a stability index of approximately σ ≈ 1. Because both of these stability indices are
relatively small relative to the ranges of σ considered, it can be argued that the degradation in visibility performance is
not worth the increase in the average stability of the constellation. On the other hand, the N = 5 and N = 7 results that
were derived using the operationally informed cost objective provide greatly improved visibility performance relative
to the N = 3 case, with Γv = 0.888 and Γv = 0.900 given in Table 4 for the N = 5 and N = 7 cases, respectively.
Furthermore, the difference in Γv between the standard and operational objective functions was very small for both of
these cases. For the N = 5 case, the same constellation was found to be optimal for both the standard and operational
objective functions. For the N = 7 case there was a small decrease in Γv equal to approximately 0.8%. This reinforces
the advantages of the MDAO approach that considers both performance and cost metrics. For a significant change in
architecture, but only minimal change in observation performance there is a large reduction in constellation cost. This
approach also allowed for differentiation between the multiple maxima in terms of Γv that were identified in the N = 5
case using the standard objective function.

It must be noted that the result of Table 4 was derived using a fixed weighting of the performance metrics considered
in Equation 27. Different combinations of the scalar weightings can lead to very different global “optimum” solutions,
with some of them providing visibility performance on the same level as solutions derived using the visibility cost
function of Equation 24. In order to see this, we can analyze the Pareto front of cases provided at the end of the
MDAO genetic algorithm optimizer’s evolutionary cycles.

The Pareto front of optimal solutions derived by considering the operational cost function of Equation 27 is shown
along a slice of the 3-dimensional parameter plane in Figure 9. One thing that becomes apparent from this plot is that
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Fig. 8: Optimal constellations when using the operational factors cost function of Equation 27 in the MDAO genetic
algorithm optimizer for the case of (a) N =3, (b) N =5, and (c) N =7 observers in the constellation.Copyright © 2023 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) – www.amostech.com 



the average stability index (σ̄ ) compresses information along the σ̄ ≈ 1 vertical line. This can be explained by the
observation that DRO orbiters for the period range considered in this study (see Table 1) all possess stability indices
on the order of σ ≈ 1 [30]. Therefore, the optimizer is able to trivially minimize the Pareto front along the σ̄ by simply
including DRO observers in the solution. Indeed, the vast majority of cases on the Pareto fronts of Figure 9 across all
values of N solely include one unique family: the DRO. This result leads us to believe that while the stability index
has been suggested as a potential optimization metric in previous studies [11, 5], it possesses limited utility due to the
trivial nature of minimizing it by restricting the constellation satellites to those families with primary bodies (i.e. the
Moon) as their equilibrium point. As an alternative, we believe that metrics that account for stationkeeping costs in
the form of ∆V [7] or rates of departure from a nominal orbit [19] are more useful for deriving operationally useful
cislunar surveillance orbits. It is also important to note that the final solution depends on the weighting among each
cost metric; thus, the selection of a Pareto-optimal solution that meets several mission requirements needs to have a
human-in-the-loop analysis in order to overrule solutions that do not meet the primary mission objective of surveilling
the cislunar volume for long durations of time.

7. CONCLUSIONS

In this paper, we developed a rapidly configurable MDAO framework for designing cislunar surveillance constella-
tions. In the developed MDAO framework, the variables include the orbits of each observing satellite in the con-
stellation, and the objectives include not only the coverage performance metric but also the operational cost metrics
including the orbital stability and the navigational uncertainty. This integrated framework enables the mission designer
to trade off the performance and the cost to identify the Pareto optimal solutions. The analysis results demonstrated
the effectiveness and limits of the proposed multi-objective MDAO analysis. Specifically, the global optimum solution
derived using our chosen set of performance-to-cost weightings across the three considered metrics had a bias towards
selecting Distant Retrograde Orbiters (DROs) due to the high levels of stability that accompany their orbit about the
Moon within the plane of the Earth-Moon rotating system. This bias towards selecting DROs leads to sub-optimal
visibility performance relative to the maximum possible achievable level of the Pareto front solutions. Despite the
genetic optimizer’s bias towards in-plane orbiters, however, the optimizer of the MDAO system was able to produce
constellations that nearly matched the visibility performance of solutions derived by solely considering the visibility
metric. Specifically, for the N = 7 observer optimization case, it was found that incorporation of operational cost
factors only yielded a decrease in detectability performance of only 0.8%.

As part of future work, we plan to consider a more diverse set of operational cost metrics; particularly, the stability
index used in this paper does not provide accurate information about the ∆V needed for stationkeeping and can be
trivially minimized by selecting Distant Retrograde Orbiters (DROs) that have a nearly constant stability index of ≈ 1.
We therefore suggest that stability indices be replaced with other more operationally relevant metrics, despite their
usage in previous studies to represent stationkeeping costs [5, 11]. Furthermore, a more in-depth orbital determination
model can be incorporated as a performance evaluation model beyond the visibility metric used in this paper.
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Fig. 9: Representation of a cross section of the 3-dimensional pareto front resulting from the use of Equation 27 in
the MDAO genetic algorithm optimizer for the case of (a) N =3, (b) N =5, and (c) N =7 observers in the cislunar
surveillance constellation.
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