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ABSTRACT 

A study is presented that characterizes the capabilities to initiate tracks for cislunar space objects. KBR is working 
toward standing up an end-to-end cislunar cataloging capability. One of the first steps in tracking a cislunar satellite 
is to find and establish a trajectory with an initial orbit determination (IOD) tool. KBR developed the Two Angle Pairs 
Initial Orbit with Conjunction Analysis (TAPIOCA) tool to perform IOD. For this effort TAPIOCA has been upgraded 
to find initial states of cislunar objects from optical tracks (right ascension and declination) produced by Electro-
Optical ground-based sensors. Simulated data of multiple cislunar objects in various orbits are processed with the 
Space Catalog Observation Processing Engine (SCOPE). Care is taken to simulate a realistic scenario considering 
noise, scheduling, detection restrictions, etc., while including closely spaced objects and maneuvering objects. Results 
of establishing trajectories in a data rich environment are presented to illustrate a best-case scenario. Finally, 
simulation parameters are varied to stress the tool and provide insights into the capabilities and limitations.  

1. INTRODUCTION

Interest in operating satellites in cislunar space has spiked in recent years, with multiple missions already flying. Due 
to the large distances and difficult sensor constraints, there is a need to upgrade passive tracking systems to achieve 
situational awareness throughout cislunar space. KBR is working toward standing up an end-to-end cislunar cataloging 
capability. One of the first steps in tracking a cislunar satellite is to find and establish a trajectory with an initial orbit 
determination (IOD) tool. Most classic IOD tools rely on two-body gravitational force model assumptions that can 
break down in cislunar space due to third-body gravitational effects of the Moon.  

KBR developed the Two Angle Pairs Initial Orbit with Conjunction Analysis (TAPIOCA) tool to perform IOD, 
conjunction assessment with poorly determined orbits, and maneuver detection for traditional Earth orbits. For this 
effort TAPIOCA has been upgraded to find initial states of cislunar objects from optical tracks (right ascension and 
declination (RA/Dec)) produced by Electro-Optical ground- and space-based sensors. When observations of cislunar 
objects are processed with TAPIOCA, first an Earth-centric orbit is attempted, but if that fails TAPIOCA will attempt 
to establish a Lunar-centric orbit when certain conditions are met (the optical measurements are sufficiently close to 
the Moon sphere of influence). TAPIOCA still relies on two-body gravity assumptions, but over relatively short time 
scales, the initial two-body results are good enough to establish trajectories which can be refined with a batch least-
squares algorithm using full force model predictions that include n-body dynamics.  Note that many periodic orbits in 
the Earth-Moon three-body problem have periods of a week or more, so a short time scale relative to the orbit period 
can still be several hours. In the least-squares formulation, a singular-value decomposition solver is used to avoid 
numerical difficulties which occur for trajectories with poor observability.  

KBR’s end-to-end tool for managing a catalog is called the Space Catalog Observation Processing Engine (SCOPE). 
While the focus of this study is on the IOD capabilities applied to cislunar objects, a month-long simulation is analyzed 
to show that the IOD estimates are indeed good enough to seed a catalog. SCOPE is a robust tool that is tailored to 
handle any orbital regime, including cislunar scenarios. A brief high-level description of SCOPE will be provided in 
Section 2, along with a more detailed explanation of TAPIOCA.  

While a simulation, attempts are made to mimic operational capabilities. Section 3 describes the high-fidelity test sets 
developed for this study. Observations are simulated with realistic scheduling constraints, measurement noise, and 
viewing restrictions. Objects are chosen to reside in high interest areas of cislunar space with truth trajectories created 
using a high-fidelity propagator. Special objects are also included to test the system against real world scenarios that 
could degrade system performance. 

Section 4 presents the results of running SCOPE on the simulated data. The goal of the study is to test the strengths 
and weakness of the cislunar IOD capabilities in TAPIOCA. Most passive ground-based satellite surveillance systems 
are geared to track standard Earth orbiting satellites, from Low Earth to Geosynchronous regimes. Dedicated cislunar 
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cataloging will likely require modified strategies, including IOD. As a starting point, this study focused on a parameter 
search of observation cadence, track length, and measurement noise. While testing the cataloging/IOD processes, these 
results will also help to guide the development and deployment of tracking systems dedicated to maintaining cislunar 
catalogs. 
 

2. SOFTWARE BACKGROUND 
 

2.1 SCOPE 
 
SCOPE is a suite of software services in an open-loop configuration that ingests observation files and processes them 
chronologically in time steps. The services used in SCOPE are written in C++ and are also used operationally in a 
real-time processing configuration that is closed loop, meaning that the services dynamically task sensors based on 
events as they happen. The services can be distributed on a network and communicate via TCP/IP messages, many of 
which are binary serializations of C++ data structures. Astrodynamics calculations are performed using the Turboprop 
C++ astrodynamics library. Figure 1 shows the particular SCOPE configuration used for this study.  
 
 

 
Figure 1: Schematic representation of the SCOPE configuration used for this paper. 

 
The Simulation Clock steps through time, sending messages to the other services to notify them of the current time 
step. The other services notify the clock when they have completed all their tasks for the current time step, allowing 
the clock to advance the time.  
 
The “Canned Sensor Obs” service reads a variety of observation file formats. If needed, observations are grouped into 
tracks. Sensor models including location, noise, and biases must be available for any observations ingested. Supported 
sensor types include optical, radar, and passive RF. Upon receiving a time step message, the sensor service sends any 
tracks ending in the current time step to the CatalogCoordinator service.  
 
The space object catalog consists of many catalog worker services, each of which contains the Special Perturbations 
(SP) estimates, predictions, visibility, and observation history for a subset of all the catalog objects. The 
CatalogCoordinator service serves as a point of communication with other services, distributes requests to the catalog 
workers, and aggregates results. When tracks are received from the sensor service, CatalogCoordinator fits the 
observations in the track to an orbit or polynomial to produce refined angles and angle rates near the midpoint of the 
track time span. CatalogCoordinator sends the tracks and the fits to the workers and requests possible correlations 
(track-to-orbit associations). Based on the results the workers compute in parallel, CatalogCoordinator decides which 
correlation is the best and notifies the CatalogWorker storing that catalog object to update the orbit accordingly. If the 
track does not correlate to any catalog object, it is sent to the Tactical Persistent Monitoring (TPM) service for 
Uncorrelated Track (UCT) association. 
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TPM attempts to associate UCTs and build new candidate orbits. Like the catalog, it has a TPM service which 
communicates with other services and coordinates computations done in parallel by the TPM workers. When a 
candidate orbit estimate reaches a required level of accuracy in predicted position uncertainty, it “graduates” and is 
sent to the catalog. CatalogCoordinator assigns a number to the graduated orbit and sends it to one of the catalog 
workers. Any future tracks for that object should correlate to the new estimate and be updated. 
 
The output from SCOPE includes a log file detailing results of computations and a catalog file containing all the orbit 
and model estimates for the catalog objects, along with their observation history. 
 
2.2 TAPIOCA 
 
TPM uses a suite of C++ tools in Turboprop called TAPIOCA to associate tracks and perform IOD. Initially designed 
for optical tracks only, it has been upgraded to fuse optical, radar, and passive RF observations in the IOD process.  
 
2.2.1 Track Reduction 
 
Before associating tracks, it is necessary to compute a fit to the track and produce smoothed observations and their 
rates at the track midpoint. Optical tracks do not usually contain enough information to compute the complete orbit 
state of the object, and the behavior of the measurements over a short enough period of time can be approximated with 
a polynomial. For example, suppose there is a sorted list of 𝑚𝑚 observations, 𝑌𝑌𝑖𝑖, where 𝑖𝑖 = 1 …𝑚𝑚, each with a 
measurement noise covariance matrix 𝑊𝑊𝑖𝑖. The measurements consist of the Right Ascension, 𝛼𝛼, and declination, 𝛿𝛿, 
angles. The midpoint of the track is at time 𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚.  The sequence of measurements can be fit to a quadratic using 
weighted least squares to produce a state vector, 𝑌𝑌� ,  with a smoothed value for each measurement, 𝛼𝛼(𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚) and 
𝛿𝛿(𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚), their rates of change, �̇�𝛼 and �̇�𝛿, and acceleration terms, �̈�𝛼 and �̈�𝛿 
 

𝑌𝑌� =  [𝛼𝛼(𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚) 𝛿𝛿(𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚) �̇�𝛼 �̇�𝛿 �̈�𝛼 �̈�𝛿]𝑇𝑇 . (1) 
 
The initial estimates for the angles and rates are created with the real observations at times 𝑡𝑡1 and 𝑡𝑡𝑚𝑚,  
 

𝑌𝑌�0 = [𝛼𝛼(𝑡𝑡1) + �̇�𝛼0(𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚 − 𝑡𝑡1) 𝛿𝛿(𝑡𝑡1) + �̇�𝛿0(𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚 − 𝑡𝑡1) �̇�𝛼0 𝛿𝛿0̇ 0 0]𝑇𝑇 (2) 
  

where  

�̇�𝛼0 =
𝛼𝛼(𝑡𝑡𝑚𝑚) − α(𝑡𝑡1)

𝑡𝑡𝑚𝑚 − 𝑡𝑡1
 

 

(3) 

�̇�𝛿0 =
𝛿𝛿(𝑡𝑡𝑚𝑚) − 𝛿𝛿(𝑡𝑡1)

𝑡𝑡𝑚𝑚 − 𝑡𝑡1
 

(4) 

 
and the initial accelerations are set to zero. Then residuals, 𝑦𝑦𝑖𝑖, are computed for each observation using the quadratic 
model: 
 

𝑦𝑦𝑖𝑖 = 𝑌𝑌𝑖𝑖 − �
𝛼𝛼(𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚) + �̇�𝛼(𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚)  + �̈�𝛼(𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚)2

𝛿𝛿(𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚) + �̇�𝛿(𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚)  + �̈�𝛿(𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚)2
� 

(5) 

 
The new estimate for the augmented observation vector is 
 

𝑌𝑌� = ��𝐻𝐻𝑖𝑖𝑇𝑇𝑊𝑊𝑖𝑖𝐻𝐻𝑖𝑖

𝑚𝑚

𝑖𝑖=1

�
−1

��𝐻𝐻𝑖𝑖𝑇𝑇𝑊𝑊𝑖𝑖𝑦𝑦𝑖𝑖

𝑚𝑚

𝑖𝑖=1

� + 𝑌𝑌�0 
(6) 

 
where the relationship between the measured and estimated state is 
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𝐻𝐻𝑖𝑖 =
𝜕𝜕𝑌𝑌𝑖𝑖
𝜕𝜕𝑌𝑌�

= �1 0 𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚 0 (𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚)2 0
0 1 0 𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚 0 (𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚)2� 

(7) 

 
and Wi is the measurement noise covariance matrix.  Iterating Eqs. (5) and (6) twice is sufficient to get a good 
estimate. The estimated covariance for 𝑌𝑌�  is 
 

𝑊𝑊� = ��𝐻𝐻𝑖𝑖𝑇𝑇𝑊𝑊𝑖𝑖𝐻𝐻𝑖𝑖

𝑚𝑚

𝑖𝑖=1

�
−1

 
(8) 

 
The angles and rates are extracted from the state 𝑌𝑌�  to make the fitted observation 𝑌𝑌′, which does not have the 
acceleration terms, �̈�𝛼 and �̈�𝛿. The corresponding subset of measurement noise covariance is extracted from 𝑊𝑊�  to form 
𝑊𝑊′. 
 
An orbit fit can be used for longer tracks, but the entire position and velocity state usually cannot be fully estimated, 
so a scaled version of the Singular Value Decomposition method [1] is used to correct only along observable 
component directions. The orbit estimate is used to compute the angles and their rates, 𝛼𝛼, 𝛿𝛿, �̇�𝛼, and �̇�𝛿. The orbit error 
covariance, 𝑃𝑃, is mapped to measurement space with the observation-state partials 
 

𝑊𝑊′ = 𝐻𝐻�𝑃𝑃𝐻𝐻�𝑇𝑇, (9) 
 
where 
 

𝐻𝐻� =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝜕𝛼𝛼
𝜕𝜕𝜕𝜕

𝜕𝜕𝛼𝛼
𝜕𝜕𝑦𝑦

𝜕𝜕𝛼𝛼
𝜕𝜕𝜕𝜕

𝜕𝜕𝛼𝛼
𝜕𝜕�̇�𝜕

𝜕𝜕𝛼𝛼
𝜕𝜕�̇�𝑦

𝜕𝜕𝛼𝛼
𝜕𝜕�̇�𝜕

𝜕𝜕�̇�𝛼
𝜕𝜕𝜕𝜕

𝜕𝜕�̇�𝛼
𝜕𝜕𝑦𝑦

𝜕𝜕�̇�𝛼
𝜕𝜕𝜕𝜕

𝜕𝜕�̇�𝛼
𝜕𝜕�̇�𝜕

𝜕𝜕�̇�𝛼
𝜕𝜕�̇�𝑦

𝜕𝜕�̇�𝛼
𝜕𝜕�̇�𝜕

𝜕𝜕𝛿𝛿
𝜕𝜕𝜕𝜕

𝜕𝜕𝛿𝛿
𝜕𝜕𝑦𝑦

𝜕𝜕𝛿𝛿
𝜕𝜕𝜕𝜕

𝜕𝜕𝛿𝛿
𝜕𝜕�̇�𝜕

𝜕𝜕𝛿𝛿
𝜕𝜕�̇�𝑦

𝜕𝜕𝛿𝛿
𝜕𝜕�̇�𝜕

𝜕𝜕�̇�𝛿
𝜕𝜕𝜕𝜕

𝜕𝜕�̇�𝛿
𝜕𝜕𝑦𝑦

𝜕𝜕�̇�𝛿
𝜕𝜕𝜕𝜕

𝜕𝜕�̇�𝛿
𝜕𝜕�̇�𝜕

𝜕𝜕�̇�𝛿
𝜕𝜕�̇�𝑦

𝜕𝜕�̇�𝛿
𝜕𝜕�̇�𝜕⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

(10) 

 
The key is to have a sufficiently close initial guess so the resulting angles and uncertainties are reasonable. 
 
2.2.2 Track Association and IOD 
 
Once the track fits are computed, they are used for correlation and track association. To perform track association and 
IOD for a group of 𝑛𝑛 tracks, TAPIOCA converts the fitted pairs of right ascension and declination angles, �𝛼𝛼𝑗𝑗, 𝛿𝛿𝑗𝑗�, for 
the first and last track in the group to line-of-sight (LOS) unit vectors �𝐨𝐨�j�. 
 

𝐨𝐨�𝒋𝒋 = �
cos 𝛿𝛿𝑗𝑗 cos 𝛼𝛼𝑗𝑗
cos 𝛿𝛿𝑗𝑗 sin 𝛼𝛼𝑗𝑗

sin 𝛿𝛿𝑗𝑗
� 

(11) 

 
Using the two LOS vectors (𝐨𝐨�𝟏𝟏,𝐨𝐨�𝐧𝐧), the two observer position vectors (𝐪𝐪𝟏𝟏,𝐪𝐪𝐧𝐧), and the corresponding times (𝑡𝑡1, 𝑡𝑡n), 
the object’s position, 𝐫𝐫𝟏𝟏, and velocity, 𝐯𝐯𝟏𝟏, can be hypothesized. 
 
The two unknowns needed to uniquely determine an orbit are the ranges at the midpoint times of the first and last 
track, which can be represented by the range at the initial midpoint time, 𝜌𝜌1, and the average range-rate over the streak, 
�̇̅�𝜌. For each combination of ranges, there exists a possible orbit solution.  
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To compute the position and velocity of the spacecraft, we need the positions at the endpoints, which are 
 

𝐫𝐫𝟏𝟏 = 𝜌𝜌1𝐨𝐨�𝟏𝟏 + 𝐪𝐪𝟏𝟏 
 

(12) 

𝐫𝐫𝟐𝟐 = (𝜌𝜌1 + Δ𝜌𝜌)𝐨𝐨�𝟐𝟐 + 𝐪𝐪𝟐𝟐 (13) 
 
where 
 

Δ𝜌𝜌 = 𝜌𝜌�̇(𝑡𝑡𝑛𝑛 − 𝑡𝑡1) (14) 
 
With those positions and the elapsed time, a Lambert solution is obtained using Gooding’s Lambert solver [2] to find 
the velocity at the endpoints. The challenge with using the Lambert solver is that the number of completed half-
revolutions is unknown. To overcome that difficulty, a range of guesses for the number of half-revolutions are tried, 
from zero to a maximum determined using the elapsed time from track 1 to 𝑛𝑛 and the shortest orbit period possible 
for the central body. To avoid excessive computation time, the maximum number of half-revolutions is limited to no 
more than 11, which means less than six full revolutions have ocurred. 
 
The resulting values for 𝐫𝐫𝟏𝟏 and 𝐯𝐯𝟏𝟏 are used to compute the specific mechanical energy, 𝜉𝜉, of the orbit. If 𝜉𝜉 < 0, the 
orbit is elliptical. 
 

𝜉𝜉 =
|𝐯𝐯𝟏𝟏|2

𝟐𝟐
−

𝜇𝜇
|𝐫𝐫𝟏𝟏| 

(15) 

 
We can limit the acceptable orbits to only those within an admissible region [3] defined by 𝜉𝜉 < 0.  
 
Once a hypothesized two-body orbit is produced with the Lambert solver, we want to quantify how well it matches 
the observed angles and rates for each fitted track with a metric, 𝜀𝜀. We will define 𝜀𝜀 as the RMS of the Mahalanobis 
distances (in measurement space) for each observation computed using the two-body orbit. 
 

𝜀𝜀 = �∑ 𝑦𝑦𝑗𝑗𝑇𝑇�𝑊𝑊′
𝑗𝑗�
−1𝑛𝑛

𝑗𝑗=1 𝑦𝑦𝑗𝑗
𝑛𝑛

 
(16) 

 
where 𝑦𝑦𝑗𝑗 is the residual for each track fit, or 𝑌𝑌′𝑗𝑗 minus the observation computed from the two-body orbit. The 
Mahalanobis distance is a statistical measure of how well the computed observation matches the fitted observation for 
each track.  
 
The smaller 𝜀𝜀 is, the better the hypothesized two-body orbit matches the observations. To find the minimum value of 
𝜀𝜀, an initial guess for range and range rate is found within the admissible region and starting with that guess, a pattern 
search is used to minimize 𝜀𝜀. The pattern search involves computing 𝜀𝜀 in eight evenly spaced locations around the 
initial point. Note that the locations are computed using a Δρ and ∆�̇�𝜌 with the scaling 
 

∆𝜌𝜌
∆�̇�𝜌

=
1000 𝑘𝑘𝑚𝑚
1 𝑘𝑘𝑚𝑚/𝑠𝑠

 
(17) 

 
Range rate steps are 1000 times smaller than range steps. The point with the lowest metric which is lower than the 
current 𝜀𝜀 is selected as the next central point and the process is repeated. If the algorithm moves in the same direction 
three times, the step sizes are doubled. If the algorithm does not find a lower value of 𝜀𝜀 among the eight points, the 
step size is halved and the process is repeated until either the step size for Δ𝜌𝜌 is less than 0.01 km, 𝜀𝜀 is less than 0.25, 
or the number of iterations is greater than 250. The three convergence criteria can be easily adjusted to tune the 
performance of the algorithm. The value of 𝜀𝜀 is computed for a range of half-revolutions, with the best result taken as 
the optimum solution. 
 
The Lambert solution is dependent on accurate positions in space, but noise in the angles leads to error in the LOS 
vectors, and error in the LOS leads to error in the positions. If the angle noise is high, the Lambert solutions may not 
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ever get close enough to the true orbit for the observations to match, even with perfect range hypotheses. To overcome 
that limitation, a final optimization is performed using a Nelder-Mead routine starting with the result from the optimum 
number of half-revolutions. In addition to the range and range-rate hypotheses, the two angles for both the first and 
last track are included in the optimized state. This allows the LOS vectors to deviate from what is observed, but not 
so much that they exceed the constraints imposed by the Mahalanobis distance used in computing 𝜀𝜀. 
 
If the final value of 𝜀𝜀 is less than a threshold (typically 7), then the group of tracks is considered a valid association. 
The position and velocity corresponding to the lowest value of 𝜀𝜀 is used for the initial estimate of the orbit. If the best 
𝜀𝜀 is greater than 7, the group of tracks are not considered a valid association, meaning at least two different objects 
are represented. 
 
2.3 TPM 
 
The TPM service receives UCTs from CatalogCoordinator and sends them to the TPM worker services. Each TPM 
worker contains a different list of hypotheses, or groupings of UCTs which were successfully associated previously. 
The workers attempt to associate each new UCT with all the existing hypotheses. The results are sent back to the TPM 
service, which decides which of the possible associations is the best. Then the TPM service tells the appropriate worker 
to delete the old hypothesis and create a new one with the newest UCT added to the group. If a UCT does not associate 
to any existing hypotheses, the TPM service assigns the UCT as a one-track group to one of the workers. Each time a 
track is associated to an existing group, the worker checks to see if it rises to the level of a “candidate” orbit. A new 
candidate orbit is assigned to a worker. Before performing track association on a new UCT, the workers will first 
attempt to correlate the UCT to existing candidate orbits using a Mahalanobis distance in measurement space. Only if 
a track fails to correlate to any candidate orbits is it sent to the workers for track association. When a track correlates 
to a candidate orbit, the orbit is updated using batch least-squares. 
 
When two or three tracks are being associated, the quality of the angle rate estimates is key to being able to successfully 
weed out false associations, or groups of tracks from more than one space object. Therefore, if such a track with a 
poor angle rate estimate does not associate to any candidates or existing hypotheses, it is discarded instead of being 
used to create a new single-track hypothesis. 
 
2.4 Cislunar Updates 
 
To perform track association and IOD for a variety of cislunar trajectories, modifications had to be made to TAPIOCA, 
TPM, and SCOPE. In TAPIOCA, the admissible region is expanded to include some “mildly” hyperbolic orbits with 
hyperbolic excess velocity up to 5 km/s. When doing optimization, instead of computing one initial guess, TAPIOCA 
computes 𝜀𝜀 over a coarse grid defined by minimum and maximum range and range-rate values and fixed intervals. 
Only space object positions outside of the central body and orbits with energy less than the maximum are accepted. 
Then local minima are computed for the grid and up to six of the best minima (lowest 𝜀𝜀) are used as initial guesses in 
pattern searches to minimize 𝜀𝜀. The value of 𝜀𝜀 is computed for every local minimum for the range of half-revolutions 
to determine the best solution. 
 
In TPM, each track is evaluated to determine if it could have originated from a Moon-centered orbit. For optical tracks, 
the LOS vector is extended to see if it intersects the lunar Sphere of Influence (SOI), which is defined to be a radius 
of 66,100 km. If so, the track is labeled as possibly belonging to a Moon-centered object. When doing track association 
and IOD for a group of tracks, first an Earth-centered solution is attempted. If it does not pass the test as being a valid 
association and if at least one of the tracks in the group is a possible Moon-centered object, then a Moon-centered 
track association is also attempted. 
 
In SCOPE, whenever Keplerian orbital elements are computed, the code was modified to allow for hyperbolic 
trajectories. When an orbit period is needed, hyperbolic orbits are given a default period of three days. Both the Earth 
and the Moon can be used as central bodies for orbits and they both can have spherical harmonic gravity models 
simultaneously. Also, eclipses are modeled for both bodies when computing solar radiation pressure. 
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3. SIMULATION TESTSET 
 
Care is taken to make the high-fidelity simulations as realistic as possible. Stressing scenarios have been incorporated 
into the simulations, including data gaps due to lunar brightness exclusions, formations of spacecraft in proximity, 
and a maneuvering satellite conducting rendezvous operations. The focus of this work is on objects near the Moon.  
 
3.1 Force Models 
 
NASA’s General Mission Analysis Tool (GMAT) [4] is used to create the truth trajectories with high fidelity dynamic 
models. Objects are propagated ballistically for about 1 month with a starting date of 2019-07-20 and ending on 2019-
08-22. Table 1 lists the force model parameters used to propagate the truth trajectories. Note that SCOPE uses a 
different propagator in the operational software. SCOPE uses the TurboProp [5] libraries for high fidelity propagation 
with similar force model parameters specified, thus introducing a small amount of dynamic mismodeling.  
 

Table 1: Force model parameters 

Parameter Value 
Coordinate System Earth ICRF 

Solar Radiation Pressure Area 0.012 
Coefficient of Reflectivity 1.0 

Gravity Field EGM96 
Gravity Potential 12 x 12 

Third Body Gravity Sun, Moon 
Integrator PrinceDormand78 

Integration Accuracy 1 × 10−12 
 
 
3.2 Special Objects 
 
Several objects are included specifically to stress the capabilities of TAPIOCA. To test the track initiation process in 
the presence of clustered objects a formation of three closely spaced objects (33, 34, 35) with roughly 100 km of 
separation is included. Given the distances involved and the measurement noise applied TAPIOCA will struggle to 
discern the individual objects. No a priori information is provided to the system, hence there is a high chance of 
associating tracks from all three objects in the cluster.  
 
A maneuvering object that is performing rendezvous is included. Object 36 begins near the cluster mentioned above 
(33, 34, 35), then 14 days into the simulation it performs a 0.155 km/s maneuver to enter a transfer trajectory. After 4 
days a second 0.124 km/s maneuver is performed to match trajectories with an HN1-100 orbit. SCOPE does have 
maneuver detection capabilities; however, they are not utilized in this study. Lacking a maneuver detection capability, 
one would expect that the object will be lost after a maneuver of sufficient magnitude is performed. The desired 
outcome is that TAPIOCA will pick the object back up by forming a new solution based on the UCTs coming from 
object 36 once on its new trajectory.  
 
3.3 Trajectories 
 
The simulated data includes 30 objects in various cislunar orbits. Table 2 describes each of the orbits included. 
Originally the set included 48 objects, hence the numbering in the table. Eighteen objects were removed for this study 
to decrease computation times. The objects chosen for removal are not challenging for SCOPE to handle. For more 
information on the cislunar family and orbit number definitions see [6]. A visualization of the objects from Earth in 
RA and DEC from the Moon is presented in Figure 2. The objects start at the simulation epoch and include 2 days of 
propagated trajectory.  
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Table 2: List of simulated object trajectories 

Object Cislunar 
family 

Orbit 
numbers 

comment 

1, 3 HN1 100 Halo objects in same orbit separated in phase 

11-13 HN1 50, 100, 150 Constellation of 3 halo objects starting at same phase in same family (Note: 
orbits 1, 3 and 12 form a cluster of 3 halo objects separated by ~1000 km) 

14-16 HS1 50, 100, 150 Constellation of 3 halo objects starting at same phase in same family 

17-19 HN2 50, 100, 150 Constellation of 3 halo objects starting at same phase in same family 

20-22 HS2 50, 100, 150 Constellation of 3 halo objects starting at same phase in same family 

33-35 HN1 200 Cluster of 3 halo objects separated by ~100 km 

36 HN1 200→100 Maneuvering object that starts in vicinity of objects 33-35 cluster and ends 
at HN1-100 orbit after 4-day transfer 

37-39 L1 50, 100, 150 Constellation of 3 Lyapunov objects starting at same phase in same family 

40-42 L2 50, 100, 150 Constellation of 3 Lyapunov objects starting at same phase in same family 

43 A1 50 Axial family object that remains in same lunar vicinity as previous objects 

44 A2 50 Axial family object that remains in same lunar vicinity as previous objects 

45-46 V1 50, 100 Vertical family objects that remain in same lunar vicinity as previous objects 

47-48 V2 50, 100 Vertical family objects that remain in same lunar vicinity as previous objects 

 

 
Figure 2: Display of the positions of the orbits with lines representing two days of the trajectory propagation, in right 

ascension and declination as viewed from center of Earth. 
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3.4 Measurements 
 
Optical observations of right ascension and declination are generated using an Earth ground-based electrooptic sensors 
(EO-ground). A set of five longitudinally distributed sensors are used to ensure the cislunar regime is continuously 
visible from at least one of the sites. Table 3 provides the site locations. 
 

Table 3: Ground sites provided EO observations. 

Site (Latitude, Longitude) 
New Mexico ( 33.8° N, 106.7° W) 

Maui ( 20.7° N, 156.3° W) 
Diego Garcia (  -7.4° N,   72.5° E) 

Spain ( 37.1° N,     5.6° W) 
Australia (-21.9° S, 114.1° E) 

 
 
Tasking of observations is done on a sensor-by-sensor basis where the object with the longest gap in time since its last 
observation from a particular sensor and currently observable by that sensor is selected.  For Earth-based EO 
observations exclusion zones are included: objects are at least 10 degrees above the horizon, the Sun is at least 10 
degrees below the horizon, the object is at least 1 degree from the Moon, and the object is brighter than 24 magnitude 
(where the object is modeled as a diffuse sphere with 1 m2 cross-sectional area and reflectance of 20%).   
 
Once selected, the object is observed 𝑁𝑁 times with a Δ𝑡𝑡 time gap between each observation to form a track.  For EO 
observations, other objects within 0.1 degrees of the targeted object are also observed simultaneously and if any of 
the objects are within 0.2 arcsecs of one another, the observations are combined by averaging and a single RA/DEC 
is reported for that observation. In the baseline scenario, tracks had 𝑁𝑁 = 5 observations with Δ𝑡𝑡 = 60 sec spacing, 
giving a 4-minute track as displayed in Figure 3. 
 

 
Figure 3: Visualization of track definition 

 
Pristine observations are generated initially, and varying levels of random noise are added during the analysis.  In 
addition to the exclusions and tasking priority listed above, 60 sec are allotted between observations to simulate sensor 
downtime due to re-positioning and acquisition. 
 
Figure 4 shows the observation times of each track for each object in the baseline case.  The different ground sensors 
are displayed in different colors.  The gap in observations around day 10 of the simulation corresponds to new Moon 
when all the objects are visibly close to the Sun.  This gap lasts for roughly 5-7 days (depending on the object orbit) 
and causes difficulties maintaining track custody in the estimator.  
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Figure 4: Depiction of times of each track generated for each object. Different colors represent ground sites. 

4. RESULTS 
 
This section presents the results of testing SCOPE with a parameter search of track length, track cadence, and 
measurement noise. Section 4.1 introduces the baseline scenario and the parameters varied in this study. In total 45 
simulations are run. Given the size of the simulation, a thorough investigation of each run is not feasible. However, to 
understand the high-level results better, a deep dive into the baseline run is presented in Section 4.2. Results and 
statistics from the parameter search are presented in Section 4.3.  
 
4.1 Parameter Search 
 
To test the capabilities of the cislunar IOD code, numerous simulations are run with varying parameters, specifically 
the total number of tracks, track length, and measurement noise. A baseline is chosen as a starting point. The baseline 
scenario has 4520 total tracks over 32 days with 4-minute track lengths consisting of 5 observations within a track, 
and 1 arcsec of measurement noise (1𝜎𝜎 Gaussian) on each observation. The scenario has a high cadence of tracking 
data, representing a dedicated cislunar cataloging effort.  
 
The baseline is realistic in its track length (4 min) and noise (1 arcsec) considering current sensor capabilities. Raven 
class sensors can produce measurements at these levels. Less realistic is the large number of observations. Given the 
current number of objects in space and the low number of those is cislunar regions, there is currently minimal demand 
for dedicated monitoring. Case 1 has a total of 4520 tracks, which amounts to ~ 140 tracks per night or ~ 28 tracks per 
sensor per night. The average tracks per object per night is ~ 4.7. Given that the IOD process requires at least 5 
associated tracks to create a candidate, one could be formed with one night of tracking data. From this baseline the 
track length is varied by a factor of 10 in both directions, for tracks of length 0.4 min (24 sec) and 40 min. The noise 
is varied from the baseline by a factor of 2 in both directions twice. Measurement noise varied from 0.25 arcsec to 4 
arcsec.  
 
Three cases are studied, decreasing the total number of tracks produced in each to represent a more realistic track 
generation cadence based on current sensor scheduling demands. Case 2 has half the number of tracks as Case 1, and 
Case 3 has a quarter of the tracks. In Case 3 the average tracks per object per day is only 1.2, hence the expectation is 
that it will take at best ~ 4 nights to generate a candidate. Table 4 provides a summary of the three cases for comparison. 
Each case has 15 runs for a grand total of 45 runs.  
 

O
bj

ec
t #
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Table 4: Parameters varied for each case. Parameters in bold are the baseline values. 

Case Track Lengths Track cadence Noise (arcsec) Total Tracks Tracks/object/day 
1 0.4 min / 4 min / 40 min 10 min 0.25, 0.5, 1, 2, 4 4520   4.7 
2 0.4 min / 4 min / 40 min 20 min 0.25, 0.5, 1, 2, 4 2272 2.4 
3 0.4 min / 4 min / 40 min 40 min 0.25, 0.5, 1, 2, 4 1141 1.2 

 
Some considerations to note. Short tracks can be difficult and problematic. While ideal for generating more 
measurements, there is a tradeoff. Cislunar objects tend to be dim and require longer integration times to produce 
better signals for detection in the image. Hence, short tracks could lead to a higher chance of missing a detection. 
Also, a key part of the IOD process as implemented is an estimate of the angular rates, which can be significantly 
influenced by measurement noise when the track length is short. Longer tracks are generally better and in line with 
data available from the Planetary Defense Coordination Office. To maintain consistency when comparing runs within 
a case, the number of tracks is kept constant for all runs in the case.  
 
4.2 Baseline Results 
 
This section will present some in-depth results from a simulation run on the baseline scenario. Only the high-level 
results and statistics from runs varying the parameters are presented in the next section. This in-depth analysis is 
provided so that the high-level results can be more easily interpreted.  
 
The baseline scenario is bolded in Table 4. The total number of tracks is 4520, with an average of 151 tracks per 
object. Over 32 days of simulation that amounts to 4.7 tracks/object/night. Random Gaussian noise with a sigma value 
of 1 arcsec is added to the observations. The run took 2.2 hours to complete on a server with 24 compute threads.  
 
There are 30 objects in the simulation. Since object 36 performs two maneuvers, and maneuver detection and handling 
are not considered in this work, it is expected to be lost and re-found twice. The best-case scenario would be finding 
32 candidates and subsequent graduates representing the 30 objects found once and the maneuvering object found two 
additional times. The baseline run found 34 candidates and 33 graduates. The maneuvering object is indeed found 
twice. It is lost on Aug-07, re-found on Aug-10 only to be lost on Aug-11, then re-found the second time on Aug-13. 
A false candidate is formed for object 34, using tracks from object 33 and 34, but it never achieved the threshold for 
graduation. One object (38) is lost on Jul-29 due to the gap in observations caused by the Sun. It is re-found on Aug-
5. Following are the association and correlation statistics: 
 

Association Statistics: 
Number of true positive associations  = 201 
Number of false positive associations = 136 

Number of true negative associations  = 3945 
Number of false negative associations = 7 

 
Correlation Statistics: 

11.33% Observations not correlated. 
88.67% Observations correlated. 

 
Estimated objects are compared against the set of truth trajectories to find the closest match and validate the results. 
Figure 5 shows the natural log of the distances between each estimated object position and the truth trajectories after 
processing the last observation for each estimate. Dark blue represents a small difference, typically ~ 1 km, between 
the estimated position and the true position. This plot highlights the proximity of some of the objects. The matrix 
excerpt shows the final distances between the clustered objects 33, 34, and 35. The object that is lost but re-found is 
clearly seen, as well as the effects of the maneuvering object. Objects 1, 3, and 12 are also close to each other. The 
mean final error of all the objects, including objects lost, after their last processed observations is 1.1 km. Considering 
only objects that are present on the last day of the simulation, the mean final errors are 0.69 km.  
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Figure 5: Distances at final time between each estimate position state with the truth trajectories. 

Table 5 presents statistics on the IOD process. While the best-case scenario is that candidate creation occurs on the 5th 
track, that is not always the case if the tracks don’t associate well. Sixteen candidates are created based on the first 5 
tracks processed. In this run it took 5-6 tracks to create most candidates. The slowest candidate creation is on the 48th 
track processed, which arrived 15.8 days into the simulation, for object 35. These results indicate the difficulties that 
can arise due to clustered objects (33, 34, 35).  
 

Table 5: Candidate and Graduate statistics. 

 Median creation time Mean creation time Mean position error Mean position 1-𝜎𝜎 uncertainty 
Candidate 0.69 days on 6th track 1.57 days 67.9 km 70.3 km 
Graduate 2.0 days on 13th track 2.62 days 19.4 km 40.3 km 

 
Next is a deeper investigation into the behavior of the objects, specifically two objects which are representative of the 
population. Figure 6 displays the position and velocity RSS errors of the estimates for object 3 and 20. Subplots 1 and 
3 show the position and velocity errors respectively in blue with the 2𝜎𝜎 uncertainty values in red. For object 3 the IOD 
solution computed by TAPIOCA has ~75 km of 2𝜎𝜎 uncertainty in position that is reduced over the course of 7 days. 
The data gap due to the Sun starts on 29-Jul and lasts for 5.9 days in which there are no tracks. The data gap can be 
seen where the 2𝜎𝜎 uncertainty grows to over 100 km. Once tracks are produced again on 04-Aug the filter quickly 
corrects the estimate. It can be difficult to see trends in the position/uncertainty plots, so the Mahalanobis values for 
position and velocity are displayed in subplots 2 and 4. The red line is the critical value: the square root of the inverse 
cumulative chi-square distribution function with 3 degrees of freedom evaluated at the 0.997 probability value. The 
Mahalanobis value can be more insightful as it will better capture whether the errors are surpassing the uncertainty 
bounds in a particular dimension, whereas the RSS position/velocity plots could mask that information if the 
errors/uncertainties are large in one dimension and small in another. The code is set to output a prediction for several 
days past the last track. In this case the last track for object 3 is on 21-Aug, hence the growth in the errors and 
uncertainties after that date. Object 20 shows the same general trends as do most of the population. 
 

Maneuvering object 

Three objects that are 
100 km apart. 

     0.25   128.17   257.51           
128.55        0.22   129.19 
257.65   129.23        0.39 

Objects lost but 
found again. 
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Figure 6: Error plots for True ID 3 left and True ID 20 right. Subplots 1 and 3 show the position and velocity errors 
in blue with 2𝜎𝜎 uncertainties in red. Subplots 2 and 4 show the corresponding Mahalanobis value in blue relative to 

the critical value in red. 

All the objects show the same general trends regarding initial uncertainty reduction, error/uncertainty growth during 
the data gap and at the end of the simulation. If the state errors are too large when the data gap occurs the estimated 
object error could grow to the point that it no longer correlates to incoming measurements and is lost. In this run that 
happened to object 38. Figure 7 presents the error plots for the two estimates found from object 38 data, with the pre-
gap estimate 60018 on the left and the post-gap estimate 60029 on the right. Objects can be lost more often when the 
measurement noise is larger, among other causes. After the data gap, as tracks for 38 are processed and not correlated 
to any objects, the tracks are tagged as UCTs and sent to TAPIOCA. Candidate 38 is re-found after the first 6 tracks 
are collected post-gap on 05-Aug-2019 about 7.6 days after the last track pre-gap.  
 

 
Figure 7: Error plots for True ID 38, showing pre-gap on left and post-gap on right. Subplots 1 and 3 show the 

position and velocity errors in blue with 2𝜎𝜎 uncertainties in red. Subplots 2 and 4 show the corresponding 
Mahalanobis value in blue relative to the critical value in red. 
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4.3  Parameter search results 
 
With the insights into a single run from the previous 
section as a reference, this section explores the overall 
statistics from all the runs. Given the size and complexity 
of the simulation, there is a wealth of data that could be 
presented. Three outputs are particularly useful to gauge 
the overall effectiveness of the cislunar IOD. First is the 
percentage of observations that are correlated to estimated 
objects presented in Figure 8. This percentage does not 
include UCTs that go unused, and those that are used to 
form candidates. Locating high quality candidates quickly 
will keep this percentage low. High percentages of 
uncorrelated observations indicate poor IOD and/or 
predictions of estimates. The second output is the average 
number of days required to graduate objects as presented 
in Figure 9. A timer is initiated at the beginning of the 
simulation and recorded when an estimate graduates. 
When an estimate is lost, the timer is re-started after the 
last track is correlated and recorded when the estimate 
graduates again. A side effect of this method of recording 
the times causes the average days to graduate to be biased 
toward larger values when estimates are lost due to the gap 
in observations from the solar exclusions. The third output 
is the average final position error of the estimates relative 
to the truth trajectories after the last track is processed as 
presented in Figure 10. In some instances, this value can 
be difficult to interpret.  For example, consider a case 
where several estimates are so poor that they are lost, the 
errors from those objects will not affect the average, 
whereas if those poor estimates are considered their errors 
could significantly increase the average error.  
 
Figures 8-10 present the results of the 45 runs as bar charts 
to highlight trends in the data. The x-axis represents the 
track length of 0.4, 4, and 40 minutes, separated into 
groups for the three cases, which are labeled under the 
title. The y-axis represents the measurement noise that is 
applied. Some bars are missing from the charts, 
specifically the results for short tracks with large noise 
(0.4 min tracks with 4 arcsec noise). These runs did not 
process successfully because the angle-rate estimates had 
too much error. Finally, the z-axis represents the output 
detailed in the title of the figure. 
 
As expected, the results get worse (larger output in each 
figure) as the total number of tracks is reduced. As a 
reminder Case 1 had 4520 total tracks, Case 2 had 2272 
total tracks and Case 3 had 1141 total tracks. Another 
expected result is that the average final errors are strongly 
correlated with the measurement noise present as seen in 
Figure 10.  
 
A less intuitive trend appears in Figures 8 and 9, most 
clearly in Cases 2 and 3 of Figure 8 and Case 2 of Figure 
9, where worse results appear at the extremes of higher 

 

 

Figure 8: Chart comparing the percentage of 
observations that were not correlated to an estimate. 

 

 
Figure 9: Chart comparing the average number of 

days that it took to graduate objects in SCOPE. 

 
 

 
Figure 10: Chart comparing the average final position 

errors of the estimates after the last measurement. 
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noise with shorter tracks and lower noise with longer tracks. These trends are a result of estimating the angular rates 
in the IOD process. Angular rate estimates from shorter tracks are more sensitive to measurement errors. Large 
measurement errors can lead to very poor rate estimates, which can lead to poor associations and IOD results. Hence 
the greater number of days needed to graduate estimates. This is a difficult problem to overcome. At the other extreme, 
longer tracks allow for more accurate angular rate estimates, which is also captured in the estimated rate uncertainty 
value. However, the error in the two-body approximation, when mapped into angular rate uncertainty for associating 
with the measurements, can become larger than the small rate uncertainty and lead to track associations being rejected. 
There may be room for improving the algorithm to better handle this situation.  
 
The average position errors of the objects at the end of the simulation in Figure 9 are very good. Generally, when the 
measurement noise is 1 arcsec or better the final average errors are under 1 kilometer. The major exception is in Case 
3 where there are not enough tracks to form good estimates. When only 1-2 tracks are available per night the 
measurement error becomes a major consideration.  
 
Accurate state estimates are critical given the chaotic dynamics of the 3-body system, where large errors in position 
can grow quickly when predicting the next contact opportunity days into the future.  
 
Table 6 presents the data on each run presented in Figures 7-9 as well as other output. In good runs each candidate is 
graduated, however when the measurement noise is too large an excessive number of candidates are created. Typically, 
only robust estimates are graduated, hence there is less fluctuation in the number of graduates. In the table the 
percentage of observations correlated is listed (versus the percentage of observations uncorrelated as in Figure 8). The 
best run correlated 94.7% of the observations (case 1, 4 min, 0.25 arcsec), while the worst run correlated 12.6% (case 
3, 40 min, 0.25 arcsec). 
 
The columns labeled ‘False Neg’ and ‘False Pos’ refer to the count of False Negative associations and False Positive 
associations respectively. A high count of false negative associations implies associations are being missed, and 
generally correlates with degraded performance.  
 
There is a less clear connection between false positive association counts and performance. Shorter tracks result in 
worse angular rate estimates, which is captured as higher uncertainties for the rate estimates. Thus, the algorithm will 
accept more associations due to the higher uncertainty, resulting in a higher false positive association rate. Whereas 
for longer tracks, the angular rate estimates are better, since any noise in the angle measurements has a smaller effect. 
However, that means the uncertainty is smaller which causes the algorithm to make less associations because it has 
much lower tolerances for matching noisy measurements to approximate two-body orbits.  
 
The column ‘Moon Cand’ indicates how many of the candidates are formed using the Moon as the central body instead 
of the Earth. Longer track lengths tended to cause the algorithm to utilize the Moon, and it occurs more frequently 
when the cadence of tracks is lower. The results tended to be better when most estimates are formed using Earth as 
the central body. Future work should include more Lunar centric objects to test that it is utilized when appropriate. An 
interesting note is that a high count of Lunar centric candidates did not greatly impact the overall performance as seen 
in case 1, with 40-minute track lengths.  
 
The column ‘Lost Count’ refers to how many objects are missing at the end of the simulation. The data rich 
environment of case 1 always had all 30 objects present at the end of the simulation. As expected, less tracks present 
in case 3 led to a significant number of objects being lost or never found. Of particular note is that the cluster of objects 
(33, 34, 35) are lost or never found in several of the runs. The column ‘Multiples Count’ refers to the number of objects 
that had multiple candidates found. In the perfect run there is at least one multiple due to the maneuvering object 36. 
Generally, there are several multiples due to the data gap. 
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 Table 6: Results from all runs. (m) indicates the maneuvering object was not found for each segment of its 
trajectory. (c) indicates that the cluster (33, 34, 35) of objects was lost at simulation end.  

Run Cands
# 

Grads
# 

Corr 
% 

False 
Neg 

False 
Pos 

Moon 
Cand 

Avg Err 
km 

Lost 
Count 

Multiples 
Count 

Grad 
Days 

CASE 1 – 4520 Tracks 
0.4 min Track 

0.25 arcsec 32 32 93.3 0 109 3 0.24 0 1 1.3 
0.5 arcsec 33 33 89.6 6 212 3 0.36 0 2 3.4 
1 arcsec 35 33 87.4 10 137 3 0.7 0 4 3.5 
2 arcsec 34 34 78.2 5 287 4 1.1 0 3 6.6 
4 arcsec - - - - - - - - - - 

4 min Track 
0.25 arcsec 32 32 94.7 5 6 4 0.23 0 1 1 
0.5 arcsec 32 32 93.0 6 58 2 0.39 0 1 1.4 
1 arcsec 34 33 88.7 7 136 4 0.69 0 3 3 
2 arcsec 34 33 83.4 9 112 1 1.17 0 3 4.3 
4 arcsec 56 38 74.2 18 139 3 2.66 0 15 7.1 

40 min Track 
0.25 arcsec 31 31 77.8 3811 2 23 0.44 0 1 (m) 7.8 
0.5 arcsec 32 32 86.2 1448 5 23 0.49 0 1 3.8 
1 arcsec 33 32 87.0 456 1 13 0.47 0 2 3.5 
2 arcsec 34 33 83.9 19 4 7 1.42 0 3 4.2 
4 arcsec 79 40 66.8 65 133 14 2.96 0 20 9.8 

CASE 2 – 2272 Tracks 
0.4 min Track 

0.25 arcsec 34 33 84.1 6 169 6 0.35 0 3 4.2 
0.5 arcsec 34 34 87.1 5 78 4 0.54 0 3 3.4 
1 arcsec 38 37 71.8 7 353 3 1.26 0 7 8.7 
2 arcsec 39 31 43.7 9 603 5 3.85 1 6 (m) 19.1 
4 arcsec - - - - - - - - - - 

4 min Track 
0.25 arcsec 32 32 86 101 54 16 0.24 0 2 (m) 4 
0.5 arcsec 35 35 85.8 15 65 7 0.39 0 4 3.8 
1 arcsec 38 38 77.2 25 160 7 0.82 0 7 6.6 
2 arcsec 41 37 75.2 13 71 9 1.66 0 10 7.3 
4 arcsec 59 36 56.9 27 239 8 4.1 0 17 13.7 

40 min Track 
0.25 arcsec 31 29 44.2 2582 6 23 0.63 3 3 (m) 18.1 
0.5 arcsec 34 33 63.8 1304 24 28 0.82 0 4 (m) 12.2 
1 arcsec 34 33 67.5 618 93 25 1.21 1 4 (m) 9.8 
2 arcsec 43 36 70.4 203 99 29 1.85 0 11 (m) 9.2 
4 arcsec 61 38 58.2 82 216 16 4.08 1 17 11.3 

CASE 3 – 1141 Tracks 
0.4 min Track 

0.25 arcsec 38 30 54.2 17 255 12 0.7 3 (c) 10 (m) 13.9 
0.5 arcsec 39 29 49.6 21 301 9 0.8 3 (c) 12 (m) 15.4 
1 arcsec 35 30 38.2 12 410 8 2 1 5 (m) 20.7 
2 arcsec 22 16 16.8 2 507 3 6.6 15 3 (m) 21.7 
4 arcsec - - - - - - - - - - 

4 min Track 
0.25 arcsec 44 32 59.9 78 103 21 0.46 2 13 (m) 11.7 
0.5 arcsec 44 31 56.5 43 139 20 0.63 3 15 (m) 12.8 
1 arcsec 47 33 54.6 42 112 17 1.55 2 13 (m) 14 
2 arcsec 47 32 46.3 35 212 19 10.76 0 13 (m) 18.8 
4 arcsec 46 22 25.3 37 405 8 7.04 8 16 23.8 

40 min Track 
0.25 arcsec 11 8 12.6 1044 9 4 1.49 22 1 (m) 18.7 
0.5 arcsec 25 19 23.3 778 19 13 3.09 14 7 (m) 16.8 
1 arcsec 39 29 35.9 392 39 21 1.37 6 13 (m) 17 
2 arcsec 47 31 41.5 154 106 20 2.73 3 (c) 18 (m) 17.8 
4 arcsec 64 27 32.8 100 143 26 25.09 3 24 23.6 
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5. DISCUSSION 
 
KBR’s TAPIOCA tool was successfully applied to a realistic high-fidelity simulation cataloging cislunar objects. 
Through a parameter search varying the total tracks, track lengths, and measurement noise the robustness of the tool 
was validated. Uncorrelated tracks are correctly associated to find valid estimated states that can seed a catalog 
maintenance algorithm with as few as 5 tracks.  The limitation on track lengths was explored and objects could be 
found with short < 1 min tracks up to 40-minute-long tracks. Objects lost due to data gaps or maneuvers are quickly 
re-found. Errors in the estimated states are less than 4 kilometers except in challenging scenarios. Objects can be found 
and maintained when as little as 1-2 tracks are available per night.  
 
Performance degradation does start to occur in the edge cases explored, i.e. noisy short tracks or precise long tracks. 
An issue which was not addressed in the results is the processing time required. When performance starts to degrade 
the runtimes grow quickly. Edge cases that produce too many false positive associations suffer longer run times as the 
numerous associations lead to a combinatorics explosion. On the other hand, too few associations due to high counts 
of false negative associations will delay finding candidates to graduate which also leads to longer runtimes. These 
issues will be investigated and managed in future code updates. Processing times were reasonable for the majority of 
the runs, which took between 1 to 4 hours. While the runtimes seem long, the code was processing 1,000 – 4,000 
tracks over 32 days, propagating 30+ objects with no a priori information.  
 
Considerations that can guide future work include an in-depth study of acceptable a priori position tolerances for 
future state predictions in the cislunar regime. The average final errors ranged between 1-4 km for many runs. Clearly 
these errors do not burden the catalog process when tracks are processed within 1-3 days. However, the data gap 
present in this study, which was 5-7 days long, did cause many estimates to be lost due to poor predictions. Future 
research using observations of actual cislunar objects is also planned. 
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