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ABSTRACT SUMMARY

As the population of resident space objects continues to grow steadily, the need for greater knowledge of the space
environment and orbiting elements will increase as well. To truly achieve actionable and timely collision avoidance
processes, improved atmospheric density and drag models are required. Orion Space Solutions has developed a drag
specification and forecast tool called “Dragster” based on well-validated, full-physics atmospheric models and
ensemble data assimilation techniques. Timely access to Dragster model output will allow analysts to utilize the
enhanced satellite orbit specification and predictions provided by Dragster, reducing the numberof false positives. In
the comparisons between Dragster and the High-Accuracy Satellite Drag Model (HASDM) performed to date,
Dragster generally outperforms HASDM. The primary innovation of the presented work is to explore the prediction
of uncertainties associated with the density and drag predictions from the Dragster ensemble assimilative model.
Presented here is a detailed look at Dragster’s methodology and validation results, showing the improvement upon the
state-of-the-art HASDM. The SSA/SDA technicalcommunity will be interested in the reduced error and importantly
the quantification of this lower drag uncertainty.

1. INTRODUCTION

A significant challenge of global Space Domain Awareness is the sheer numberof objectsthatare nowin orbit around
Earth. As the demand forsatellites increases, and the density of satellites in space increases, there is a need for more
robust space domain awareness capabilities, specifically the prediction of satellite orbits. Perturbing forces which
change the orbital trajectory of space objects can make this process difficult, resulting in greater uncertainty around
collision avoidanceand maneuvering, causing optical sensors to spend additionaltime searching for objectsthey are
tasked to track. When these forces are modeled or represented incorrectly, errors in orbital position accumulate,
potentially causing ambiguity between objects for opticalsensors. Atmospheric dragis especially difficult to specify
for the Low Earth Orbit (LEO) regime (below 2000 km altitude) [8], yet this is where most satellites reside.

The accuracy of current modeling of space object density is unsophisticated enough that it does not provide estimates
of the uncertainty regarding drag or object position. More accurate modeling can increase accuracy, decrease search
volumes, and thus increase the capacity of individual sensors to make a dditional observations. For satellite operators,
conjunction assessment and collision avoidance are daily issues which depend upon having high accuracy orbit
estimates with well-characterized uncertainties and recent observations. Any loss in orbit estimate accuracy
significantly increases the chances of a catastrophic collision. Existing atmospheric dragmodels are not robust enough
to provide accurate predictions and cannot take advantage of additional available data, or improved forecasting
techniques.

2. SPACE ENVIRONMENT OVERVIEW

The ionosphere and upper atmosphere play a major role in LEO operations, including communications, navigation,
surveillance, and satellite drag. Satellite dragis the leading cause of orbit prediction error in low earth orbit. As the
population of satellites in Earth orbit grows with time, higher orbital prediction accuracy isrequired to enable accurate
catalogmaintenance, collision avoidance formanned and unmanned space flight, reentry prediction, satellite lifetime
prediction, defining on-board fuel requirements, and satellite attitude control. Satellite drag varies strongly as a
function of the neutral thermospheric density and ballistic coefficient. Aerodynamic drag acceleration (a drag) is
expressed by the equation below in terms of atmospheric density (p), drag coefficient (Cp), cross-sectional area (A),
spacecraft mass (m), and the spacecraft velocity relative to the atmosphere (Vr).
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The drag accelerationis the aerodynamic acceleration projected in the direction of satellite velocity. Many satellites
also experience non-negligible lift forces which can cause long-term changes in the orbital inclination as well as
aerodynamic torques which can alterthe attitude state of the satellite. The inverse ballistic coefficientis often used to
describe the non-atmospheric contributions to satellite drag as shown below.

Equation 1: Aerodynamic Drag

Adrag = Ep = Va;z

The drag acceleration is the aerodynamic acceleration projected in the direction of satellite velocity. Additionally,
objectsmay experience non-negligible lift forces which can cause long-term changes in the orbital inclination as well
asaerodynamic torques, which can alter the attitude state of the satellite. The inverse ballistic coefficient is often used
to describe the non-atmospheric contributions to satellite drag, as shown below.

Equation 2: Ballistic Coefficient

B et
m

Thermospheric density is the most variable parameter, at a constant altitude, changing by as much as 200-800% [1]
due to changes in geomagnetic activity levels. Here we define variability as the total change of a parameter divided
by the initial value of the parameter. The product of Cp and A is the second contribution to drag variability with
variations for elongated satellites flying above 180 km as large as approximately 100% [2, 3]. Another 25%-50%
change can be expected in the product of Cp and A below 180 km due to transition effects [4, 5]. Changes in
atmospheric winds can lead to changes in V; on the order of 3% 1 -o, with maximum effects on the order of 15% during
large geomagnetic storms. Some orbiting objects experience propellant leaks and breakup,in which case the changes
in mass can cause dragto be altered by significant amounts (sometim es in excess of 100%)[4]. Uncertainty in changes
from one solar cycle to the next adds additionalurgency to the problem of modeling thermospheric density. The refore,
the density prediction must respond appropriately to solarand geomagnetic forcingterms to enhance the Space Traffic
Management effort.

3. DRAGSTER OVERVIEW

Dragster is a modeling framework developed by Orion and based on state-of-the-art full-physics models of the coupled
thermosphere-ionosphere running in real-time with inputs comprising near-realtime and predicted space weatherdata
and indices. It uses assimilative techniques to produce both a nowcast and 72-hour predictions of the global
thermosphere-ionosphere system. Dragster’s system architecture is shown below, in Fig. 1.
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Fig. 1: Dragster Operation View 1 (OV-1)

Dragster utilizes the 3-D global Thermosphere-lonosphere-Electrodynamics General Circulation Model (TIE-GCM)
to solve forthe time dependent non-linear momentum, energy, and composition equations to provide neutral dynamics,
temperature, and the distribution of neutral species. The 3-D distribution of neutral density is obtained from the
temperature and composition, which, together with the neutral winds, provide the necessary parameters for satellite
drag prediction. The self-consistent ionosphere is important and necessary to ensure accurate conductivities and for
characterizing high latitude Joule heating, ion drag, and realistic wind determination. The model is driven by three
main inputs: solar radiation, high-latitude forcing, and tides propagating from the lower atmosphere. TIE-GCM runs
include variable high-latitude forcing specification based on Assimilative Mapping of lonospheric Electrodynamics
(AMIE) modelfiles. The lower boundary includes the specification of the upward propagatingtides. The sp ecification
of seasonal eddy diffusion near 90 km can also be included via input flags of the TIE-GCM interface. The eddy
diffusion affectsthe altitude distribution of various neutral species (e.g., N2, 02, O) and therefore the overall density
profile [6]. The physicalunderpinnings of this variation are still being investigated and Orion recommends this feature
should only be used for research purposes until further validation work is done. The upper boundary of Dragster has
been extended into the Helium-rich exosphere and data assimilation has been demonstrated at altitudes up to and
beyond 800 km. Helium is the dominant neutral constituent above ~ 500 km at solar minimum. Both the TIE-GCM
and NavalResearch Laboratory Mass Spectrometerand Incoherent Scatter NRLMSIS-00, henceforth MSIS) models
include Helium components, and the Assimilation Engine and TIE-GCM software is designed to accommodate objects
well above the 500 km oxygen-helium transition. The current operational Space Force model, called the High
Accuracy Satellite Drag Model (HASDM), does not account for this transition to a helium -rich atmosphere.

Dragster utilizes MSIS as an alternative background model. The software architecture was designed to be modularso
that as atmospheric models evolve, such as MSIS v2, they can be included into Dragster for evaluation/testbed
purposes. This forward-looking design means that the Dragster tool can be optimized to leverage an ensemble of
models most appropriate for the task at hand, and future improvements to any such models will flow directly into
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Dragster performance. Forexample, several “whole atmosphere” models currently being developed, including WAM -
IPE, could be introduced into the Dragster framework to broaden the ‘ensemble’ or, if unsuitable for operationaluse,
can be compared for operations. Dragster propagates the model ensemble members forward to predict the most
probable trajectory of the thermosphere state and its uncertainty based on inter-model differences, similar to
forecasting the path of a hurricane (See Fig. 1). Unlike tropospheric weather, the thermosphereis strongly driven by
extraterrestrial inputs and depends less on the prior states.

A key requirement for improving thermosphere density models, and to provide the best current densities, is the ability
to assimilate data. Dragster incorporatesthe ability to assimilate data into an ensemble of model instantiationsusing
“full-physics” first-principles general circulation models (e.g., TIE-GCM) as well as empirical models (e.g., MSIS)
of the atmosphere. It also has the ability to assimilate multiple sources and types of satellite drag-related data. This
includes tabulated Energy Dissipation Rate (EDR) values that can be output by a number of Precise Orbit
Determination (POD) techniques as well as from accelerometerdata.Italso includes operationaldatasets such asthe
DC summary files resulting from Special Perturbation (SP) orbit fits. Orion developed Dragster to assimilate density
data by using a version of the Ensemble Kalman Filter (EnKF) to provide nowcasts of various atmosphericand drag
parameters. Fig. 2 shows the Dragster EnKF algorithm top-level flow diagram. The algorithm begins in the upper left
with the definition of the initial atmospheric state (Xo) for every ensemble member.
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Fig. 2: Process flow diagram for Dragster

The states include a selectable span of model times to accommodate multi-bandwidth datasets. The software
propagates all the atmospheric states to the current time and ingests new satellite drag data,if available. At this point,
the ensemble computes the covariance matrices and Kalman gain. Unlike a classical EnKF, Dragster estimates
covariance and forms state estimates iteratively at each assimilation time window, giving it similarities to a batch
processing estimator. As the filter moves through time, the first step is to forecast the models forward. Then, as new
data becomesavailable, the iterative part (orange boxes) of the EnKF is entered. The main objective of this loop is to
calculate the error covariances from the ensemble members and the data measurements. These covariances then allow
for the calculation of a Kalman gain (K). With the Kalman gain and the model densities, the analysis states can be
computed for each ensemble member. An array of K values is stored reflecting the magnitude of change from time
step To to T1. A solution Xa is obtained for each ensemble member and the average of these solutions (x.) is used to
initiate a forecast of satellite drag parametersattime T in the future. This part of the process is performed iteratively
until a pre-specified convergence criterion is met. The iteration and wide time-range incorporated into each state cause
this part of the algorithm to resemble a batch processor within an EnKF architecture. Conjunction analysis and orbit
prediction algorithms for Space Traffic Management can then be executed using the new drag and density values at
time Tj.
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Dragster delivers time-dependent density fields and includes the drag-force along the orbit for any given object
specified by the operator. Object area, mass, and drag coefficient are specified by the user. The drag coefficient can
also be specified by a choice of empirical model, a fitted-ballistic approach, or hybrid of the two. The user can also
interpret the output density fields along with a catalogue of space objects.

4. DRAGSTER SOFTWARE ARCHITECTURE

To operationalize Dragster from its current TRL 5 statustoa TRL 8 scalable platform that can be used simultaneously
by multiple users, the existing application architecture needs to be transitioned from a monolithic to a cloud-based
infrastructure. Monolithic applications are typically large, complex software systems that perform a wide range of
tasks, often with a specific focus on scientific or engineering research. These applications are typically builtas a single,
integrated system thatincludes all the necessary functionality and data storage. As new features and technologies are
added, and technologies evolve and change, the codebase becomes increasingly complex and difficult to maintam.
This technical debt can be especially challenging for institutions that have limited resources and budget for
maintainingand updatingthese applications, which canlead to a lack of innovation and a decline in competitiveness.

To mitigate these issues, the moderm technique is to transition to a more modular, microservices-based approach,
allowing for more flexibility and scalability. This involves breaking down the monolithic application into smaller,
independently deployable services that can be updated and scaled more easily, as shown in Fig. 3. By adopting this
approach, institutions can reduce their technical debt, maintain their agility, and increase their ability to innovate.
Further, the associated containerization gives the ability to host the containers in cloud platforms, which can be
beneficial. Existing Cloud platforms, such as Amazon Web Services (AWS), Microsoft Azure, and Google Cloud
Platform (GCP), handle the hosting, maintenance, backup, scaling, and networking of the hosting infrastructure for
users. These services have become standard and can handle both secure and public deployments. Cloud platforms
have the added benefit of moving expenses from capital to operational accounts since both the hardware and
maintenance are ‘pay-as-needed’ services in cloud environments.

Containerization is the process of packaging software and all its dependencies into a single unit, which can then be
deployed and run independently of the compute environment. This allows for consistent and reproducible
environments, as all the necessary components are included within the container, rather than relying on the host
system's configurations. Containerization allows services to be deployed in a variety of environments, to allow
services to be duplicated to meet demand and testingrequirements, and to allow the same functions to be run in parallel
with duplicate container instances. By breaking down the monolithic application into smaller, containerized
components and services, it becomes easier to test and deploy each part separately. This allows for more efficient
testing and easier scaling of the application.
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Fig. 3: A comparative view of a monolithic and cloud microservices architecture. On the left all components are
built and deployed together, requiring the whole stack to be installed/configured. In cloud microservice design, each
service can be built, tested, and deployed independently.

If most of a monolithic application can be separated into small reproducible containerized services, the next task

becomesone of managingand orchestratingthe different components of the system. Orchestration involves managing
the order and scheduling of services, monitoring their performance and health, and ensuringthe system remains stable
and secure. The most common way of achieving this is to use a containerorchestration platform, such as Kubernetes.

Kubernetes is a secure, open-source platform, used for a variety of applications at Orion, that allows for the
deployment, scaling, and management of containerized applications. It provides features such as resource allocation,
automatic scaling, service discovery, and health monitoring. It also provides a unified interface formanagingmultiple
services, allowing for easier deployment and maintenance of the system. Orchestration can handle the distribution of
requests to available services and scale the pool of services based on the needs of the clients to provide high
availability. In addition, orchestration can be used to cluster services to allow for side-by-side deployment of
development, test, and production code. Further, the deployment of modified code is handled through the graceful
spool down and startup of different versions of the same services for increased reliability and availability, even with

updates in the code.

As an added benefit, containerized cloud architecture can apply the principles of test-driven development and
Continuous Integration/Continuous Deployment(CI/CD)at eachphase of the process. CI/CDis a method to frequently
transition applications to operation by automating the process of build, test, and deployment. In doing so, each
containerized microservice will be automatically deployed to one of the deployment environments and the entire test
suite will be performed to provide a record ofthe validity of that version of the code. Every requirement and technical
objective will inform a corresponding test (either unit, regression, or end-to-end). The requirement or objective is not
considered complete until the corresponding test passesits validation. In this way, the team can guarantee traceability
and performance to the original requirements. This process also ensures that any future upgrades or improvements to
the application can be instantly validated on-demand.

Containerization also permits for fast environment setup and deployment so that each service can be deployed to
multiple environments for robust validation and isolation. First deploying to local desktop for development, then to
testing environments for internal validation, then finally deploying to production environments for their active use.
One is guaranteed thateach step will use the same tested and stable version of the code without having to deal with
system specific configurations that can destabilize deployed applications.
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To effectively develop containerized services, all services are written to be stateless allowing for easier parallelization
and composability of service containerinstances. A stateless service is one that does not depend on previous calls to
perform its function. By adhering to stateless design, it allows for pools of services to satisfy requests from any client
in the environment regardless of previous activity or requiring costly context initialization.

For successful service-based Application Programming Interfaces (API), Representational State Transfer (REST) API
design allows for maximum reuse and flexibility. RESTful API design involves making the services stateless and
following the standard internet HTTP protocol for their interaction. This creates APIs independent of calling language
but prescribes enough rigidity in specification to make them consistent in structure, function, and callability. By
leveraging HTTP as its communication protocol, RESTful design allows for a broad range of deployment scenarios
of both local and cloud deployed services, while simultaneously taking advantage of caching and scalability inherent
to modermn HTTP systems. Furthermore, a large set of libraries and tools exists to interact with RESTful APIs, so less
work will be required of clients to use API service endpoints.

The modular service architecture of Dragster is shown in Fig. 4.
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Fig. 4: Dragster Service Architecture

The Dragster software is split into several services. The first of which is the "main" service which will actasa broker
between the initial input data sources (post-ingestion, tagging, and enrichment) as well as orchestrate the processing
of'the data into a form as will be required by the Ensemble Kalman Filter service. This service will handle the processes
thataren't captured by a separate service (bold outline). The next step in the processing of the data is the propagation
of the input satellite telemetry. The main functionality of the Dragster project is in the running of the ensemble
extended Kalman Filter which produces the atmospheric dragcorrection factor "state" estimate. This service represents
the largest part of the Dragster code. The Dragster filter functions by first sampling the forcing terms for a variety of
different ensemble member sets. From here, an iterative process begins in which the modeled observations are
calculated (by first calculating the underlying model effective density and then propagating the system), and then
updating the correction factor state estimates for each ensemble member. Upon each iteration, should this state
estimate not converge, the process begins again with a new resampling of the forcing terms, based on the covariance
of the current state estimate. If the set does converge, then the density correction terms are resampled from the
ensemble member states and the output is the state estimate for that time. The process is then repeated for the next
time window as defined by the user configuration until each time point is complete. The largest piece of calculation
that occurs during this filter process, however, is the computation of the effective density needed to calculate the
modeled observations. In the current codebase, there are two options for underlying background models to use in this
calculation: MSIS and TIE-GCM. In the future models JB-08 and WAM will be included as background options.
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5. RESULTS/VALIDATION

Orion has developed verification and validation procedures for use with Dragster. The Dragster model outputs have
enabled comparison with a number of satellite data sets. Side-by side comparisons have been made between the drag
predictions of Dragster versus JB-08, HASDM and the empirical MSIS model. Below, we compare the Dragster
neutraldensity and dragagainst values from the JB-08, HASDM and the MSIS model, and demonstrate that Dragster
offers statistically significant improvement. Dragster often outperforms HASDM in the 200-500 km regime during
both solstice and equinox conditions. Dragster fundamentally outperforms HASDM above 500 km as Dragster
accounts for helium being the major gas above this altitude, whereas HASDM assumes oxygen is the dominant
constituent.
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Fig. 5: SWARM satellite fly-through simulation comparing no drag, MSIS drag, HASDM drag, and Dragster drag.
Dragster is shown to vastly reduce the along-track error and remains bounded throughout the time simulated.

This fly-through capability wasused to validate the Dragster modelnowcasting performance against two othermodels
(MSIS and HASDM) as well asa ‘no-drag’ assumption,as shown in Fig. 5. To estimate the impact of satellite drag
on the position error of a satellite, Fig. 5 (panels A-D), depicts the position error thataccumulates over3 daysdue to
satellite drag when comparing the actual Swarm-A satellite location with position estimates based on different drag
models. The time period used for this study was three days from the 08/16/17-09/20/17 equinox period described in
the previous section. In the simplest case (panel A), we assumed no dragon the satellite,and in panels B-D we compare
the actual satellite location with position predictions based on using the MSIS model HASDM, and Dragster,
respectively, to specify the thermospheric density. Each panelshows the along-track (yellow), cross-track (green) and
radial (blue) error. In the astrodynamics simulation, sun and moon gravity are included, and earth gravity is modeled
up to order 100.

In panel A of Fig. 5, assuming no thermospheric drag, the predicted position diverges rapidly away from the actual
position in the along-track direction, reaching 3000 m (3 km) in just over 2 days. Using MSIS (panel C), the error is
justover 1000 m (1 km) in 2 days. The HASDM result in panelB reveals that HASDM hasreduced the uncertainty
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by about750m (0.75 km) relative to MSIS after3 days. With Dragster (panel D), the along-track error is limited to
about 100-200m even after3 days, and this error does notappear to grow exponentially like the other three cases. In
all four panels, the cross-track and radialerror are both well-bounded and remain close to zero forthe radial error, and
within about 200 m for the cross-track error after two days. The small error derived from using the Dragster model
would clearly reduce collision uncertainties and the number of false alarms. The HASDM model output for this
validation was provided by Space Environment Technologies (SET).

This representative example reveals that the Dragster approach outperforms other data assimilation methods when
assimilating data into strongly forced systems such asthe Earth’s upperatmosphere. Orion hasbeen testing this model
architecture with various types of satellite drag data, using two-line-elements, daily averaged densities, and
accelerometer data as sources. Observation objects were selected according to a set of simple criteria, including a
known shape exhibiting little variation in the observed ballistic coefficient and/or a stable fitted ballistic coefficient
whose orientation is known. These criteria allow the ballistic coefficient to be estimated by both a priori means as
well as by orbital observation. Orion currently maintains a catalog of 50+ calibration objects and 10+ validation
objects. Validation objects are not used in assimilation, but instead serve as independent evaluations of assimilation
performance. A wide range of orbital inclinations and perigee heights allows Dragster calibra tion to be sensitive to
density changes at all latitudes and altitudes of interest. This reduction in the uncertainty would certainly have an
impacton NASA and Space Force operations, including the higher orbital prediction accuracy required for accurate
catalog maintenance, conjunction analysis and collision avoidance for manned and unmanned space flight, reentry
prediction, satellite lifetime prediction, defining on-board fuel requirements, and satellite attitude dynamics.

For a fuller validation study, the years 2015, 2016, and 2017 were studied with defined validation metrics. The
validation metrics are computed in both logarithmic space and linearspace. For the logarithmic metrics, Orion focuses
onthe mean ofthe observed (O) to computed (C) mass density ratios as well asthe standard deviation of the ratios [7,
8]. An O/C ratio of one means that the model reproduces the observed thermospheric state perfectly. The standard
deviation of a time series of these ratios represents the model's ability to capture temporaland, due to the spacecrafts
motion and orbital evolution, spatial variations in the upper atmosphere. A part of the standard deviation is also a
result of observation errors. Consequently, the standard deviation is one of the most comprehensive and useful metrics.
A mean of'the O/C ratios can be very consequential in orbit propagation due to the sometimes-large difference between
aerodynamic forces experienced by the satellite and the forces computed using an atmospheric model. However, an
O/C thatis far from unity is sometimes caused by biases inherent in the observations and density estimation method
(O) and cannot be easily distinguished from biases in the modeled density (C). Furthermore, a history of orbita |
observations can be used to de-bias the aerodynamic force model prior to propagating an orbit forecast. Computing
O/C metrics in logarithmic space has the added benefit of reducing metric disparities when comparing model
performance at different places and times in the atmosphere. This is because the mass density along the orbits of
satellites flying at different altitudes can vary by several orders of magnitude. Mass density along the orbit of a single
satellite can also vary significantly from solar maximum to solar minimum conditions. This variability makes it
difficult to assess performance of a model by comparing linear metrics computed using a variety of satellite
observations distributed in both space and time. The logarithmic mean is computed as follows:

Equation 3: Logarithmic Mean [9].

0y (1 o,
Mean <E> = exp (17 ; In C_,,)
Then, the logarithmic standard deviation (SD) is computed as:

Equation 4: Logarithmic Standard Deviation.

2(Q) - |3 35 (+ -ven(2))

Linear metrics can be useful when comparingthe performance of models fora single satellite at similar locations and
solar cycle conditions. Therefore, we include a linear standard deviation based on the model-data residualor (C -
0)/0. Inother words, SDlin = StdDev( (C-O)/O ). We do notrestrict our calculationsto the intrinsic sampling rate of
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the datasetnorto the orbit-averaged densities that are often used for validation in the literature. Instead, the O/C ratio
and residuals are smoothed using windows of varying length prior to computing any metrics. This is done to highlight
changes in metrics at different scales ranging from sub-orbital to multi-day.

For independent density observations (O), we use Swarm satellite densities archived by ESA [10] as they are not
assimilated into Dragster. Data is used from both Swarm-A (near 450 km altitude) and Swarm-B (near 515 km
altitude). Any negative or near-zero densities are removed from these data products prior to computing error metrics.
The computed densities (C) are based on Dragster output cubes sampled along the Swarm trajectories to produce a
modeled density time series. We performed a similar process for the HASDM data cubes[11]. The JB-08 and MSIS
models were interrogated only at the satellite positions so there was no interpolation necessary.

Table 1 lists the performance metrics for 2015, 2016, and 2017 respectively. The table lists validation metrics
computed for four different models alongorbits of Swarm-A and B. The 1/4 Orbit validations are shown and illustrate
higher frequency temporaland spatial variability associated with sub-orbital sampling of latitudinal and local time
structure by the Swarm observations. Each table entry corresponds to a logarithmic standard deviation with the linear
standard deviation shown in parentheses. The best error metric for each case is highlighted in green.

Table 1: Comparison of Dragster and other leading neutral density models.

_ 2015 % Orbit Average - Validation Results 2015, SD Logarithmic (Linear), 5 storms with Kp>5+

Dragster HASDM 1B-08 NRLMSISE-00

Swarm-A (450km) 0.115 (0.101) 0.117 (0.133) 0.180 (0.202) 0.267 (0.318)

Swarm-B (515km) 0.198 (0.202) 0.219 (0.295) 0.258 (0.329) 0.340 (0.497)
_ 2016 % Orbit Average - Validation Results 2016, SD Logarithmic (Linear), 1 storm with Kp>5+

Dragster HASDM 1B-08 NRLMSISE-00

Swarm-A (450km) 0.166 (0.164) 0.157 (0.202) 0.236 (0.278) 0.274 (0.413)

Swarm-B (515km) 0.384 (0.871) 0.369 (1.065) 0.425 (0.930) 0.456 (1.563)
_ 2017 % Orbit Average - Validation Results 2017, SD Logarithmic (Linear), 2 storms with Kp>5+

Dragster HASDM 1B-08 NRLMSISE-00

Swarm-A (450km) 0.176 (0.160) 0.188 (0.220) 0.259 (0.303) 0.278 (0.442)

Swarm-B (515km) 0.377 {0.616) 0.389 (0.724) 0.440 (0.740) 0.437 (1.227)

The assimilative models (Dragster and HASDM) always outperform the non-assimilative models (JB-08 and MSIS)
forall three yearsregardless of the metric or timescale used. These differences can correspond to a three-fold reduction
in error or greater. The JB-08 modelalso tendsto outperform MSIS, especially atlonger timescales. The differences
between HASDM and Dragster are smaller than the differences between the other models. This is especially true in
logarithmic metrics where the differences between the two are generally within a few percentage points. Note that the
two assimilative schemes use similar datasets, which is a likely cause of the similarities. Beyond the similarities in
performance, Dragster outperforms HASDM in terms of linear standard deviation for the entire time period. Dragster
also outperforms HASDM in logarithmic standard deviation for two of the three years. Dragster achieves the best
relative performance during the least active time period (2017). The relative strength of Dragster in 2017, during very
low solar activity, is an indication thatthe assimilation scheme along with the background model are better suited to
converge on very cold thermospheric states where compositional effects (e.g., helium) can dominate both the
background distribution of density as well as its transient response. In contrast, the HASDM background model is
almost devoid of composition effects. The Swarm-A and Swarm-B validation focuses on the 400km —500 km region
and shows that Dragster often outperforms HASDM. Additional validation has shown that Dragster often outperforms
HASDM throughout the 200-500 km regime. It is noteworthy that Dragster is expected to consistently outperform
HASDM above 500 km because Dragster accounts for helium being the major gas above this altitude, whereas
HASDM does not take into account this transition to a helium-rich atmosphere but assumes oxygen remains the
dominant constituent, and therefore HASDM is expected to significantly underperform Dragster above about 500 km.
Data assimilation has been demonstrated with Dragster at altitudes up to and beyond 800 km. Additional model
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improvements and tuning are yet possible in Dragster that would give an additional advantage to Dragster in future
validation exercises.

Since the analysis conducted and shown in Table 1, HASDM model outputs have become publicly available [12]
spanning several years. As such, further validation could be performed over multiple years of data spanning solar
minimum and solar maximum conditions. The objects included could span a range of inclinations, eccentricities, and
cover perigee heights between ~200 km and ~900 km, or beyond.

6. CONCLUSIONS

Dragster has been shown to improve the specification of thermospheric density and drag significantly. This hasa
majorimpacton the orbit prediction capabilities of constellation providers and satellite owners. With more accurate
density and dragestimates, conjunction alerts will be less often and will have more certainty. Another key benefit will
be that optical systems will nothave to track resident space objects as frequently, clearing up time for higher priority
targets. Future work will continue to operationalize the modular service architecture and validating the forecast
predictions.
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