
DISTRIBUTION A: Approved for public release; distribution is unlimited. Public Affairs release approval #AFRL-2023-4011 

Cislunar initial orbit determination using CAR-MHF 

Paul Billings1, Jason Baldwin2, Charles J. Wetterer1, John Gaebler1, Christopher Craft1,

Micah Dilley1, Keric Hill1, and Jill Bruer3 
1KBR, 2Complex Futures, and 3Air Force Research Laboratory 

1. ABSTRACT

High levels of nonlinearity inherent in the cislunar orbital regime present stressing challenges for the estimation and 

custody of cislunar objects.  Despite this, effective orbital determination strategies using Unscented Kalman Filters 

(UKFs), Gaussian Mixture Models (GMMs)—and, in the most stressing cases, Adaptive Entropy-based Gaussian-

mixture Information Synthesis (AEGIS)—have been demonstrated.  Before these track maintenance functions can be 

accomplished, however, initial orbit determination (IOD) must be achieved.  The Constrained Admissible Region 

Multiple Hypothesis Filter (CAR-MHF) was previously developed by AFRL for IOD, employing an iterative filter-

smoother for estimate refinement and the use of a multi-hypothesis, joint probabilistic data association (MH-JPDA) 

framework for multi-target data association.  In this paper, simulated Earth-based and space-based angles-only 

observations of cislunar objects in various orbital families are utilized to evaluate the ability of CAR-MHF to perform 

IOD successfully in the cislunar regime.  Cold-start catalog generation scenarios are considered in the presence of 

ballistic objects across a diverse set of orbit families, constellations, object separation events, and break-up events.  Of 

critical importance in the cislunar regime is the use of a constrained admissible region to bound the landscape of 

considered orbits given the presence of a single short-arc tracklet of angles-only measurements.  Significant treatment 

is given to the trade-offs involved in bounding the scope of admissible orbits with a focus on uncertainty evolution, 

sparseness of the hypothesis sampling, compute load, and other considerations.  CAR-MHF shows promising results 

across the spectrum of evaluated scenarios and opens the door to information-based optimization of sensor tasking. 

2. INTRODUCTION

Cislunar space, the orbital regime encompassing the Earth and Moon, is of growing interest and importance in space 

operations. As deep space capabilities continue to advance, and as commercial, scientific, and national activity 

increase in this domain, the ability to track and monitor objects in cislunar space becomes vital to addressing both 

awareness and sustainability concerns. However, the inherent dynamical complexities and non-linearities of the 

cislunar orbital environment pose significant challenges for conventional orbit determination methodologies. In 

particular, initial orbit determination (IOD)—the process of first establishing an object’s orbit from a minimal set of 

observational data—proves notably challenging in this regime. 

A number of advanced methods have been proposed to tackle the challenges presented in the tracking and estimation 

of cislunar objects. A general explanation of these challenges and an in-depth overview of the resulting periodic orbits 

was provided in [1]. Techniques such as the unscented Kalman filter (UKF) and Gaussian mixture models (GMMs) 

have shown promising results in the context of cislunar orbit determination, demonstrating their utility in dealing with 

the non-linearity of the cislunar regime [2]. Furthermore, for extremely challenging cases including extended gaps in 

observational measurements on the order of weeks, approaches like the Adaptive Entropy-based Gaussian-mixture 

Information Synthesis (AEGIS) have been demonstrated [3]. 

It appears that the predominant observational approach for handling cislunar IOD and uncorrelated track (UCT) 

resolution will be with short-arc electro-optical (EO) measurements, given the significant extent to which this 

observation type dominates the IOD/OD process for geosynchronous Earth orbit (GEO).  Much research has been 

conducted over the last two decades exploring approaches for improving IOD performance for uncorrelated tracks in 

GEO.  Admissible regions have been popular in providing a foundation for exploring the orbital possibility space in 

the presence of short-arc EO measurements [4-6].  Multiple hypothesis tracking also has demonstrated success [7]. 

Other ongoing efforts focus on extensions of these methods to the cislunar regime [8-9]. Use of an optimization scheme 

bounded by admissible region constraints is also under investigation [10].  

The extension of methods developed for the constrained admissible region multiple hypothesis filter (CAR-MHF) is 

pursued in this work, building upon previous developments at AFRL [5]. Involved in this methodology is the use of 

an iterative filter-smoother for estimate refinement which, when combined with a multi-hypothesis, joint probabilistic 
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data association (MH-JPDA) framework for multi-target data association, has proven quite effective for addressing 

the multiple hypothesis problem encountered when tracking numerous and closely spaced objects.  The current 

investigation addresses 1) how effectively CAR-MHF can be extended to support IOD in the cislunar regime, and 2) 

the extent to which CAR-MHF (and similar probabilistic methods) can support future operational considerations such 

as sensor follow-up, high data utilization, etc.  

An in-depth study assessing these concerns is presented. Extensive simulations are conducted employing both Earth-

based and space-based angles-only observations on a population of objects selected from a set of periodic cislunar 

orbit families. Trade-offs involved in the application of CAR-MHF are also discussed, considering factors such as 

uncertainty evolution, data sparseness, hypothesis sampling density, graduation timelines, computational load, and 

data utilization. A high-level description of the CAR-MHF algorithm, including the extensions allowing for 

applicability in the cislunar regime, is provided in Section 2. The experiment and the simulations performed to generate 

the data sets under consideration are outlined in Section 3. Section 4 contains the experimental results and a discussion 

of the trade-offs. A summary of conclusions and a discussion about necessary future investigations are included in 

Section 5. 

3. EXTENSION OF CAR-MHF INTO CISLUNAR SPACE 

In traditional space situational awareness (SSA), an analyst or operator’s intuition is based largely on assumptions 

rooted in perturbed 2-body dynamics (e.g., orbits resemble simple conic sections, like ellipses).  Expanding SSA, and 

in particular IOD, to apply to cislunar space effectively requires that new intuitions be built for the complete dynamical 

system. Specifically, it is important to understand the behavior or time evolution of objects and phenomena in this 

more complex domain, where the traditional simplifying assumptions are no longer valid (i.e., where orbits are non-

Keplerian). 

The question at hand with IOD in cislunar space is the extent to which previous methods (and their assumptions) will 

hold in their effectiveness in evaluating and resolving UCTs.  This section will begin with a look at how the constrained 

admissible region (CAR) can be extended into the cislunar regime with the loosening of two-body constraint 

assumptions and with the application of a new constraint to bound the unwieldy vastness of cislunar space.  CAR-

MHF has a distinct advantage over other approaches in that it immediately forms a probability density function (PDF), 

using only a single observation track (ideally three or more measurements with sufficient intra-track spacing), to be 

scrutinized by future observations. This allows for the possibility of tasking sensors within a sensing network to return 

and collect more data on an object when the information situation, encapsulated by the time evolution of the estimated 

PDF, dictates such. In addition to these topics, the salient features of CAR-MHF will be discussed in brief in the 

remainder of this section; readers should consult the references for additional detail. 

3.1 Constrained Admissible Region 

The premise of utilizing a CAR for IOD is to use two-body orbital element constraints in semi-major axis and 

eccentricity to bound the search space of possible orbits described by a short-arc track of EO measurements [5, 11].  

This short arc of EO measurements, used to obtain not just the angles (right ascension and declination) but also the 

angular rates (right ascension rate and declination rate), effectively observes four of the six dimensions required to 

form an initial estimate of orbital position and velocity. The remaining two unknown quantities can be encapsulated 

in a range value and a range-rate value. Given the angles and their rates, constraints imposed on the semi-major axis 

and eccentricity (shown in red and black, respectively, in Fig. 1) allow for a bounding of the searchable range and 

range rate space, and CAR-MHF fills that space with a uniform distribution of range and range rate hypotheses (green 

in Fig. 1). 

Fig. 1 conveys the significant increase in possible ranges and range rates that the cislunar environment enables.  Filling 

this space with a uniform distribution of hypotheses leads to tens of thousands of hypotheses, quickly becoming 

computationally burdensome when the hypotheses are used in downstream calculations.  An additional constraint is 

proposed in this work, in which only reasonable levels of range rate are considered in the first pass, effectively serving 

as a first level “sieve” in range rate to capture most periodic, quasi-periodic, and transfer orbits in the cislunar regime.  

This initial constraint was set at +/- 2.5 km/s from the sensor’s range rate to target, resulting in almost an order of 

magnitude fewer hypotheses to consider in some cases. 
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Also, it is of note that the eccentricity constraint line is outside the Earth 2-body zero energy line (blue) in the cislunar 

case (Fig. 1, right). The three-body dynamics introduce instances where some members of the periodic orbit families 

experience osculating eccentricities greater than one.  The constrained admissible region was adapted to allow for 

constraint regions beyond the Earth 2-body zero energy curve.  While these high osculating eccentricities can approach 

double digits, they do so for short periods of time, and selecting a constraint of between two and three for eccentricity 

does a robust job of capturing these orbits without undue expansion of the number of state hypotheses. Processing 

complexity is reduced, at the expense of a slight delay in IOD in isolated cases while the eccentricity remains outside 

the constraint region. The use of this trade-off does not allow 100% successful initiation of orbital estimates, but by 

restricting the expanse of the constraint region, the forthcoming observations--coupled with the dynamics model--will 

eventually allow for a successful solution.  

 
Fig. 1. Comparison of notional CAR range and range rate hypothesis solutions for a GEO orbit (left) and a cislunar 

orbit (right). Red lines are semi-major axis constraints, blue lines are the Earth 2-body zero energy contours which 

denote orbits captured by Earth, and black lines are eccentricity constraints. Green is the bounded region for 

hypothesis generation. Asterisk is location of actual object (only shown on right for cislunar orbit example). 

3.2 Propagation of Hypotheses 

Once the CAR is generated, the unscented transform is used to map the hypotheses from measurement space to state 

space, with uncertainties based on the measurement noise, the extracted rate noise, and range and range rate distributed 

uniformly, to form the associated set of state space hypotheses.  These state space hypotheses (represented as Gaussian 

distributions) are then again converted via the unscented transform into sets of sigma points for processing via a 

sequential UKF.  Fig. 2 shows an example result of this transition into state space for the same orbit example displayed 

in Fig. 1 (right). This orbit example is a northern Halo (HN) orbit about the ℒ1 Lagrange point with orbit index 100, 

full designation HN1-100 (see [1-2] for a detailed breakdown of the elemental periodic orbit families and their 

designations). The large spatial extent spanned by the hypotheses--given that so little is known with just one short-arc 

EO measurement--is evident. 

Copyright © 2023 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) – www.amostech.com 



 

DISTRIBUTION A: Approved for public release; distribution is unlimited. Public Affairs release approval #AFRL-2023-4011 

A key takeaway is the existence of a set of state-space hypotheses which can be propagated through a high-accuracy 

full-ephemeris dynamics model to provide the time evolution of the PDF for this IOD solution. CAR-MHF currently 

utilizes Earth (with non-spherical perturbations), Moon, and Sun as gravity bodies, along with solar radiation pressure 

perturbations.  Monitoring of the measurement space PDF as a function of time can then be achieved by mapping the 

state space hypotheses back into measurement space for a sensor of choice. The presence of a PDF from just a single 

short-arc EO measurement enables numerous sensing and revisit strategies that are not available when processing 

UCT measurements in the typical batch manner.  We will return to this topic in Section 4. 

Given the increased likelihood of direct engagement with the gravity bodies during the IOD process, it was also 

necessary to implement hypothesis removal logic in the event that excessive proximity to a gravity body is 

encountered. The implemented solution, while still in the early stages of evaluation, utilizes a user-defined distance 

from the surface of any gravity body, checks for sigma point collision during propagation, and removes the hypothesis 

to which that sigma point belongs.  Earth-bound IOD problems, and GEO in particular, suffer much less from this 

possibility, but having this gravity body check has proven essential for cislunar IOD. 

  

 

Fig. 2. State space representation of the CAR hypotheses for a GEO sensor collecting on an HN1-100 orbit. 

Coordinate system is Earth-Moon synodic frame, with Earth-Moon barycenter at the origin and the average Moon 

distance at approximately [1,0,0]. Earth and Moon size are not to scale (2X to improve visibility). 

3.3 Data Association 

Details of CAR-MHF and its use of a MH-JPDA filtering scheme are thoroughly discussed in [5]. The present analysis 

expands upon the power and insight of MH-JPDA to convey how well the sequential UKF is handling confusion and 

successfully graduating objects. Covariance-based data association, and in particular JPDA, provides the analyst with 

control of the method by which information from measurements are being marginally associated (soft decisions) 

amongst different objects (and hypotheses within an object) in the presence of association confusion. This starkly 

contrasts with hard-decision schemas such as nearest neighbor and “no decision” schemas like multiple hypothesis 

tracking (which perform all-on-all associations and rely on the correct association becoming increasingly evident with 

time and further comparisons). 

Recall from Section 2.2 that a primary benefit of the CAR-MHF approach is that it allows instant access to a PDF for 

further investigation and updating. Hard association decisions in the presence of confusion can lead to significant error 

and estimate divergence, and “no decision” negates the benefits of having a PDF to interrogate.  MH-JPDA and its 

soft association decisions provide a sound balance between 1) updating a priori distributions when information is 
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available and 2) delaying association decisions by not overcommitting to a single interpretation in conditions of high 

uncertainty. 

Below is an introductory example of a multi-class confusion matrix which is helpful in parsing out the associations 

the filter is making and the knowledge the filter is acquiring as it updates in the presence of high levels of confusion.  

The X-axis presents the “truth” class, the actual objects that exist in the population.  The Y-axis presents the filter 

assessment, the object estimates that CAR-MHF has generated based on the data available. The example in Fig. 3 is 

for a closely spaced constellation of objects in a different HN1 periodic orbit, this time HN1-200. Three simulated 

objects, with designators 90033, 90034, and 90035, are spaced within 100 km, and are observed via measurements 

that will be described in Section 3. 

The color of the grid box designates the strength--or effective number of measurements--with which “truth” 

observations from objects along the X-axis were associated with the filter estimates in CAR-MHF along the Y-axis. 

The numbers in each grid box show the actual values.  When processing larger populations (see Section 4), the actual 

values in each cell are removed, and interpretation is best done by a comparison of the relative shading. Perfect 

performance (no confusion) would be displayed as a case with all dark color along the diagonal, as no cross and/or 

mis-associations--which would present themselves, as shown in the example, with color in the off-diagonal—are 

present.  In short, for optimal filter performance, it is desired that all mass be concentrated along the diagonal. In this 

sample problem, CAR-MHF successfully solves for a solution on all three objects, even though there is shared 

information during the original filter pass through the observations.  Despite some mass off-diagonal, most of the mass 

is still along the diagonal, which informs the analyst that the filter is making sense of the situation correctly. The 

combination of MH-JPDA for patient, covariance-informed filter updates and an iterative filter/smoother framework 

leads to a successful solution in highly challenging examples within the cislunar regime.  The synergy between the 

filter and smoother is the next topic. 

 
Fig. 3. Confusion matrix for example 3-object constellation in the cislunar regime. X-axis is the "truth" object class, 

and the Y-axis is the CAR-MHF "estimate" object class. Color bar shows the number of effective measurements 

associated for each CAR-MHF estimate (object). A total of nine measurements were collected on each object and 

processed simultaneously at each time step. 
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3.4 Iterative Filter/Smoother 

The concepts of convergence and consistency have been little changed from GEO UCT processing with CAR-MHF 

(discussed in [5]), except for the selection of the user-defined convergence threshold.  Over the last decade of 

processing GEO and cislunar UCTs, the iterative filter/smoother approach has proven itself to be exceedingly reliable, 

giving the analyst high confidence that graduated objects are indeed solid tracks. These graduated objects can then be 

passed on to catalog maintenance functions, either within CAR-MHF or other external workflows. In summary, 

graduation within CAR-MHF is fully described by three features: 

1) The estimate must pass a convergence test, defined by its RSS position covariance dropping below a user-

defined threshold. 

2) The estimate must pass an iterative filter/smoother consistency test, with the current test being the 

McReynolds’ consistency [12]. 

3) The observations within an estimate must be 1-to-1, meaning no observations for the estimate under 

consideration for graduation can be shared with another estimate. 

The 1-to-1 association check is confirmation of a lack of confusion. Only through iterative forward and backwards 

processing of the observations can a filter overcome any association confusion, which, when solving the IOD problem, 

is mostly driven by unavoidably high levels of initial uncertainty. These steps, executed sequentially within an iterative 

filter/smoother framework, are the forcing function that takes an initial high-uncertainty track solution composed of 

many hypotheses and transforms it into a solid object track solution for follow-on maintenance. 

Additionally, this iterative forward and backwards process is not limited to data within the time frame of the 

observations currently under consideration within the filter/smoother. The filter/smoother can be directed back to past 

still-unresolved UCTs to check their association levels with the current solution. If associations are found, these 

observations can be added to the estimate and the iterative filter/smoother can again be accomplished using all 

currently associated observations. This iterative approach, able to reach back in time to check for observations that 

fell through the cracks, leads to high levels of data utilization, minimizing the number of observations in the collection 

of UCTs carried forward in time and thus decreasing computational load. 

3.5 CAR-MHF Example 

To close this section, we will show an example of CAR-MHF in which it utilizes a CAR to form an initial set of 

hypotheses, propagates those hypotheses to the time of the next measurement (time update), and performs a 

combination of filter update and hypothesis pruning (measurement update) to hone the filter solution down to a solid 

track on another member of the HN1 orbit family, this time HN1-284. The initial measurement is from a ground-based 

EO sensor (see Section 3.1 for more information on the simulated sensor network), and Fig. 4 renders the resulting 

1,472 hypotheses generated by the CAR in both state space (Earth-Moon synodic frame) and measurement space 

(angular inertial reference frame from the perspective of the sensor). 

The measurement space representation (Fig. 4, right) shows the measurement as a black diamond marker and attempts 

to convey two different fields of view (FOV) from the sensor. The first is the figure as a whole, which represents a 5-

degree FOV. The second is the black rectangle drawn in the figure, which represents a much narrower 0.5-degree 

FOV. The state space representation (Fig. 4, left) shows the sensor line of sight as the line and the sigma points for all 

existing hypotheses as magenta asterisks. For this and following figures, a green line-of-sight line indicates a CAR or 

measurement update has been made, whereas a red line-of-sight line indicates propagation or a time update. Note the 

radial extent (along the line of sight) of the hypotheses at the moment of the CAR and following all time and 

measurement updates. Uncertainty in performing cislunar IOD, given the limited observability of objects in the radial 

direction afforded by EO sensors, is dominated by radial uncertainty.  
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Fig. 4.  Sample CAR-MHF solution at the point a CAR is generated. State space (left) and measurement space 

(right) sigma points for all existing hypotheses are shown. Measurement space sigma points and uncertainty 

contours aren’t visible due to the zoom level of the figure. Actual measurement is displayed as black diamond 

marker. 

Fig. 5 shows the CAR solution propagated for approximately six hours to the time of the first post-CAR measurement. 

Note the growth in the radial direction evident in the state-space representation. This next measurement is from a 

different ground-based EO sensor, which partially explains the extensive measurement space uncertainty. Had a sensor 

with a narrow 0.5-deg FOV been tasked on the highest-probability region of the measurement space PDF (as depicted 

by the black rectangle in Fig. 5, right), it would have missed the object. The tails of the measurement-space PDF 

exceed even the 5-deg FOV for this sensor. See Section 4.3 for additional treatment of the measurement space problem.  

 
Fig. 5.  Sample CAR-MHF solution just prior to the first post-CAR measurement (~6.25 hrs after initation). State 

space (left) and measurement space (right) sigma points for all existing hypotheses, along with measurement space 

uncertainty contours, are displayed. Actual measurement is displayed as black diamond marker. 

Fig. 6 shows the resulting state space and measurement space representations of the CAR-MHF solution after the first 

measurement update. The number of hypotheses has been pruned by the algorithm to 75, yielding much improvement 

to the radial uncertainty situation as shown in the state space representation. The measurement space representation 

effectively returns to the measurement noise Gaussian. 
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Fig. 6.  Sample CAR-MHF solution after the first measurement update. State space (left) and measurement space 

(right) sigma points for all existing hypotheses are shown. Measurement space sigma points and uncertainty 

contours aren’t visible due to the zoom level of the figure. Actual measurement is displayed as black diamond 

marker. 

Propagation of the CAR-MHF IOD solution to the time of the second post-CAR measurement is depicted in Fig. 7. 

This measurement is from a GEO-based EO sensor, collected after another time gap of approximately 6 hours. Note 

the dispersal of the hypotheses evident in both the state space and measurement space representations. However, for 

this measurement, the extent of the measurement space uncertainty is not as excessive as at the time of the first 

measurement due to the improved radial uncertainty from that filter update.  

 
Fig. 7.  Sample CAR-MHF solution at the time of the second measurement post-CAR, occurring ~13 hrs after the 

CAR. State space (left) and measurement space (right) sigma points for all existing hypotheses, along with 

measurement space uncertainty contours, are displayed. Actual measurement is displayed as black diamond marker. 

Finally, Fig. 8 shows the CAR-MHF solution after the second measurement update. The number of hypotheses has 

been pruned down to three, progressing closer to a graduated solution.  The measurement space uncertainty once again 

effectively returns to the measurement noise Gaussian. CAR-MHF, following the next observation ~6 hours later, 

takes the resulting 2-hypothesis solution, puts the hypotheses through the convergence and consistency tests (which 

they pass), and merges the remaining hypotheses into a single graduated object track. 
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Fig. 8.  Sample CAR-MHF solution after the second measurement update. State space (left) and measurement space 

(right) sigma points for all existing hypotheses are shown. Measurement space sigma points and uncertainty 

contours aren’t visible due to the zoom level of the figure. Actual measurement displayed as black diamond marker. 

4. EXPERIMENT 

Two simulated populations were generated using differing full-ephemeris dynamics propagation models.  The first, 

Population #1, uses NASA’s General Mission Analysis Tool (GMAT) [13] and concentrates on periodic orbit families 

near the Moon with the addition of some closely spaced clusters. Population #2 uses a KBR-developed dynamics 

model and focuses on a broader diversity of periodic orbits in cislunar space. Observational data sets were simulated 

for these populations with notional ground and space-based sensors for filter evaluation. This section will describe the 

data sets and the pertinent CAR-MHF assumptions and settings. 

4.1 Observational Data Sets 

 Population #1 consists of 48 different orbits, all of which remain in the vicinity of the Moon and were ballistically 

propagated for about one month with a starting date of 2019-07-20.  Table 1 details each orbit with the orbit number 

corresponding to the nomenclature of [1], in which each periodic orbit family is represented by a continuous sampling 

of 512 orbits.  Fig. 9 displays the positions at the initial time (in right ascension and declination as viewed from center 

of Earth) of orbits 1-481. 

Table 1.  List of Orbits in Population #1 

Object 

ID 

Cislunar 

family 

Orbit 

number(s) 
Comment 

1-10 HN1 100 Constellation of 10 halo objects in same orbit separated in phase 

11-13 HN1 50/100/150 
Constellation of 3 halo objects starting at same phase in same family (Note: 

orbits 1, 3 and 12 form a cluster of 3 halo objects separated by ~1000 km) 

14-16 HS1 50/100/150 Constellation of 3 halo objects starting at same phase in same family 

17-19 HN2 50/100/150 Constellation of 3 halo objects starting at same phase in same family 

20-22 HS2 50/100/150 Constellation of 3 halo objects starting at same phase in same family 

23-32 HS1 100 Constellation of 10 halo objects in same orbit separated in phase 

 
1 The population developed originally contained 59 objects, as shown in Fig. 9.  For this IOD analysis, the maneuver and break-up 

objects (object IDs 49-59) were not considered. 
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33-35 HN1 200 Cluster of 3 halo objects separated by ~100 km 

36 HN1 200 Object that starts in vicinity of objects 33-35 cluster 

37-39 L1 50/100/150 Constellation of 3 Lyapunov objects starting at same phase in same family 

40-42 L2 50/100/150 Constellation of 3 Lyapunov objects starting at same phase in same family 

43 A1 50 Axial family object that remains in same lunar vicinity as previous objects 

44 A2 50 Axial family object that remains in same lunar vicinity as previous objects 

45-46 V1 50/100 
Vertical family objects that remain in same lunar vicinity as previous 

objects 

47-48 V2 50/100 
Vertical family objects that remain in same lunar vicinity as previous 

objects 

 

 
Fig. 9. Orbits 1-48 in Population #1 at initial simulation time in right ascension and declination, color shaded.  

Objects not under consideration are shaded light gray (see previous footnote). The moon is in gray at -18-deg right 

ascension, -12-deg declination.  

Population #2 consists of 60 different orbits propagated ballistically with a starting date of 2021-01-01.  These orbits 

are in a variety of cislunar periodic families to include those about the ℒ4 and ℒ5 Lagrange points, and as such, are 

observed all throughout the volume of cislunar space and not just near the Moon. Table 2 details each orbit with the 

orbit number (again corresponding to what was done in previous papers [1-2], with the addition of the Distant 

Retrograde Orbit [DRO] family, sampled in a similar fashion). Fig. 10 displays the initial positions of these objects in 

right ascension and declination. 
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Table 2.  List of Orbits in Population #2 

Object 

ID 

Cislunar 

family 
Orbit number(s) 

101-106 DRO 002, 104, 206, 308, 410, 512 

107-112 HN1 002, 096, 190, 284, 378, 472 

113-118 HN2 002, 104, 206, 308, 410, 512 

119-122 L1 002, 094, 185, 277 

123-128 L2 002, 052, 102, 152, 202, 252 

129-134 L4 002, 104, 206, 308, 410, 512 

135-140 L5 002, 104, 206, 308, 410, 512 

141-150 V4V5 002, 059, 115, 172, 228, 285, 341, 398, 454, 511 

151-160 W4W5 006, 061, 116, 171, 226, 280, 335, 390, 445, 500 

 

 
Fig. 10. Orbits 101-160 in Population #2 at initial time in right ascension and declination. 

For each orbit set, observations were generated using two different sensor arrays.  The first was an Earth ground-based 

electro-optical (EO-ground) set of five longitudinally distributed sensors to ensure the moon vicinity is continuously 

visible from at least one of the sites: New Mexico (sensor# 211; 33.8° N, 106.7° W), Maui (sensor# 231; 20.7° N, 

156.3° W), Diego Garcia (sensor# 241; -7.4° N, 72.5° E), Spain (sensor# 260; 37.1° N, 5.6° W), and lastly Australia 

(sensor# 272; -21.9° S, 114.1° E).  The second array (EO-space) consisted of three notional geostationary Earth orbit:  

longitudes of 120° E, 0°, and 120° W. The EO-space sensor IDs for the two populations are different, for Population 

#1 (sensor# 42001-42003) and for Population #2 (sensor# 42004-42006). 

Tasking of observations was done on a sensor-by-sensor basis so that the object with the longest gap in time since its 

last observation from that sensor and currently observable by that sensor was selected.  For EO-ground observations, 

the exclusion zones were defined such that an object was observable when the object was at least 10 degrees above 
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the horizon, the Sun was at least 10 degrees below the horizon, the object was at least one degree from the Moon, and 

the object was brighter than 24th visual magnitude (where the object was modeled as a diffuse sphere with a 1-m2 

cross-sectional area and reflectance of 20%).  For EO-space observations, the exclusion zones were defined such that 

the object was required to be at least 30 degrees from the Sun, at least 5 degrees from the Earth, 2 degrees from the 

Moon, and again brighter than 24th magnitude. Once selected by a sensor, the object was observed five times with a 

time gap of 60 seconds between each measurement to form a track.  Other objects within 0.1 degrees of the target 

object were also observed simultaneously. If any of the objects were within 0.2 arcsec of one another, the 

measurements were combined by averaging and a single measurement reported. In addition to the exclusions and 

tasking priority listed above, 60 seconds were allotted to move from one object to the next and no observations of 

another object were made during gaps between measurements for a particular track. All EO measurements were 

simulated with additive Gaussian noise with a 2 arcsec standard deviation. 

In Fig. 3, it was noted that the object ID numbers are 90000 numbers, while the population objects as described thus 

far in this subsection have used truncated numbers for brevity (i.e., IDs 1-48 and 101-160). Moving forward, as in Fig. 

3, 90000 numbers will be used. Object #1 from Population #1 is actually object #90001, object #101 from Population 

#2 is actually object #90101, so on and so forth.  The use of 90000 numbers in the results section will help the reader 

distinguish between CAR-MHF estimate numbers and “truth” object ID numbers. 

4.2 Experiment Settings and Assumptions 

CAR-MHF is being evaluated from a cold start, meaning that an empty database of estimates is provided and CAR-

MHF must initialize, update tracks, and graduate objects based on processing the incoming measurements and no a 

priori information other than the admissible region assumptions. The tests are evaluating the tool’s ability to perform 

the IOD function, and only the IOD function, from scratch; all other steady-state track maintenance functions are 

present but will not be the focus of the discussion. This approach aims to establish a potential IOD baseline for 

comparison with other techniques. 

The admissible region constraints and other CAR parameters used for all runs presented in the results are displayed in 

Table 3, mirroring the examples shown in Section 2.1 for all objects: 

Table 3.  Admissible Region Constraints and Parameters 

CAR Parameter Value Description 

Energy true 
Use the Earth 2-body energy=0 curve as a possible 

constraint 

Semi-Major Axis 45,000 km 
Select the lower allowable semi-major axis to 

effectively set GEO+ as the lower bound 

Eccentricity 2 
Select the maximum eccentricity constraint to handle 

high osculating eccentricity scenarios 

Range 
30,000 km minimum; 

800,000 km maximum 

Select range bounds to limit the values of range from 

the sensor; capture much of cislunar space 

Range Rate 2.5 km/s 
Select +/- range rate bounds to limit possible range 

rate hypotheses 

Hypotheses Range Spacing 7500 km Separation of hypotheses in range 

Hypotheses Range Rate 

Spacing 
0.15 km/s Separation of hypotheses in range rate 

Smoother Interval 4 hours 
The cadence over which CAR-MHF will attempt an 

iterative filter/smoother refinement and graduation 

 

The variable conditions for each test run are described in Table 4. Each population was processed twice, once with 

the entire set of measurements collected over the designated time span, and again with the measurements decimated. 

The decimation strategy kept only measurement tracks which were separated by some number of hours. For this 

analysis, six hours was chosen as the decimation level for comparison. To visualize the impact of the decimation 

strategy on the available data, Fig. 11 shows the measurement track separation and total number of measurement 
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tracks in histogram form for the Population #1 cases, with the Population #2 characteristics (not shown) being very 

similar. This experiment setup tests the functionality of CAR-MHF in dense and sparser data environments and 

illuminates any opportunities for adding robustness to CAR-MHF and its ability to perform the IOD function within 

the cislunar regime. 

For Population #2, it was desired to maximize the number of objects available for the cold-start evaluation. The time 

that maximized the observable number of the original 60 objects was at the beginning of the time span.  However, two 

objects (90119 and 90123) are unobserved over the entire time span due to exclusion constraints, and object 90106 is 

only sparsely observed on the first day of the time span, due again to exclusion constraints.  The resulting test set 

evaluated below has these three objects removed, resulting in 57 objects for Population #2. 

Table 4.  Test Run Descriptions 

Run # Population Decimation Scenario Time Span 

1 #1 (48 objects) None 2019-07-20 – 2019-07-27 (1 week) 

2 #1 (48 objects) 6 hours Same as above 

3 #2 (57 objects) None 2021-01-01 – 2021-01-08 (1 week) 

4 #2 (57 objects) 6 hours Same as above 

 

 
Fig. 11.  Time gaps in measurement tracks for Population #1. The 6-hour data decimation case (right) is ~8X sparser 

in overall measurements than the case with no data decimation (left). 

5. RESULTS 

The following subsections present the results of processing the test sets discussed in Section 3.  Section 4.1 discusses 

the results on Population #1, and Section 4.2 discusses the results for Population #2.  Section 4.3 then provides a high-

level overview of the measurement mapping results and the corresponding growth in measurement space uncertainty 

after CAR has generated an IOD solution. 

5.1 Population #1 Results 

The results for Population #1 are summarized in Table 5. The decimation strategy of keeping measurements separated 

by at least six hours led to an effective ~8× reduction in the number of measurement tracks (shown in Fig. 11 above). 

CAR-MHF achieved a 100% data utilization rate in both cases, with all observations correctly associated to distinct 

CAR-MHF estimates and 48 unique tracks being graduated, corresponding to the 48 truth objects. The run times were 

similar, with both runs taking 36 minutes on a MacBook Pro 6-core workstation. 
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Table 5.  Population #1 Results 

Metric No Decimation Decimation of 6 Hours 

Total Measurement Tracks 8132 1072 

Graduated Objects 48 48 

Correct Associations  

(True Positives) 
8132 / 8132 (100%) 1072 / 1072 (100%) 

Run Time 35.6 min 35.9 min 

 

 
Fig. 12.  Confusion matrix for the CAR-MHF run on Population #1 with a 6-hour decimation of the data. This 

confusion matrix was generated after processing data for 24 hours. The blue color scale designates the number of 

effective measurements associated across truth objects and CAR-MHF estimates. 

The confusion matrix displayed in Fig. 12 highlights the levels of association confusion (after 24 hours) encountered 

by CAR-MHF while processing the more challenging 6-hour decimation case. Note that the objects in the three-by-

three block in the upper left are the closely spaced 90033-90035 cluster (~100 km spacing) as discussed previously in 
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Section 2.3 and described in Table 1.  CAR-MHF has created three estimates (estimates 2, 3, and 4 on the y-axis) for 

these objects, but there is significant sharing of measurement information across the estimates. There is so much 

sharing, in fact, that the majority of the mass is not along the diagonal for this cluster. However, with time and more 

measurements, CAR-MHF eventually resolves this confusion and successfully graduates these objects (graduation 

overview shown in Fig. 13). There is also confusion among the 90001, 90003, and 90012 objects, which Table 1 

highlights as being separated by ~1000 km.  

The last intriguing observation from the confusion matrix is that CAR-MHF generated two estimates for object 90044 

(estimates 30 and 47). This can happen for multiple reasons, but it is typically caused by noise in the measurements 

leading to a CAR that doesn’t quite capture the object’s true orbit. Despite this, CAR-MHF was eventually able to 

graduate a single estimate for this object, utilizing the iterative filter/smoother to combine the measurements from 

these estimates and recognize them as being one object. 

The graduation rates given the different data decimations are compared in Fig. 13. The blue solid line shows the results 

from processing the entire data set, and the red dotted line shows results from processing the decimated data set. The 

impact of the sparser data is evident, as it takes 3.7 days (88 hours) to graduate the last few objects, whereas with the 

denser data it takes a little over a day (28 hours). 

 
Fig. 13.  Comparison of CAR-MHF object graduation rates for Population #1 with different data decimations. 

Graduations are attempted at the conclusion of each 4 hr smoother interval. 

5.2 Population #2 Results 

The results for the second population are displayed in Table 6. The decimation strategy of keeping measurements 

separated by at least six hours led to an effective ~7× reduction in the number of measurements. CAR-MHF achieved 

a 100% data utilization rate in both cases, with all observations correctly associated to distinct CAR-MHF estimates 

and 57 unique tracks being graduated. The run times were similar, with both runs taking ~40 minutes on the same 

MacBook Pro 6-core workstation. 
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Table 6.  Population #2 Results 

Metric No Decimation Decimation of 6 Hours 

Total Measurement Tracks 9779 1339 

Graduated Objects 57 57 

Correct Associations  

(True Positives) 
9779 / 9779 (100%) 1339 / 1339 (100%) 

Run Time 42.3 min 37.9 min 

 

The association confusion after 20 hours is starkly different for the Population #2. As shown in Fig. 14, there is no 

confusion across the 56 estimates that have been created up to this point in the data processing. This lack of confusion 

is evidently the result of 1) the lack of closely space objects in this population, and 2) an inference that having 

observations every six hours or so for this population was sufficiently dense to prevent uncertainty cross-over from 

occurring. Recall that the PDFs for most of the 56 objects with measurements up to this point (20 hours) have been 

propagated and updated with the filter multiple times, and that the first ~6-hour data gap after the CAR is where the 

largest uncertainty growth will occur (because there is the least information at this point in the process). If confusion 

is going to occur, it will most likely occur following the first post-CAR data gap. This lack of confusion also likely 

contributes to the improved graduation timelines covered in Fig. 15. 

 
Fig. 14.  Confusion matrix for the CAR-MHF run on Population #2 with a 6-hour decimation of the data. This 

confusion matrix was generated after processing data for 20 hours. The blue color scale designates the number of 

effective observations associated across truth objects and CAR-MHF estimates. 
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The graduation rates given the different data decimations are compared in Fig. 15. The blue solid line shows the results 

from processing the entire data set, and the red dotted line shows results from processing the decimated data set. Once 

again, the impact of the sparser data can be seen, as it takes about twice as long to graduate the last few objects (36 

hrs vs. 68 hrs).  

 
Fig. 15.  Comparison of CAR-MHF object graduation rates for Population #2 with different data decimations. 

Graduations are attempted at the conclusion of each 4 hr smoother interval. 

5.3 Time Evolution of Measurement Space Uncertainty 

The instant formation of an estimate PDF is perhaps the most significant contribution of techniques such as CAR-

MHF. This last part of the analysis looks at a sample propagation of that single-measurement PDF. In this scenario, 

an HN2-308 object (HN family orbit about the ℒ2 Lagrange point) was observed solely by the EO-ground simulated 

sensor network described in Section 3.1. The following results show that, as time passes and the Earth rotates, a global 

network of sensors is needed to successfully monitor the near-Moon vicinity for periodic orbits and associated 

transfers. The example in Fig. 16 shows the time evolution of the measurement space PDF as it progresses through 

this EO-ground network over 17.5 hours. This example assumes no filter updates are occurring to demonstrate the 

impact of not obtaining follow-up observations on a notional UCT in cislunar space. 

The CAR is generated by sensor ID 211, resulting in a tight Gaussian measurement space PDF. Propagation of the 

solution for two hours occurs before the object is next observed by sensor ID 231. Portions of the PDF are already 

exceeding the narrow 0.5-deg FOV boundary (the black rectangle). As time passes, more and more of the mass of the 

PDF begins to depart from the narrow FOV box, and after eight hours an observation by sensor ID 272 would likely 

miss the actual object (black diamond marker) if it was targeting its initial collect at the highest probability region of 

the PDF. 

Propagating further, the measurement space PDF begins to exceed the larger 5-deg FOV represented by each figure 

window, and eventually the PDF contour lines (representing 15% increments in marginal probability of the overall 

PDF) begin to exceed the 5-deg FOV.  In addition, the actual object becomes more difficult to find as it drifts further 

into the low-probability regions of the PDF. These propagations provide valuable insight into the effects that the 

complex dynamics are having on a PDF of the nature generated during the IOD process. Critical revisit timelines are 

measured in hours and are mostly driven by the profound radial uncertainties experienced with observations of objects 

in the cislunar regime. 
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Fig. 16.  Sequence of sensor perspectives on a CAR solution for HN2-308. The perspectives are across a simulated 

global network of EO-ground sensors spanning 17.5 hours. The magenta asterisks are the CAR hypothesis state 

sigma points mapped into the inertial measurement reference frame for each sensor. The contours represent 15% 

increments in marginal probability for the overall PDF (sum over all equally weighted hypotheses). 
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6. CONCLUSIONS AND DISCUSSION 

CAR-MHF has been adapted and demonstrated as highly effective in generating IOD solutions for different 

representative populations in the cislunar regime. The methods employed by CAR-MHF provide a solid balance of 

performance in dense and sparse data environments, robustness to association confusion, and high data utilization. 

Continuing work will look to push further into sparse data sets to understand the limits of this approach, while also 

building an understanding of the sensitivities to measurement noise and other measurement artifacts present with real-

world measurements of this orbital regime. Harnessing the available measurement information (angles and rates, 

visual magnitudes, etc.) to make inferences about the range and range rate information and improve upon uniformly 

distributed representations in range and range rate is a possibility. However, as a baseline, this work suggests that 

these potential improvements would likely be accretive but not essential. 

There are numerous other features built into CAR-MHF that were not the focus of this assessment, including follow-

on orbit maintenance, maneuver handling, processing of lagged measurements, etc. While these capabilities have been 

previously demonstrated to have utility, the challenges of achieving foundational SSA in the cislunar regime will 

benefit from higher-fidelity features providing rich, individualized assessments executing within a modular but 

integrated SSA workflow. CAR-MHF is a tremendous IOD tool, and its focus should remain where its generalized 

formulations are most performant. 

Perhaps the most impactful feature of CAR-MHF and similar methods is the potential for tactical utilization, due to 

the implicit PDF that is formed. A sensor tasking schema based on information gain to minimize the possibility of 

failed UCT reacquisition could be immensely valuable within an environment which is, by its nature, difficult to 

observe. This possibility would improve cislunar space situational awareness by further informing the optimal balance 

of task-based and search-based sensing requirements across multiple observation locations. To reacquire a UCT with 

high confidence using narrow-FOV EO sensors, a critical timeline of a few hours for follow-up observations was 

demonstrated across numerous orbit families in the cislunar regime. In cases where reacquisition proves difficult, the 

PDF could be used to inform a search strategy for more efficient reacquisition. This use case has limits warranting 

further investigation due to the rapid growth and distortion of the PDF given the dynamics of the environment and 

large uncertainties associated with IOD.  
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