
Near-Earth Semi-Analytical Uncertainty Propagation Toolkit for Conjunction Analysis

Yashica Khatri
Daniel J. Scheeres

Aerospace Engineering Department, University of Colorado Boulder

ABSTRACT

A semi-analytical uncertainty propagation conjunction analysis toolkit is presented for short-term and long-term con-
junctions in the near-Earth space. The primary purpose of this user-accessible toolkit is to provide a fast and reliable
method to predict collisions between space objects; and to present an alternative to the existing computationally ex-
pensive Monte Carlo methods. The toolkit uses Gaussian Mixture Models, State Transition Tensors, and a Simplified
Dynamical System to precisely propagate state and uncertainty information to a conjunction time, and evaluate the
probability of collision between two objects. The toolkit is made accessible through GitHub.

1. INTRODUCTION

Due to an increase in the number of resident space objects (RSOs) in the near-Earth space, sensors and observation
resources are overloaded. This means that these RSOs are observed intermittently, leading to a need for propagation
of information to future times. A major application of this is conjunction prediction. When a Gaussian uncertainty is
propagated with highly nonlinear orbit dynamics, it loses its Gaussianity (Fig. 1). Currently prevalent Monte Carlo
methods for uncertainty propagation are computationally expensive. To surpass this cost, semi-analytical methods
have been developed that allow accurate and efficient propagation of uncertainty.

Fig. 1: Uncertainty loses its Gaussianity when propagated with nonlinear orbit dynamics. Even if their trajectories
don’t intersect, if object uncertainties overlap, there is a possibility of collision. [7]

Khatri and Scheeres developed a semi-analytical method of uncertainty propagation that uses a combination of Gaus-
sian Mixture Models (GMMs) and State Transition Tensors (STTs) to propagate uncertainty accurately. The initial
distribution is split into smaller distributions, which can maintain linearity over longer propagation times, when prop-
agated individually. These GMM components are individually propagated using STTs, which are computed using the
chosen system dynamics. In near-Earth solutions, the works by Khatri and Scheeres utilise a Simplified Dynamical
System (SDS) that combines the speed of mean state propagation with the accuracy of adding in the short-period varia-
tions at the ends of the propagation to achieve the osculating object state. This method is implemented for computation
of short-term [6, 7] and long-term [5] conjunctions.

This work presents a conjunction toolkit applicable to short-term and long-term conjunctions that takes inputs such as
orbital parameters and generates a probability of collision using a semi-analytical uncertainty propagation conjunction

Copyright © 2023 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) – www.amostech.com

analysis (SAUPCA) toolkit. The MATLAB scripts for this toolkit have been uploaded to GitHub and can be accessed
using short-term [4] and long-term [3] repositories. The code implementation and initialization is defined in this paper.

Section 2 defines this method of semi-analytical uncertainty propagation and probability of collision calculations. This
is followed by a detailed implementation of the Monte Carlo probability of collision calculations. After the method
descriptions, the code implementation parameters are defined and a test case is presented. This is followed by the
conclusions and the Appendix.

2. SEMI-ANALYTICAL UNCERTAINTY PROPAGATION AND PROBABILITY OF COLLISION
CALCULATION

Fig. 2 summarises the semi-analytical method of uncertainty propagation used for probability of collision calculations
in the script ‘ComputeGMMSTTMethodPc.m’. The initial distribution is transformed to an Equinoctial element set
using a Jacobian matrix (‘JacobianCalc.m’) and a sub-optimal algorithm from Horwood et al. [2] is used to split
this uncertainty into a chosen number of GMM components. These smaller distributions are converted to Delaunay
frame for propagation using the STTs. Hamiltonian averaging is used to compute mean dynamics and the analytical
time-dependent short-period variation equations. The mean dynamics are used to compute the STTs for the GMM
component propagation.

The propagated GMM components are then compared in an all-on-all analysis to calculate the probability of collision.
These probabilities are combined using a double weighted sum to achieve a cumulative probability of collision of the
system. A benefit of this is that the individual GMM components maintain Gaussianity and thus, can be combined
with the Foster method of probability of collision calculation [1].

Fig. 2: A summary of the semi-analytical uncertainty propagation and conjunction analysis method. [5]

2.1 Gaussian Mixture Model Splitting

The GMM is split using the Horwood et al. [2] sub-optimal algorithm. This section is set up using the optimization
toolbox in MATLAB. A parameter m = 6 is defined to initiate the splitting process. Based on this, the following
algorithm is set up:

1. σ = 2m
N−1 , where N is the number of GMM components to split into.

2. For α = 1, ...,N, µα =−m+σ(α −1)

3. Compute matrix (M)αβ = N (να −νβ ;0,2σ2) and vector (n)α = N (να ;0,σ2 +1) using function normpdf.

Copyright © 2023 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) – www.amostech.com

4. Define an optimization using quadprog, with ‘ConstraintTolerance’ of 10−25 and ‘OptimalityTolerance’ of 10−25

to minimize: 1
2 wT Mw−wT n over w subject to constraints: ∑

N
α=1 wα = 1 and wα ≥ 0, where α = 1, ...,N

5. For same α , calculate w̃α =
√

2π√
1−σ2

wα exp
[

µ2
α

2(1−σ2)

]
, µ̃α = µα

1−σ2 , and σ̃2 = σ2

1−σ2

6. Compute µ̂α = ν1 +
√

Q1µ̃α , ŵα = w̃α , and σ̂2 = σ̃2Q11

7. Based on this, Q̄=(σ̂−2e1eT
1 +Q−1)−1, ν̄α = Q̄(σ̂−2µ̂α e1+Q−1

ν), and w̄α = ŵαN (µ̂α −eT
1 ν ;0, σ̂2+eT

1 Qe1),
where e1 = (1,0, ...,0)T ∈ R

8. For α = 1, ...,N, compute re-normalized weights w̄α = w̄α/∑
N
β=1 w̄β

This splitting function ‘GMM Component Calcs.m’ uses the number of components, nominal mean, nominal covari-
ance, and a test flag as inputs. It outputs the GMM component weights (w̄), means (µ̄), and covariance (Q̄).

2.2 Simplified Dynamical System

The MATLAB symbolic computer is used to develop the Hamiltonian averaging equations to compute the mean
dynamics equations and the time-based short-period variation equations in the script ‘SDSGenerator.m’. As described
in previous works [7, 5], the toolkit uses non-Keplerian perturbations from Solar Radiation Pressure (SRP) and J2
gravitational harmonics. The state and state Equations of Motion (EOMs) are represented as follows:

xdel = [l, g, h, k⊙,L, G, H, K⊙]

f del = [l̇, ġ, ḣ, k̇⊙, L̇, Ġ, Ḣ, K̇⊙] (1)

The mean Hamiltonian and generating function equations are shown in Appendix A. The mean dynamics are stored
in the function: ‘MeanDynamicsFunction.m’ and the short-period offsets from mean to osculating and vice-versa are
stored in ‘getInitialDelOffset.m’ and ‘getFinalDelOffset.m’, respectively. These offset functions can be accessed using
the script ‘getOffset.m’ that uses state, time, constants, and a direction flag as inputs. It outputs the offset in the chosen
direction.

2.3 State Transition Tensors

MATLAB symbolic computer is used to compute the STT EOMs. These EOMs are then used to propagate the STTs
to the final time. The propagated STTs are used to map the mean and covariance of the GMM components to the final
time using the following set of equations:

Φ̇i,ab =
N

∑
α=1

Ai,α Φα,ab +
N

∑
α=1

N

∑
β=1

Ai,αβ ΦαaΦβb (2)

Here, Φα,ab is a second order STT, Φαa and Φαb are first order STTs, Ai,α is the first order Linear Dynamics Tensor
(LDT), and Ai,αβ is the second order LDT. N denotes the state dimension. i, a, and b are the three dimensions of the
STT EOMs. The LDTs are computed using partials of the system dynamics with respect to the state about the nominal
trajectory (denoted by *):

Ai,k1...kp =
∂ p f deli

∂xdelk1 ...∂xdelkp

∣∣∣∣
∗

(3)

where, i and k j are the dimensions of the LDT.

The LDT calculations are performed using the MATLAB symbolic computer by taking symbolic partial derivatives
of the Delaunay mean dynamics from the SDS with respect to the state in function: ‘SymbolicSDSJ2Computer.m’.
‘propagateWithDynamics.m’ script is used to propagated the STTs alongside the state using ode113, with 10−13 as
the relative and absolute tolerances.

Copyright © 2023 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) – www.amostech.com

2.4 Time of Closest Approach Finder

The function ‘FindTCAGMMSTTMethod.m’ is used to find the time of closest approach (TCA) between two chosen
GMM components. Fig. 3 shows the propagation process for the GMM component means. The means of the GMM
components are mapped to the final propagation time using the STTs computed with the mean dynamics using the
function ‘STTcalcs2BP.m’:

δmi(t) =
m

∑
p=1

1
p!

Φi,k1...kp E[δx0
k1
...δx0

kp
] (4)

where, the moments, E, are defined in functions ‘E1calc.m‘ and ‘E2calc.m’ using:

E[δxi] = δmi

E[δxiδx j] = δmiδm j +Pi j

E[δxiδx jδxk] = δmiδm jδmk +(δmiP jk +δm jPik +δmkPi j)

... (5)

Fig. 3: The initial GMM component mean is a deviation from the nominal mean state. This GMM mean is mapped to
the final time using STTs and it is converted back to the osculating state. [5]

The TCA approach between two GMM components is calculated using a stepping method that uses the time update:

t =
∆r.∆v
|∆v|2

(6)

where ∆r and ∆v are the relative position and velocity vectors respectively. Each time update ensures a smaller
difference in the relative distance between the two objects at the next time. The final converged time is the actual
TCA. The covariance is mapped (‘Covariance Propagation.m’) to this actual TCA using the second order STTs, as
described in the equation below:

Pi j(t) =

(
m

∑
p=1

m

∑
q=1

1
p!q!

Φi,k1...kp Φ j,l1...lq E[δx0
k1
...δx0

kp
δx0

l1 ...δx0
lq]

)
−δmi(t)δm j(t) (7)

The means and moments are the same as those described in Eq. 4 and Eq. 5, respectively.

2.5 Probability of Collision Calculations

Each propagated GMM components associated with the objects in conjunction are compared in an all-on-all analysis
at their respective actual TCAs to achieve the cumulative probability of collision, as demonstrated in Fig. 4. This is
done using the function script: ‘GMM Pc Calcs Fun.m’. The individual probability of collision between the ith and
jth components of objects 1 and 2 respectively, can be computed using:

Pc,i j =
1

2π
√

|P∗|

∫ R

−R

∫ √
R2−x2

−
√

R2−x2
exp(−A∗)dzdx (8)

Copyright © 2023 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) – www.amostech.com

P∗ is the combined covariance of the two objects and A∗ is defined as follows:

s = xi+ zk, s0 = x0i+ z0k (9a)

A∗ = (s− s0)
T P∗−1(s− s0)/2 (9b)

where, s and s0 are the relative positions in the encounter plane at the actual and nominal TCA, respectively.

The individual probabilities are combined using a double weighted sum:

Pc =
La

∑
i=1

Lb

∑
j=1

w(i)
a w(j)

b Pc,i j (10)

where, w(i)
a and w(j)

b are the weights associated with the ith and jth GMM components of objects 1 and 2, respectively.
The double integral to compute the total probability of collision is implemented using ‘integral2’ in MATLAB.

Fig. 4: Each GMM component from object 1 is compared to that from object 2 to compute the cumulative probability
of collision. [6]

3. MONTE CARLO METHOD

In the Monte Carlo analysis, a cloud of points is propagated numerically to evaluate the probability of collision in the
function script: ‘Compute MC Pc Cart 1on1.m’.

A random point is generated for each object in conjunction from the nominal states and epoch covariances using
‘mvnrnd’. These points are propagated using ‘propagateWithDynamics.m’ to find the actual TCA, as shown in Fig. 5.
The actual TCA is found using ‘FindTCAMCMethod.m’ with ‘while’ loops, using the nominal TCA as an initial
guess. Same as before, the time update is computed as described in Eq. 6 using the relative position and velocity of
the two objects.

Fig. 5: The initial state is converted to a mean state and is mapped to the final time using STTs, where it is converted
back to the osculating state. [5]

The probability of collision in the Monte Carlo analysis is calculated by comparing the number of objects closer than
the combined hard body radii of the two objects, to the total number of points in the analysis.:

MC Pc =
Conjunctions where DCA <R

Total number of conjunctions tested
(11)

Copyright © 2023 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) – www.amostech.com

The binomial confidence bounds are found using the normal approximation [8]:

CI = MC Pc ± z

√
MC Pc(1−MC Pc)

n
(12)

z = 1.96 for a 95% confidence interval and n denotes the number of points in the Monte Carlo analysis.

4. CODE INITIALIZATION

To initiate the code, the only scripts that need to be edited are: ‘Main Code.m’ and ‘constantsAndInitialState.m’. The
states and uncertainties of the two objects in conjunction and some constant parameters need to be defined. The input
parameters that are required to run the code and that can be changed without needing code updates include:

Main Code.m ———————————————–
runMonteCarlo: When toggled to 1, this flag allows the Monte Carlo probability of collision calculation

process to run, using a chosen number of points.
runGMMSTTMethod: When toggled to 1, this flag allows the semi-analytical GMM-STT probability of col-

lision calculation process to run, using a chosen number of points.
plotThings: Flag to plot probability of collision results.
saveResultsToText: Save results to an output file.
constantsAndInitialState.m ———————————————–
[a e i O w M]: [km and rad] Classical orbital elements (COEs) defining the epoch states of the two

objects in conjunction.
P and P2: [km and km/s] Cartesian covariance of both objects in conjunction.
constants.case flag: Pre-coded sample test cases can be accessed using this variables.
constants.points: Number of Monte Carlo points currently being evaluated for each object.
constants.JMAX: List of number of GMM components to split each object into. The only limitation is

that this script cannot split the distribution into less than 15 components.
constants.testFig2: When toggled to 1, this test flag plots the GMM mean spread for object 1 at the nominal

TCA using 15 components. ‘runMonteCarlo’ and ‘runGMMSTTMethod’ must be
toggled to 1 to run this.

constants.plot GMM ell: When toggled to 1, this test flag plots the GMM covariances, in addition to their means.
‘runMonteCarlo’ and ‘runGMMSTTMethod’ must be toggled to 1 to run this.

constants.testFig4: When toggled to 1, this test flag plots the weights against the means of the GMM
distribution. ‘runGMMSTTMethod’ must be toggled to 1 to run this.

constants.par: Allow parallel runs in MATLAB.
constants.nodes: Number of nodes allowed for the parallel MATLAB runs.
usePredefinedCases: When toggled to 1, this flag allows the predefined test cases to be accessed, using

constants.case flag.
constants.P prop: Define Nominal TCA.
ICState.obj2.COE: Define the COE for object 2.
r1: Hard body radius of object 1.
r2: Hard body radius of object 2.
constants.rho: Reflectivity of the objects.
constants.Aom: Area over mass ratio of objects.

5. TEST CASE

A case for the short-term conjunction case is setup below and the code is initiated for a test run.

5.1 Example Setup

The inputs and constants to run this example test case are listed in the initialization table below. The initial states and
epochs are introduced. The flags: ‘runMonteCarlo’ and ‘runGMMSTTMethods’ are toggled to 1 to run the probability

Copyright © 2023 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) – www.amostech.com

of collision calculations using both methods. ‘plotThings’ is 1 to allow plotting of the results. 107 points are generated
associated with object and tested for probability of collision calculations. No test figures are plotted and parallelization
is turned off. Nominal TCA is set to 1.5 days. The hard body radii of the two objects and other parameters are also
defined in the table.

Main Code.m ———————————————–
runMonteCarlo: 1
runGMMSTTMethod: 1
plotThings: 1
saveResultsToText: 0
constantsAndInitialState.m ———————————————–
[a e i O w M]: [km and deg] [8000; 0.15; 60; 0; 0; 0]
P and P2: [km and km/s] [0.0067664 -0.0029183 0.0027112 -9.9816E-7 -1.7636E-7 2.1797E-

6;... -0.0029183 0.005348 -0.0011671 -1.5861E-6 -3.5203E-7 3.3414E-6;...
0.0027112 -0.0011671 0.001087 -3.9883E-7 -7.5945E-8 8.6148E-7;...
-9.9816E-7 -1.5861E-6 -3.9883E-7 9.4587E-9 -1.1375E-10 1.1511E-9;...
-1.7636E-7 -3.5203E-7 -7.5945E-8 -1.1375E-10 9.8844E-9 8.5671E-11;...
2.1797E-6 3.3414E-6 8.6148E-7 1.1511E-9 8.5671E-11 7.2859E-9]

constants.case flag: 1
constants.points: 1E7
constants.JMAX: [37;101;301;501]
constants.testFig2: 0
constants.plot GMM ell: 0
constants.testFig4: 0
constants.par: 0
constants.nodes: 4
usePredefinedCases: 0
constants.P prop: 1.5 days
ICState.obj2.COE: [km and deg] [9843.3; 0.241038; 61.8685; -10.9875; 55.5795; -87.5619]
r1: 20 m
r2: 20 m
constants.rho: 0.2
constants.Aom: 2E-6

Fig 6a shows the nominal trajectories of the two objects and their conjunction point. Fig. 6b shows the uncertainty
distribution of the two objects at the nominal TCA.

(a) Nominal trajectories. [6] (b) Uncertainty distribution at the nominal TCA.

Fig. 6: (a) Blue and yellow trajectories show the nominal trajectories of objects 1 and 2, respectively. The black dot and
red dot denote the initial locations of objects 1 and 2, respectively. Purple star denotes the conjunction point. (b) The
blue points and yellow points show the uncertainty distributions at the nominal TCA of objects 1 and 2, respectively.

Copyright © 2023 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) – www.amostech.com

The probability of collision for this test case is first computed with the Monte Carlo analysis, followed by the semi-
analytical approach. This allows a comparison between the two results.

5.2 Results

The Monte Carlo scripts outputs a probability of collision of 4.67×10−5 in 5.3 hours [6] (when run with 24 parallel
nodes on the CU Boulder supercomputer), when using the SDS dynamics. The semi-analytical GMM-STT script
outputs a probability of collision of: 3.8894× 10−5, 4.8952× 10−5, 4.8659× 10−5, 4.8560× 10−5 with 37, 101,
301, and 501 components, respectively. The semi-analytical computation with 101 components takes 4.43 minutes [6]
(when run with 24 parallel nodes on the CU Boulder supercomputer).

Fig 7a shows the comparison between the Monte Carlo results and those from the semi-analytical method. Fig. 7b
shows the relative error between these two results. It is clear that above 101 components, the results have converged
with the Monte Carlo probability of collision. This confirms the validity of the method and provides a demonstration
of the toolkit.

(a) Probability of collision results. [6] (b) Relative error in results.

Fig. 7: (a) The solid blue line refers to the Monte Carlo probability of collision and the dashed blue lines are the
confidence intervals around this result. The pink diamonds show the semi-analytical approach probability of collision
at different number of GMM components. (b) The dashed line shows the binomial normal approximation 95% confi-
dence interval line. The pink diamonds show the semi-analytical approach results for the probability of collision.

6. CONCLUSION

This work provides a semi-analytical uncertainty propagation conjunction analysis (SAUPCA) toolkit that can prop-
agate the uncertainty and evaluate the probability of collision results in an accurate and efficient manner. The paper
describes the different components of the coded toolkit and the parameters that need to be defined to initiate the code.
A test case is presented that is set up using defined constants and initial states and covariances of the two objects in
conjunction. The probability of collision is calculated using the Monte Carlo analysis and the SAUPCA toolkit to
test the output and compare the final results. The plotted results show a convergence of the SAUPCA probability of
collision with those from the Monte Carlo analysis, hence demonstrating a successful run. The toolkit can be accessed
through GitHub repositories [4, 3].

REFERENCES

[1] Salvatore Alfano. A parametric analysis of orbital debris collision probability and maneuver rate for space vehi-
cles. NASA JSC-25898, 1992.

[2] Joshua T. Horwood, Nathan D. Aragon, and Aubrey B. Poore. Gaussian Sum Filters for Space Surveillance:
Theory and Simulations. Journal of Guidance, Control, and Dynamics, 34(6):1839–1851, 2011.

[3] Yashica Khatri. Long-term-saupca-toolkit. Available at https://github.com/yashicakhatri2/Long-Term-SAUPCA-
Toolkit.git.

[4] Yashica Khatri. Short-term-saupca-toolkit. Available at https://github.com/yashicakhatri2/Short-Term-SAUPCA-
Toolkit.git.

[5] Yashica Khatri and Daniel J Scheeres. HYBRID METHOD OF UNCERTAINTY PROPAGATION FOR LONG-
TERM CONJUNCTION ANALYSIS. In 33rd AAS/AIAA Space Flight Mechanics Meeting, Austin, Texas. AAS
23-376.

Copyright © 2023 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) – www.amostech.com

[6] Yashica Khatri and Daniel J Scheeres. Hybrid nonlinear semi-analytical uncertainty propagation for conjunction
analysis. In Proceedings of 73rd International Astronautical Congress 2022 IAC-22,C1,3,1,x68776, Paris, France,
2022.

[7] Yashica Khatri and Daniel J Scheeres. Nonlinear Semi-Analytical Uncertainty Propagation for Conjunction Anal-
ysis. Acta Astronautica, 203:568–576, 2023.

[8] P.S. Laplace. Théorie analytique des probabilités, 1812.

APPENDIX A

The mean equations from the SDS are shown below [6]:

K̂ = K0 + εK1 +
ε2

2!
K2 +

ε3

3!
K3 +

ε4

4!
K4 +

ε5

5!
K5 +

ε6

6!
K6 (13)

Each computed component of the mean Hamiltonian is as follows [6]:

K0 =− µ

2a
(14a)

K2 =
2!
ε2 (νK⊙) (14b)

K3 =
3α2J2µ(3s2 −2)

2a3η3ε3 (14c)

K5 =−180aβeTc

ε5 (14d)

K6 =−45α4J2
2 µ

8a5η9ε6

[
6e2

η
2s2(15s2 −14)cos(2g)+ e2{−(3η

2(5s4 +8s2 −8)+4(2−3s2)2)}

+4{3η
3(2−3s2)2 +η

2(21s4 −42s2 +20)+(2−3s2)2}
]

(14e)

where,

Tc =
1
4
[
(c+1)(c⊙+1)cos(g+h−h⊙− k⊙)+(c−1)(c⊙−1)cos(g−h+h⊙− k⊙)

− (c+1)(c⊙−1)cos(g+h−h⊙+ k⊙)− (c−1)(c⊙+1)cos(g−h+h⊙+ k⊙)+4ss⊙ sin(g)sin(k⊙)
]

(15a)

Ts =
1
4
[
(−c−1)(c⊙+1)sin(g+h−h⊙− k⊙)− (c−1)(c⊙−1)sin(g−h+h⊙− k⊙)

+(c+1)(c⊙−1)sin(g+h−h⊙+ k⊙)+(c−1)(c⊙+1)sin(g−h+h⊙+ k⊙)+4ss⊙ cos(g)sin(k⊙)
]

(15b)

The mean Hamiltonian can be used to compute the mean dynamics [6]:

l̇ =
∂K̂

∂L
, ġ =

∂K̂

∂G
, ḣ =

∂K̂

∂H
, k̇⊙ =

∂K̂

∂K⊙

L̇ =−∂K̂

∂ l
, Ġ =−∂K̂

∂g
, Ḣ =−∂K̂

∂h
, K̇⊙ =−∂K̂

∂k⊙
(16)

Once the mean Hamiltonian is known, the Lie operator is used to back-solve for the generating functions (Wn) [6].

L0(Wn) = H̃0,n −Kn (17)

Copyright © 2023 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) – www.amostech.com

The generating functions corresponding to the system Hamiltonian are given in Eq. 18 [6]:

W3 =
3!
ε3

L3α2J2

4µa3η3

[
−3s2

(
1
2

sin2(f +g)+
1
2

esin(f +2g)+
1
6

esin(3 f +2g)
)
+(3s2 −2)(f + esin f − l)

]
(18a)

W5 =
30aβ

nε5

(
4e2Tc sinE + e(ηTs cos2E −Tc(6E + sin2E −6l))−4ηTs cosE +4Tc sinE

)
(18b)

W6 =
45α4J2

2 n
8a2eη9ε6

[
−6e3

η
2s2(15s2 −14)(f − l)cos2g+8(2−3s2)2(e2 +η

3 −1)sin f

+ e{2(2−3s2)2(e2 +η
3 −1)sin2 f +(f − l)(e2(3η

2(5s4 +8s2 −8)+4(2−3s2)2)

−4(η2(21s4 −42s2 +20)+(2−3s2)2))}
]

(18c)

These generating functions can be used to compute the mean to osculating, and reverse, offset equations that are further
described in previous works by Khatri and Scheeres [6].

APPENDIX B: LIST OF FUNCTIONS

The following functions and files are included in the short-term SAUPCA toolkit:

Covariance Propagation.m

Initial Ecalc.m

SDSDynamicsStateOnly.m

getFinalDelOffset.m

propagateWithDynamics.m

E1calc.m

JacobianCalc.m

SDSGenerator.m

getInitialDelOffset.m

saveResultsToTextFun.m

COE to Cartesian.m

E2calc.m

MAtoEccTA.m

STTcalcs2BP.m

getJOrder1.m

savedResults.m

COE to Delaunay.m

Equinoctial to Cartesian.m

Main Code.m

SymbolicSDSJ2Computer.m

getJOrder2.m

substituteFunctions.m

COE to Equinoctial.m

Copyright © 2023 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) – www.amostech.com

FindTCAGMMSTTMethod.m

Main Plotting.m

computeEqDelPartials.m

getOffset.m

substitutePartials.m

Compute2ndOrderSTTdot.m

FindTCAMCMethod.m

MeanDynamicsFunction.m

constantsAndInitialState.m

getSun.m

ComputeGMMSTTMethodPc.m

GMM Component Calcs.m

PQW to IJK transform.m

dSFull2.m

normalize.m

Compute MC Pc Cart 1on1.m

GMM Pc Cacls Fun.m

SDSDynamics.m

define cases.m

phi calc.m

testResults Case1 Using SDS+SP.txt

The following functions and files are included in the long-term SAUPCA toolkit: Covariance Propagation.m

JacobianCalc.m

SDSDynamicsForLongTCA.m

dSFull2.m

normalize.m

E1calc.m

MAtoEccTA.m

SDSDynamicsForPcCalcs.m

define cases.m

phi calc.m

COE to Cartesian.m

E2calc.m

Main Code.asv

SDSDynamicsStateOnly.m

getFinalDelOffset.m

Copyright © 2023 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) – www.amostech.com

propagateWithDynamics.m

COE to Delaunay.m

Equinoctial to Cartesian.m

Main Code.m

SDSDynamicsStateOnlyForLongTCA.m

getICForObj2SDS.m

propagateWithDynamicsForLongTCA.m

COE to Equinoctial.m

FindTCAGMMSTTMethod.m

Main Plotting.m

SDSGenerator.m

getInitialDelOffset.m

propagateWithDynamicsForPcCalcs.m

CatchTCA.m

FindTCAMCMethod.m

MeanDynamicsFunction.m

SDSGeneratorTestDynamicsStateOnly.m

getJOrder1.m

saveResultsToTextFun.m

CatchTCAGMMSTT.m

GMM Component Calcs.m

PQW to IJK transform.m

STTcalcs2BP.m

getJOrder2.m

savedResults.m

Compute2ndOrderSTTdot.m

GMM Pc Cacls Fun.m

Partials PQW COE.m

SymbolicSDSJ2Computer.m

getMinDistEvent.m

substituteFunctions.m

ComputeGMMSTTMethodPc.m

Initial Ecalc.m

Plot things.m

computeEqDelPartials.m

getOffset.m

substitutePartials.m

Compute MC Pc Cart 1on1.m

Copyright © 2023 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) – www.amostech.com

J2AccelerationCalculator.m

SDSDynamics.m

constantsAndInitialState.m

getSun.m

Copyright © 2023 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) – www.amostech.com

	Khatri

