
S⃗ = Kx⃗0 + ε⃗,
(1)

where S⃗ is a row-concatenated (flattened) vector of the observed image, K is a shape matrix dependent on the PSF,
and ε⃗ is the noise. x⃗0 is a vector with non-zero elements at locations where an object is present. x⃗0 is determined
by minimizing the difference between S⃗ and Kx⃗0. Sparsity is promoted in x⃗0 by adding a penalty term such as l1
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ABSTRACT

In many applications, the spatial resolution of the imaging system is not enough to localize a small object or multiple 
closely-spaced objects (CSOs). Detection and localization of objects are more difficult if they are small in size (occupy 
a few pixels) and have a low signal-to-noise ratio (SNR). We model the noise as an additive noise using a zero-mean 
Gaussian distribution with identical variance for all the pixels. We assume we know the approximate 2D spatial 
neighborhood containing the objects in an observed image. We also consider the case with two spatially registered 
spectral bands where the bands have different ensquared energy, which is the fraction of energy on a detector when 
an object lies at its center. For our experiments, we assume that the imaging system’s point spread function (PSF) 
is a 2D symmetric Gaussian function with its center at the object’s location and width dependent on the ensquared 
energy of the spectral band. Sub-pixel location estimator for small objects (SPLEO) is a lightweight convolutional 
neural network-based method that estimates an object’s sub-pixel location and amplitude in an observed image. In 
this paper, we propose an improvement to SPLEO called SPLEOv2 for localizing CSOs. We show that by using the 
parameter estimates (spatial locations and amplitudes) from SPLEOv2 as initial estimates for 3 existing approaches for 
object localization, we can achieve a better mean, standard deviation, and 95th percentile localization error. We also 
study the variation in localization performance of SPLEOv2 when information from two spectral bands is available. 
We compare the variance in the parameter estimates with the Cramér-Rao lower bound (CRLB) on the variance of an 
unbiased estimator.

1. INTRODUCTION AND RELATED WORK

Detection and sub-pixel localization of objects have applications across several domains, such as resolving binary 
stars in astronomy [4, 11, 34], monitoring protein interactions in microscopy [18, 17, 32, 1, 5, 16, 29, 30, 10], and 
object tracking [27, 26, 12, 15, 13, 14] for reconnaissance and surveillance. A single pixel in these applications usually 
represents a significantly larger area than the objects of interest. Most methods [27, 26, 12, 15, 18, 2, 3, 8, 24] that 
have been developed for this problem assume that the point spread function (PSF) of the imaging system is known, 
and the object is modeled as a point source with a spatial shape dependent on the PSF. Localizing an object becomes 
difficult when the signal-to-noise ratio (SNR) [12] is low, as the noise interferes with the spatial shape of the object.

Several compressed sensing methods [18, 34] have been developed, which model this problem as a discrete deconvo-
lution problem (Equation 1).



norm [34] and l0 norm [18]. These methods assume that the PSF of the imaging system is known, which determines
the shape matrix K in Equation 1. Since compressed sensing methods use discrete deconvolution to localize objects,
their resolution capability has a discrete limit.

Reagan et al. [27] proposed a method for localizing a single object in an image with a single spectral band using
maximum likelihood estimation. It minimizes the cost function shown in Equation 2 using gradient descent [7] to
determine the sub-pixel location and amplitude of an object present in the observed image.

min
x1,y1,A1

||⃗S−A1g⃗(x1,y1)||2, (2)

where S⃗ is a row-concatenated (flattened) vector of the observed image, A1 is the object amplitude, and g⃗(x1,y1) is
the flattened object shape matrix which is dependent on the point spread function (PSF) of the imaging system and
the location of the object (x1,y1). Equation 2 is differentiated with respect to A1 and equated with 0 to obtain A1 in
terms of S⃗ and g⃗(x1,y1). The cost function shown in Equation 3 is obtained by substituting A1 in Equation 2 and is
minimized using gradient descent [7] to estimate (x1,y1).

min
x1,y1

[
− (⃗ST g⃗(x1,y1))

2

g⃗T (x1,y1)⃗g(x1,y1)

]
. (3)

Another method was proposed by Reagan et al. [26] for localizing two closely-spaced objects (CSOs) in an observed
image with a single spectral band using maximum likelihood estimation. For two CSOs, Equation 2 and Equation 3
are updated as shown in Equation 4 and Equation 5, respectively.

min
x⃗,⃗y,⃗A

||⃗S−G(⃗x, y⃗)A⃗||2, (4)

min
x⃗,⃗y

−(⃗ST G(⃗x, y⃗)[GT (⃗x, y⃗)G(⃗x, y⃗)]−1GT (⃗x, y⃗)⃗S), (5)

where x⃗ = [x1,x2], y⃗ = [y1,y2], and G(⃗x, y⃗) = [⃗g(x1,y1) g⃗(x2,y2)]. (x1,y1), (x2,y2), and A⃗ = [A1,A2] are the locations
and amplitudes of the two CSOs.

Gupta et al. [12] proposed a method called Dual Band Object Localization (DBL) that uses information from two
spectral bands to localize a single object or two CSOs. For different spectral bands, the PSF of the imaging system is
assumed to be a 2D symmetric Gaussian function with different widths. The maximum likelihood-based cost function
shown in Equation 6 is minimized using the Nelder Mead non-linear optimization method [23, 21] to estimate the
sub-pixel locations and amplitudes of the objects present in the observed image.

min
x⃗,⃗y,⃗A

||⃗SB1 − S⃗e,B1 ||
2 + ||⃗SB2 − S⃗e,B2 ||

2, (6)

where S⃗Bk is the row-concatenated (flattened) observed image in the spectral band Bk. For a single object x⃗ = [x1],⃗y =
[y1], and A⃗ = [A1,B1 ,A1,B2 ]. (x1,y1) is the spatial location of the object, A1,Bk is the amplitude of the object in the
spectral band Bk, and S⃗e,Bk = A1,Bk g⃗(x1,y1,Bk) is the flattened expected observed image (without noise) in the spectral
band Bk given the sub-pixel location and amplitudes of the object. Since the width of the PSF varies for spectral
bands, the spatial shape of the object (⃗g(x1,y1,Bk)) is dependent on both object location and spectral band. Similarly,
for two CSOs, x⃗ = [x1,x2],⃗y = [y1,y2], and A⃗ = [A1,B1 ,A1,B2 ,A2,B1 ,A2,B2 ]. (x1,y1) and (x2,y2) are the spatial locations
of the two objects, At,Bk is the amplitude of the tth object in the spectral band Bk, and S⃗e,Bk = A1,Bk g⃗(x1,y1,Bk)+
A2,Bk g⃗(x2,y2,Bk).

Deep learning approaches [6, 20, 15] have also been proposed for object detection and localization, but most of
them are not expected to perform well for localizing or detecting point sources [9]. These methods require a large
amount of training data that is often unavailable. Gupta et al. proposed a deep learning approach called Sub-Pixel
Location Estimator for Small Objects (SPLEO) [15], which requires limited training data and can localize point sources
efficiently at low signal-to-noise ratios (SNRs) [12, 15]. SPLEO localizes a single object present in an image using
a single spectral band. It processes a single spectral band image with a deep neural network that outputs an object’s
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spatial sub-pixel location and amplitude. The network is trained by minimizing a cost function derived from the
maximum-likelihood estimation of the observed image (Equation 2).

In this paper, we propose an improvement to SPLEO called SPLEOv2 for localizing a single object or two closely-
spaced objects (CSOs) using observed images of size 7×7 in one or two spatially registered spectral bands. SPLEOv2
can be easily modified to localize more than two CSOs as well. We assume that the image formation process is
known, the point spread function (PSF) of the imaging system is a 2D symmetric Gaussian function, and that we
know the objects’ approximate spatial locations. The network is trained by minimizing the observed image’s negative
log-likelihood and estimates the objects’ sub-pixel locations and amplitudes.

2. MODEL OF IMAGE FORMATION PROCESS

Fig. 1: Model of the image formation process. (Source: Gupta et al. [12])

Here we describe our model of image capture and formation process as shown in Fig. 1. The objects are modeled as
point sources which are processed by the imaging system to form the observed images. As shown in Fig. 1, the energy
due to the point source is spread over an array of detectors because of the point spread function (PSF) of the imaging
system. After the PSF, the energy on a detector is integrated and noise is added to determine the respective pixel value
in the observed image. The imaging system’s PSF is assumed to be a 2D symmetric Gaussian function with width
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σPSF (Equation 7).

fPSF(x,y) =
1

2πσ2
PSF

e
− 1

2σ2
PSF

(
x2+y2

)
. (7)

Fig. 2: Detector array where each Di, j is a detector, and the center of each detector is a pixel in the observed image.
(Source: Gupta et al. [12])

Fig. 3: Energy of a single object (left) and two CSOs (right) is spread over multiple detectors due to the point spread
function (PSF). Object locations are marked in red and green. (Source: Gupta et al. [12])

An array of detectors is shown in Fig. 2. The center of a detector Di, j represents the pixel at location (i, j) in the
observed image. A pixel value is determined by integrating the energy over the corresponding detector in the detector
array. The width of the PSF is usually large enough to spread the energy due to an object to nearby detectors, as shown
in Fig. 3. The energy seen by a detector can be contributed by multiple objects, as shown in Fig. 3.

For an object with amplitude 1 and spatial location (x1,y1), Equation 8 determines how the energy is spread in its
spatial neighborhood.

f1ob j(x,y) =
1

2πσ2
PSF

e
− 1

2σ2
PSF

(
(x−x1)

2+(y−y1)
2

)
. (8)

If there are two objects with unit amplitude at spatial locations (x1,y1) and (x2,y2), a detector may see the energy from
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both objects, as shown in Fig. 3 (Equation 9).

f2ob j(x,y) =
1

2πσ2
PSF

e
− 1

2σ2
PSF

(
(x−x1)

2+(y−y1)
2

)
+

1
2πσ2

PSF
e
− 1

2σ2
PSF

(
(x−x2)

2+(y−y2)
2

)
. (9)

The energy on a detector D0,0 when an object is present at location (x1,y1) is given by Equation 10.

ED0,0 =
∫ 0.5

−0.5

∫ 0.5

−0.5
f1ob j(x,y)dx dy, (10)

where −0.5 to 0.5 is the span of the detector D0,0 in x and y directions.

For 2 CSOs located at (x1,y1) and (x2,y2) the energy on a detector D0,0 is added from both objects as shown in
Equation 11.

ED0,0 =
∫ 0.5

−0.5

∫ 0.5

−0.5
f2ob j(x,y)dx dy. (11)

Similarly, we can determine the energy on all detectors due to the objects present in an image.

Fig. 4: Simulated observed images with a single object (left) and two CSOs (right). The center of the observed images
is at (0,0). Object locations are marked in red and green. (Source: Gupta et al. [12])

We consider two spatially registered spectral bands in our experiments and assume that the PSF of both spectral bands
is a symmetric 2D Gaussian function with different widths. The width of the PSF for band Bk is σPSFBk

. Ensquared
energy is the ratio of energy collected on a detector when an object lies at its center. We denote ensquared energy for
a band Bk with EBk , and it is related to the width of the PSF by Equation 12.

σPSFBk
=

1
2
√

2 er f−1(
√

EBk)
, (12)

where
er f (x) =

2√
π

∫ x

0
e−t2

dt. (13)

Substituting Equation 12 in Equation 10, energy on a detector can be written as a function of ensquared energy
(Equation 14).

ED0,0 =
1
2

(
er f

[
(0.5− x1)α

]
− er f

[
(−0.5− x1)α)

])
× 1

2

(
er f

[
(0.5− y1)α

]
− er f

[
(−0.5− y1)α

])
, (14)

where
α = 2× er f−1(

√
EBk), (15)

er f (−x) =−er f (x).

Copyright © 2023 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) – www.amostech.com 



The energy on a detector Di, j in the spectral band Bk due to an object at spatial location (x1,y1) can be computed using
Equation 16.

EDi, j(x1,y1,EBk) =
1
2

(
er f

[
(u+0.5)α

]
− er f

[
(u−0.5)α

])
× 1

2

(
er f

[
(v+0.5)α

]
− er f

[
(v−0.5)α

])
, (16)

where
u = i− x1,

v = j− y1.

We model the noise using a zero mean Gaussian distribution with identical variance for all pixels (ε ∼ N (0,σ2
noise)).

For an object present at spatial location (x1,y1), the pixel value (gBk(i, j)) corresponding to the detector Di, j in the
spectral band Bk is given by Equation 17.

gBk(i, j) = EDi, j(x1,y1,EBk)+ εi, j, (17)

where εi, j is the Gaussian noise at location (i, j). We derived the expression for pixel value in Equation 17 for objects
with unit amplitude. For an object at location (x1,y1) with amplitude A1,Bk in the spectral band Bk, we can compute
the pixel value at location (i, j) by scaling the energy seen by the detector with the amplitude of the object as shown
in Equation 18.

gBk(i, j) = A1,Bk EDi, j(x1,y1,EBk)+ εi, j. (18)

Similarly, for two objects at locations (x1,y1) and (x2,y2) with amplitudes A1,Bk and A2,Bk in spectral band Bk, respec-
tively, pixel value at location (i, j) can computed using Equation 19.

gBk(i, j) = A1,Bk Di, j(x1,y1,EBk)+A2,Bk Di, j(x2,y2,EBk)+ εi, j. (19)

Fig. 4. shows observed images with one object and two CSOs simulated using the process described above. For our
experiments, we simulate images of size 7×7.

3. PROPOSED APPROACH

Fig. 5 shows a block diagram of our proposed approach Sub-Pixel Location Estimator for Small Objects v2 (SPLEOv2).
Similar to SPLEO [15], SPLEOv2 employs a lightweight convolutional network. The model is lightweight as it does
not require a dedicated graphics processing unit (GPU) for training and has a low computation time [31, 33]. It has
approximately 0.9 million parameters which are significantly less than 30 million parameters in U-Net [28]. SPLEOv2
requires 0.0001 seconds to process one observed image of size 7× 7 with Python on an Intel Core i9− 9900X 3.50
GHz CPU with 128 GB RAM. We assume that we know the approximate location of the objects in the observed image
and that the observed image is formed using the process described in Section 2. We examine a window of size 7×7
around the approximate object location to estimate the objects’ spatial sub-pixel locations and amplitudes.

The input to SPLEOv2 is a C× 7× 7 size tensor referred to as the observed window denoted by S, and C represents
the number of spectral bands. The input tensor is processed by an average pooling layer with window size 2×2 and
two 2D convolutional layers having 32 filters each of sizes 3× 3 and 5× 5, respectively. In Fig. 5, Conv2D( f ,m)
represents a 2D convolution layer with f filters of size m×m. The outputs of the two 2D convolutional layers are
then processed with average pooling layers with window size 2×2. The outputs from the three average pooling layers
are then flattened and concatenated to obtain a single 1D vector which is then processed with 3 fully connected layers
having 512,20, and p neurons, respectively. A fully connected layer with n neurons is represented by FC(n) in Fig.
5. Rectified linear unit (ReLU) [22] is used as the activation function for all layers except the last layer, which uses
hyperbolic tangent function (Tanh) [22]. The output of the network is a vector (P⃗ = [P1,P2, ...Pp]) with p elements in
the range (−1,1) which is the range of Tanh function. p is the number of parameters to be estimated, which depends
on the number of objects present in the image and the number of spectral bands. For a single object in a single spectral
band, the parameters to be estimated are the spatial location and amplitude of the object (p = 3). For a single object in
two spectral bands, p = 4 because we need to estimate the amplitude of the object in both spectral bands. Similarly,
p = 6 for two objects and one spectral band while p = 8 for two objects and two spectral bands. Our experiments
assume that the objects are located within the central 3×3 window of the observed image x1,y1,x2,y2 ∈ (−1.5,1.5).
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Fig. 5: Block diagram of the proposed method Sub-Pixel Location Estimator for Small Objects v2 (SPLEOv2). Input
is a C× 7× 7 size tensor where C is the number of spectral bands. Conv2D( f ,m) represents a 2D convolution layer
with f filters of size m×m, FC(n) represents a fully connected layer with n neurons, AvgPool is an average pooling
layer with window size 2×2, ReLU is rectified linear unit, and Tanh is a hyperbolic tangent function.

The amplitude of an object can be greater than 1 so we divide the pixel values in the input observed images with a
normalization factor N f , which is greater than the maximum possible amplitude for any object. For a single object in
one spectral band, the output vector P⃗ is related to the location and amplitude estimates as shown in Equation 20.

xe1 = 3P1, ye1 = 3P2, Ae1,B1 = N f |P3|, (20)

where xei ,yei , and Aei,Bk are the location and amplitude estimates of the ith object in spectral band Bk. This means the
network can estimate object locations in the range (−3,3) and amplitude in the range (0,N f ). Equation 21 shows the
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relationship between output vector and parameter estimates for a single object in two spectral bands.

xe1 = 3P1, ye1 = 3P2, Ae1,B1 = N f |P3|, Ae1,B2 = N f |P3|(1.5|P4|+0.5), (21)

where Ae1,B2 = N f |P3|(1.5|P4|+ 0.5) ensures that the object’s amplitude ratio in the two bands is more than 0.5 and
less than 2. Equation 22 shows the relationship between output vector and parameter estimates for two CSOs in a
single spectral band.

xe1 = 3P1, ye1 = 3P2, xe2 = 3P3, ye2 = 3P4, Ae1,B1 = N f |P5|, Ae2,B1 = N f |P5|(1.5|P6|+0.5), (22)

where the ratio of the amplitude of the two objects is more than 0.5 and less than 2. Equation 23 shows the relationship
between output vector and parameter estimates for two CSOs in two spectral bands.

xe1 = 3P1, ye1 = 3P2, xe2 = 3P3, ye2 = 3P4, Ae1,B1 = N f |P5|,
Ae2,B1 = N f |P5|(1.5|P6|+0.5), Ae1,B2 = N f |P5|(1.5|P7|+0.5), Ae2,B2 = N f |P5|(1.5|P8|+0.5),

(23)

where the ratio of any two amplitudes is more than 0.5 and less than 2. Note that this restriction on the ratio of the
amplitudes is necessary for all comparison methods (including SPLEOv2) to perform well.

Now, we will derive the cost function that will be minimized to train SPLEOv2. Given the estimates for locations and
amplitudes of the objects, we can construct the expected observed window of size 7× 7 in the absence of noise. We
call this reconstructed observed window the expected observed window (EOW) denoted by Se. For a single object
present at location (x1,y1), the EOW in a spectral band Bk can be estimated as shown in Equation 24.

Se,Bk = Ae1,Bk S′(xe1 ,ye1 ,Bk), (24)

where S′(xe1 ,ye1 ,Bk) is computed in a manner similar to EDi, j(x1,y1,EBk) (Equation 25):

S′i, j(xe1 ,ye1 ,Bk) =
1
2

(
er f

[
(u+0.5)α

]
− er f

[
(u−0.5)α

])
× 1

2

(
er f

[
(v+0.5)α

]
− er f

[
(v−0.5)α

])
, (25)

where
α = 2× er f−1(

√
EBk), (26)

u = i− xe1 ,

v = j− ye1 ,

and i, j ∈ {−3,−2, ...,3} are the pixel locations in the observed window.

Similarly, for two closely-spaced objects, Equation 27 can be used to estimate the expected observed window.

Se,Bk = Ae1,Bk S′(xe1 ,ye1 ,Bk)+Ae2,Bk S′(xe2 ,ye2 ,Bk). (27)

The conditional probability distribution of the pixel values of the observed window S given the estimates for the
objects’ spatial locations and amplitudes is given by Equation 28.

f (S/⃗x, y⃗, A⃗) =
1√

2πσ2
g

e
− (⃗S−S⃗e)T (⃗S−S⃗e)

2σ2g , (28)

where Q⃗ represents a row-concatenated (flattened) matrix Q. The negative log-likelihood of the pixel values after
removing the terms independent of location and amplitude parameters is given by Equation 29. Note that σg is
identical for all pixels and is independent of the location and amplitude parameters.

− log f (S/⃗x, y⃗, A⃗) = (⃗S− S⃗e)
T (⃗S− S⃗e). (29)

We minimize Equation 29 using the Adam optimizer [19], batch size of 100, and a learning rate of 0.001.
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4. EXPERIMENTAL RESULTS

To evaluate our proposed approach Sub-Pixel Location Estimator for Small Objects v2 (SPLEOv2), we conducted
experiments with 7× 7 size observed windows simulated using the process described in Section 2. Recall that we
model the noise using a zero-mean Gaussian distribution with variance σ2

noise. σ2
noise is related to the signal-to-noise

ratio [12] as shown in Equation 30.

SNRdB = 10log10
Psignal

σnoise
, (30)

where Psignal is the maximum energy seen by a detector (Equation 31).

Psignal = max
i, j

EDi, j(0,0,EBk). (31)

Equation 32 is used to compute σnoise for SNRdB ∈ {2,4,6,8,10,12,14}.

σnoise =

max
i, j

EDi, j(0,0,EBk)

10
SNRdB

10

. (32)

Observed windows with a single spectral band are simulated for EB1 ∈ {0.3,0.4,0.5,0.6,0.7} and observed windows
with two spectral bands are simulated for (EB1 ,EB2)] ∈ {(0.3,0.3),(0.4,0.4),(0.5,0.5),(0.6,0.6),(0.7,0.7)}.

We compare the performance of SPLEOv2 with existing approaches using the metrics: mean localization error, the
standard deviation of localization error, 95th percentile error of localization error, and normalized mean amplitude
error. Mean localization error is the mean of the Euclidean distance between the true location (x1,y1) of an object and
its estimated location (xe1 ,ye1). Localization error can be computed as shown in Equation 33.

le1 =
√
(x1 − xe1)

2 +(y1 − ye1)
2. (33)

Normalized mean amplitude error is the mean of the absolute difference between the true amplitude (A1,Bk ) and the
estimated amplitude (Ae1,Bk ) normalized by the true amplitude. Normalized amplitude error can be computed as shown
in Equation 34.

eA =
|A1,Bk −Ae1,Bk |

A1,Bk

. (34)

We also compare the variance in our parameter estimates (spatial locations and amplitudes of the objects) with the
Cramér-Rao Lower Bound (CRLB) [25] on the variance of an unbiased estimator. If r independent observations of
a random variable x with probability density function f (x;b) are used to estimate the parameter b, then Cramér-Rao
inequality is given by Equation 35.

var(b̂)≥ 1
r I(b)

, (35)

where b̂ is an estimate of parameter b, var(b̂) is the variance of b̂, 1
r I(b) is the CRLB [25] on the variance of b̂, and

I(b) is defined as shown in Equation 36.

I(b) =−E
[

∂ 2

∂b2 ln( f (x;b))
]
. (36)

Note the CRLB is the lower bound for an unbiased estimator, so a biased estimator can perform better than this lower
bound. By biased, we mean that for a parameter b, E[b̂] ̸= b. A derivation of Cramér-Rao Lower Bound (CRLB) can
be found in [12].

4.1 Observed Windows Containing a Single Object

To compare the performance of our approach with existing approaches, we simulated 13,500 observed windows
of size 7× 7 containing a single object using the process described in Section 2. The object is placed randomly
according to a uniform distribution over the central 3× 3 window (x1,y1 ∈ ((−1.5,1.5))). For observed windows
with a single spectral band, the images are simulated for each pair of SNRdB ∈ {2,4,6,8,10,12,14} and EB1 ∈
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{0.3,0.4,0.5,0.6,0.7}. For observed windows with two spectral bands, the images are simulated for each pair of
SNRdB ∈ {2,4,6,8,10,12,14} and (EB1 ,EB2) ∈ {(0.3,0.3),(0.4,0.4),(0.5,0.5),(0.6,0.6),(0.7,0.7)}. The amplitude
of the objects varies uniformly in the range (1,10) and is equal for both spectral bands. Recall from Section 3 that
the observed windows are divided by a normalization factor (N f ) before they are processed with SPLEOv2. For our
experiments with a single object, we set N f = 20.

We trained SPLEOv2 for various ensquared energy and SNRs and determined that the model trained on high SNR
images generalizes well to low SNR images. We present the localization results obtained by training the model on
10,000 observed images of size 7×7 having 18dB SNR and an ensquared energy of 0.5 for both spectral bands. The
object is placed randomly according to a uniform distribution over the central 3× 3 window (x1,y1 ∈ ((−1.5,1.5)))
and the amplitude varies in the range (1,10) for both bands.

We compare SPLEOv2 with 4 existing approaches [15, 27, 12]. SPLEO [15] is a deep learning method that uses
a single spectral band to localize a single object in an observed window. It assumes that the number of objects in
the image and the imaging system’s point spread function (PSF) are known. It is trained on high SNR images and
generalizes well to low SNR images. We also compare our method’s performance with the observed image’s centroid
(location estimate). We do not obtain an amplitude estimate with centroiding, so we only compare its results using
localization error. For images with two spectral bands, the centroid is computed for the mean of the two spectral
bands. Reagan et al. [27] minimizes a maximum-likelihood-based cost function using gradient descent [7] to localize
a single object in an observed image with a single spectral band. It also assumes that the number of objects and PSF of
the imaging system are known. DBL [12] minimizes a maximum-likelihood-based cost function using Nelder-Mead
non-linear optimization [23, 21] to localize a single object or two closely-spaced objects in an observed image with
two spectral bands. It assumes that the PSF of the imaging system is known but does not need to know the number
of objects. Reagan et al. [27] and DBL [12] use non-linear optimization, so they require an initial estimate for the
locations and amplitudes of the objects. We consider two cases for the initial estimates. In the first case, the centroid
is taken as the initial estimate for the spatial location and the ensquared energy of the band as the initial estimate for
the amplitudes. In the second case, outputs from SPLEO and SPLEOv2 are processed as shown in Equation 20 and
Equation 21 and considered as the initial estimates for location and amplitudes. We represent results for Reagan et
al. [27] and DBL [12] with Reagan et al. [27]init and DBLinit where init is the initial estimate for these methods.

Fig. 6 shows the mean, standard deviation, and 95th percentile localization error variation with signal-to-noise ratio
(SNR) [12] and ensquared energy. Recall that we simulate 13,500 observed windows for each pair of SNR and
Ensquared energy. The mean, standard deviation and 95th percentile localization error are computed over these 13,500
windows. The object lies within the central 3× 3 window (x1,y1 ∈ (−1.5,1.5)). Variation with SNRdB is shown at
an ensquared energy of 0.5 and variation with ensquared energy is shown at an SNR of 6dB. Centroiding does not
provide a good location estimate when the object lies outside the central pixel. Reagan et al. [27] and DBL [12]
perform better with SPLEO [15] and SPLEOv2 as initial estimates, respectively. While SPLEOv2 has a slightly
higher mean localization error than DBL, it has a comparable standard deviation and 95th percentile localization error.
DBL has the lowest mean localization error at all SNRs when it uses SPLEOv2 as its initial estimate. DBL also
has a significantly lower standard deviation and 95th percentile localization error when it uses SPLEOv2 as its initial
estimate. This is because SPLEOv2 is a good estimate of an object’s location which is then refined by DBL using
non-linear optimization. At higher SNRs, all methods except centroiding have similar performance as localization
becomes easier. Methods using two spectral bands perform better than those using a single spectral band because
more information is available for localizing objects. Mean, standard deviation, and 95th percentile localization error
do not vary significantly for most methods with a change in ensquared energy. Due to centroiding becoming a worse
estimate for location, Reagan et al. [27] ’s and DBL’s performance with centroid as initial estimate worsens with
increased ensquared energy. DBL with SPLEOv2 as the initial estimate has the best performance, as observed from
the three comparison metrics for most SNR and all ensquared energy values. Fig. 7 shows the normalized mean
amplitude error variation with signal-to-noise ratio (SNR) [12] and the ensquared energy. The object lies within the
central 3× 3 window (x1,y1 ∈ (−1.5,1.5)). Results are similar for the amplitudes in the two spectral bands. Fig. 7
shows results for amplitude estimates in only the first spectral band. Similar to localization error, variations with SNR
and ensquared energy are shown for ensquared energy of 0.5 and SNR of 6dB, respectively. Amplitude errors are
similar for all methods at all SNRs. It gets higher with an increase in ensquared energy because most of the energy
is concentrated within a single pixel leading to a higher pixel value, making the methods estimate a higher amplitude
than the true amplitude.
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Fig. 6: Variation of mean, standard deviation, and 95th percentile localization error with SNR (left) and ensquared
energy (right). We represent results for Reagan et al. [27] and DBL [12] with Reagan et al. [27]init and DBLinit where
init is the initial estimate for these methods. There is a single object in the observed window.

Fig. 7: Variation of normalized mean amplitude error with SNR (left) and ensquared energy (right). We represent
results for Reagan et al. [27] and DBL [12] with Reagan et al. [27]init and DBLinit where init is the initial estimate for
these methods. There is a single object in the observed window.
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Fig. 8: Comparison of mean squared error in parameter estimates obtained from SPLEOv2 with Cramér-Rao Lower
Bound. There is a single object at the center of the observed window. Observed window has 2 spectral bands.

Fig. 8 shows a comparison of mean squared error (MSE) in the parameter estimates (xe1 and Ae1,B1 ) with the Cramér-
Rao Lower Bound (CRLB) [25]. MSE for xe1 and ye1 are similar and MSE for Ae1,B1 and Ae1,B2 are similar. We
generate 500 windows of size 7× 7 with ensquared energy 0.5 for both spectral bands. The object is located at the
center of the observed windows (x1 = 0,y1 = 0). SPLEOv2 is unable to achieve the CRLB, but DBL with SPLEOv2
as an initial estimate performs similarly to the CRLB. As mentioned before, DBL refined the estimates obtained from
SPLEOv2 using non-linear optimization, making its performance better than SPLEOv2. Performance is similar to
CRLB at high SNRs as the localization becomes easier, and CRLB gets close to 0.

4.2 Observed Windows Containing Two Closely-Spaced Objects (CSOs)

To compare the performance of our approach with existing approaches, we simulated 10,000 observed windows of
size 7× 7 containing two closely-spaced objects (CSOs) using the process described in Section 2. The first object
lies within the central pixel (x1,y1 ∈ (−0.5,0.5)), and the second object is d ∈ {0.1,0.2, ...,1} pixels away from
the first object. The relative orientation of the two objects is distributed uniformly in the range (0◦ − 360◦). We
generate 1,000 observed windows for each value of d. For observed windows with a single spectral band, the im-
ages are simulated for each pair of SNRdB ∈ {2,4,6,8,10,12,14} and EB1 ∈ {0.3,0.4,0.5,0.6,0.7}. For observed
windows with two spectral bands, the images are simulated for each pair of SNRdB ∈ {2,4,6,8,10,12,14} and
(EB1 ,EB2)] ∈ {(0.3,0.3),(0.4,0.4),(0.5,0.5),(0.6,0.6),(0.7,0.7)}. The amplitude of the objects varies uniformly in
the range (1,10) and is equal for both objects in both spectral bands. Recall from Section 3 that the pixel values in
the observed windows are divided by a normalization factor (N f ) before they are processed with SPLEOv2. For our
experiments with CSOs, we set N f = 40.

Similar to a single object case, we trained SPLEOv2 for various ensquared energy and SNRs and determined that the
model trained on high SNR images generalizes well to low SNR images. We present the localization results obtained
by training the model on 60,000 observed images of size 7× 7 having 18dB SNR and an ensquared energy of 0.5
for both spectral bands. The first object lies within the central pixel (x1,y1 ∈ (−0.5,0.5)), and the second object is
d ∈ {0.1,0.2, ...,1} pixels away from the first object. The relative orientation of the two objects is distributed uniformly
in the range (0◦−360◦). Training data comprises of 6,000 observed windows for each value of d ∈ {0.1,0.2, ...,1}.

We compare SPLEOv2 with 2 existing approaches [26, 12]. Reagan et al. [26] minimizes a maximum-likelihood-
based cost function using gradient descent [7] to localize two CSOs in an observed image with a single spectral band.
It assumes that the number of objects and PSF of the imaging system are known. DBL [12] minimizes a maximum-
likelihood-based cost function using Nelder-Mead non-linear optimization [23, 21] to localize a single object or two
closely-spaced objects in an observed image with two spectral bands. It assumes that the PSF of the imaging system is
known but does not need to know the number of objects. Reagan et al. [26] and DBL [12] use non-linear optimization,
so they require an initial estimate for the locations and amplitudes of the objects. We consider two cases for the initial
estimates. In the first case, the two brightest pixels are taken as the initial estimate for the spatial location and the
ensquared energy of the band as the initial estimate for the amplitudes. In the second case, outputs from SPLEOv2
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are processed as shown in Equation 22 and Equation 23 and considered as the initial estimates for locations and
amplitudes. We represent results for Reagan et al. [26] and DBL [12] with Reagan et al. [26]init and DBLinit where init
is the initial estimate for these methods.

Fig. 9: Variation of mean, standard deviation, and 95th percentile localization error with SNR (left) and ensquared
energy (right). We represent results for Reagan et al. [26] and DBL [12] with Reagan et al. [26]init and DBLinit where
init is the initial estimate for these methods. There are two objects in the observed window. Results are shown for the
object within the central pixel.

Fig. 9 shows the mean, standard deviation, and 95th percentile localization error variation with signal-to-noise ratio
(SNR) [12] and ensquared energy. Recall that we simulate 1,000 windows for each value of d, the distance between
the two pixels. Mean, standard deviation and 95th percentile localization error are estimated for these 1,000 windows.
The two objects are 0.7 pixels apart, with one object lying within the central pixel. The results are shown for the object
within the central pixel and are similar for the other object. Variation with SNR is shown at an ensquared energy of 0.5
and variation with ensquared energy is shown at an SNR of 6dB. Reagan et al. [26] and DBL [12] perform better with
SPLEOv2 as an initial estimate at low SNRs. SPLEOv2 has the lowest mean, standard deviation, and 95th percentile
localization error for SNR < 6dB. Its performance stays similar with an increase in SNR. DBL has the lowest mean,
standard deviation, and 95th percentile localization error at all SNRs ≥ 6dB when it uses SPLEOv2 as its initial
estimate. This is because SPLEOv2 is a good estimate of an object’s location which is then refined by DBL using non-
linear optimization. At higher SNRs, all methods have similar performance as localization becomes easier. Methods
using two spectral bands perform better than those using a single spectral band because more information is available
for localizing objects. Mean, standard deviation and 95th percentile localization error do not vary significantly for
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Fig. 10: Variation of normalized mean amplitude error with SNR (left) and ensquared energy (right). We represent
results for Reagan et al. [26] and DBL [12] with Reagan et al. [26]init and DBLinit where init is the initial estimate
for these methods. There are two objects in the observed window. Results are shown for the object within the central
pixel.

most methods with a change in ensquared energy. SPLEOv2 and DBL with SPLEOv2 as the initial estimate perform
consistently well, as observed from the three comparison metrics for most SNR and all ensquared energy values.
Fig. 10 shows the normalized mean amplitude error variation with signal-to-noise ratio (SNR) [12] and the ensquared
energy. The two objects are 0.7 pixels apart, with one object lying within the central pixel. The results are shown for
the object within the central pixel and are similar for the other object. Results are similar for the amplitudes in the
two spectral bands, so we present results for amplitude in one spectral band. Similar to localization error, variation
with SNR is shown at an ensquared energy of 0.5 and variation with ensquared energy is shown at an SNR of 6dB.
Ensquared energy is a bad estimate for amplitude, making Reagan et al. [27] amplitude bad. The initial estimate
for amplitude does not affect the performance when we have two spectral bands. DBL and SPLEOv2 have similar
performance for amplitudes when two spectral bands are used. Normalized mean amplitude error does not vary much
with a change in ensquared energy.

Fig. 11: Comparison of mean squared error in parameter estimates obtained from SPLEOv2 with Cramér-Rao Lower
Bound. One object is at the center of the observed window. The second object is 0.7 pixels away along the x-axis.
Results are shown for the first object. The observed window has 1 spectral band.

Fig. 11 shows a comparison of mean squared error (MSE) in the parameter estimates (xe1 and Ae1,B1 ) obtained from
SPLEOv2 with the Cramér-Rao Lower Bound (CRLB) [25]. We generate 500 windows of size 7×7 with one spectral
band having ensquared energy 0.5. One object is located at the center of the observed windows (x1 = 0,y1 = 0), and
the second object is located 0.7 pixels away along the x-axis (x2 = 0.7,y2 = 0). Results are shown for the object
within the central pixel as they are similar for both objects. MSE for xe1 and ye1 are similar. SPLEOv2 is a biased
estimator because the training data is biased. A biased estimator can perform better than CRLB, as observed in Fig.
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11. Since SPLEOv2 is biased, Reagan et al. [26] with SPLEOv2 as an initial estimate is also biased, outperforming
CRLB. Performance is similar to CRLB at high SNRs as the localization becomes easier, and CRLB gets close to 0.
SPLEOv2 provides a bad amplitude estimate with only one spectral band and does not achieve CRLB.

Fig. 12: Comparison of mean squared error in parameter estimates obtained from SPLEOv2 with Cramér-Rao Lower
Bound. One object is at the center of the observed window. The second object is 0.7 pixels away along the x-axis.
Results are shown for the first object. The observed window has 2 spectral bands.

Fig. 12 shows a comparison of mean squared error (MSE) in the parameter estimates (xe1 and Ae1,B1 ) obtained from
SPLEOv2 with the Cramér-Rao Lower Bound (CRLB) [25]. We generate 500 windows of size 7×7 with ensquared
energy 0.5 for both spectral bands. One object is located at the center of the observed windows (x1 = 0,y1 = 0), and
the second object is located 0.7 pixels away along the x-axis (x2 = 0.7,y2 = 0). Results are shown for the object within
the central pixel as they are similar for both objects. MSE for xe1 and ye1 are similar and MSE for Ae1,B1 and Ae1,B2
are similar. We generate 500 windows of size 7× 7 with ensquared energy 0.5 for both spectral bands. Similar to
the single band case, SPLEOv2 trained on two spectral bands is also a biased estimator because the training data is
biased. A biased estimator can perform better than CRLB, as observed in Fig. 12. Since SPLEOv2 is biased, DBL
with SPLEOv2 as an initial estimate is also biased, outperforming CRLB. Performance is similar to CRLB at high
SNRs as the localization becomes easier, and CRLB gets close to 0. SPLEOv2 provides a good amplitude estimate
when trained on two spectral bands and achieves CRLB for SNR > 4dB.

5. CONCLUSIONS

In this paper, we present a machine learning object localization method, SPLEOv2, that works well for objects at low
SNR and can also be used as an initial estimate for existing methods. SPLEOv2 can also be deployed on systems like
satellites as it employs a lightweight CNN. Its low computation time also allows it to be used as an initial estimate for
existing methods. SPLEOv2 has a low standard deviation and 95th percentile localization error, meaning it performs
consistently well for different observed windows at a particular SNR and ensquared energy. SPLEOv2’s amplitudes
estimates are not good but can be refined by using them as an initial estimate for other methods. Future work will
explore training the network on more data to improve the amplitude estimate. It will also explore training on unbiased
data to develop an unbiased estimator.
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