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ABSTRACT

New families of quasi-periodic tulip-shaped orbits, derived from forking a near rectilinear halo orbit (NRHO) around 
the second Earth-Moon Lagrange point, are independently discovered and presented for the first time in scientific liter-
ature. Characterized by their nearly symmetric lobes, periods spanning 12 to 26 earth-days, and low perilune altitudes 
suitable for near-surface fly-bys, t hese orbits a re s imilar t o NRHOs but d istinguishable by t heir quasi-periodic na-
ture and variable apolune and perilune altitudes. This variability makes them advantageous for tracking, surveillance, 
communication, and navigation missions requiring geometric measurement diversity. These novel quasi-periodic or-
bits are compared against more traditional three-body cislunar trajectories such as NRHOs and butterfly o rbits for 
lunar surface monitoring and space domain awareness (SDA) missions using standard catalog coverage metrics such 
as gap times. A comparative analysis was performed with a cislunar target catalog, consisting of 15 targets across eight 
orbit families, and 64 surface target locations from the NASA catalog of man-made material on the moon. Findings 
demonstrate that average minimum and maximum gap times decrease with an increase in lobes.

1. INTRODUCTION

Following Poincaré’s seminal 1892 publication, the three-body problem sparked significant interest to the mathemat-
ical and scientific communities [ 1]. Early i nvestigations focused on solutions t o t he p lanar problem and identified 
a number of different periodic orbit families. By 1920 some periodic orbits were generated from infinitesimal peri-
odic oscillations but calculations relied upon analytical approximations near equilibrium points making it practically 
impossible to determine arbitrary three-dimensional solutions [2].

One intriguing aspect in finding periodic solutions is in its application to astrodynamics and Space Domain Awareness 
(SDA) communities. A common theme within the astrodynamics community has been to organize, classify, and store 
a variety of periodic solutions, as well as the required methodology to numerically produce them [3]. This cataloging 
effort supports mission designers by offering a variety of orbit candidates for the construction of deep-space and 
cislunar mission trajectories. More recently, the stability and flow to these orbits has become critical to evaluating 
periodic solutions. Stable and unstable manifolds, which exist near a periodic orbit, can be used as the foundation 
for low-energy transfer pathways. These manifolds allow for a spacecraft to arrive at, or depart from, periodic orbits 
with a minimal amount of ∆V . Independent trajectory arcs can be combined to produce initial trajectory designs for 
interplanetary missions.

In previous work performed by Davis et al [4], several unique “quasi-periodic tulip-shaped orbits” about the Earth-
Moon system were discovered by adding certain velocity perturbations to an NRHO within the lunar vicinity. Three 
years prior, the same researchers found a six petal tulip-shaped orbit around Saturn’s largest moon, Titan, with 2D 
Poincaré maps [5]. Both papers cited a clear need for further investigation sparking interest in this research to discover, 
catalog and present a methodology to produce different families of tulip-shaped periodic orbits within the context of 
the classic three-body problem. To date, this research represents the most extensive examination of this particular 
peridoic orbit family.

The following outline overviews the structure of this paper. Section 2 introduces the classical simplified three-body dy-
namics model followed by a common approach to finding co-linear periodic orbits via linearized system of equations. 
The construction of an NRHO from a third order analytic halo orbit is provided followed by the discovery of fifteen 
families of tulip-shaped periodic orbits and their corresponding initial dimensionless states in section 3. Hodographs 
of the Jacobi constant and stability index vs perilune altitude are presented for each family along with selected trajec-
tories after an ephemeris transition via DE 421 lunar ephemeris. Coverage metrics, discussed in previous SDA studies
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are outlined in section 4 along with a target catalog consisting of fifteen cislunar target trajectories and 64 surface tar-
gets from NASA’s catalog of man-made material on the moon. A thousand trial Monte Carlo simulation is performed
for each tulip-shaped orbit family to assess gap time performance in section 5. Section 6 discusses conclusions and
additional areas of research followed by an appendix which provides a variety of three-dimensional tulip-shaped orbits
for each newly discovered family.

2. THEORY

2.1 Simplified Dynamical Model
The well known Circular Restricted Three Body Problem (CR3BP) describes the dynamics of a spacecraft affected by
two primary gravitational bodies, P1 and P2 [6]. It is assumed that the primary bodies are orbiting a common center
of mass in circular orbits and unaffected by the spacecraft (P3). The spacecraft will therefore move freely under the
gravitational influence of P1 and P2 such that
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, (1)

where the pseudopotential, U , is defined as
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r
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the cartesian position and velocity components of the spacecraft with respect to the synodic frame, X� �
x y z 9x 9y 9z

�T ,
d � |P3 �P1|, r � |P3 �P2|, and the mass ratio of the system, µ � m2{pm1 �m2q, is found assuming that m2   m1.
These dynamics allow for an integral of motion to exist, the Jacobi constant,

J � 2U � � 9x2� 9y2� 9z2� . (3)

The boundary of possible motion for a spacecraft with a particular Jacobi constant can be computed by setting the
velocity of the spacecraft equal to zero, also known as a zero velocity curve. This is useful in finding forbidden
regions, places a spacecraft cannot directly access, as J can never increase from imparting velocity into the system.

The differential equation for the State Transition Matrix (STM), Φpt,0q , a matrix of partial derivatives, BXptq{BXp0q,
associated with the CR3BP dynamics is

9Φpt,0q � FptqΦpt,0q, (4)
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2.2 Stability Index
One useful metric for mission designers is orbital stability, this can be represented in terms of a stability index [7]

ν � 1
2

�
|λmax|� 1

|λmax|



(6)

where λmax is the maximum eigenvalue of the monodromy matrix, M, computed by propagating the STM forward one
orbital period, M � ΦpT,0q.
The stability index, ν , determines how fast invariant manifolds approach or depart the orbit [3], the larger the size
magnitude, the faster the manifolds approach or depart from the orbit. A small stability index reflects slow departures
from the orbit and is therefore related to lower station keeping requirements.

• If ν ¤ 1 then the orbit is marginally stable and eigenvectors will not yield stable and unstable invariant manifolds.
These orbits are excellent for long-term or quarantine-type applications.

• If ν ¡ 1 then associated stable and unstable invariant manifolds can be determined. These orbits allow for
transfers shadowing invariant manifolds to and from the orbit. Low-energy transfers are possible between two
unstable orbits and may be located by analyzing Poincaré maps in the CR3BP.
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2.3 Finding Periodic Orbits in the CR3BP

Simple co-linear periodic orbits are symmetric about the y=0 plane and intersect twice per orbit. Their intersection is
orthogonal to the x-z plane (x and z axis velocity components are zero). The states of a periodic symmetric orbit are
defined as Xpt0q and XptT{2q where t0 occurs at the first plane crossing and tT{2 is one half a period later at the next
crossing. To ensure symmetry, the initial and final states are represented as

Xpt0q � �
x0 0 z0 0 9y0 0

�T (7)

XptT{2q � �
xT{2 0 zT{2 0 9yT{2 0

�T (8)

An orbit is considered “periodic” if | 9xT{2|   ε and | 9zT{2|   ε where ε � 10�8 [6]. A differential corrector, given a
rough approximation of the initial state, X0pt0q, and orbital period, T0, is given by

Xn�1pt0q � Xnpt0q�δXpt0q (9)
Tn�1 � Tn�2δ pT{2q, (10)

where the linearized system of equations relating the final and initial states [8] are

δXptT{2q � ΦptT{2, t0qδXpt0q� BX
Bt

δ pT{2q, (11)

δXptT{2q is the deviation of the final state due to a deviation in the initial state δXpt0q, and a corresponding deviation
in the orbital period δ pT{2q. The time-derivative of the state BX

Bt is computed at the second plane crossing. The initial
state must have an orthogonal crossing with the x-z plane thus 9x � 9z � 0, the initial and final state deviations are then
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�T
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Three equations from the second, fourth, and sixth rows of equation 12 are used to solve for three unknowns via

�yT{2 � φ21δx0�φ23δ z0�φ25δ 9y0� 9yT{2δ pT{2q
� 9xT{2 � φ41δx0�φ43δ z0�φ45δ 9y0� :xT{2δ pT{2q
� 9zT{2 � φ61δx0�φ63δ z0�φ65δ 9y0�:zT{2δ pT{2q,

Case One: If the orbital period, T , is fixed such that δ pT{2q � 0, then x0, z0, and 9y0 are free,
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Case Two: If x0 is fixed such that δx0 � 0, then z0, 9y0, and T are free,
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Case Three: If z0 is fixed such that δ z0 � 0, then x0, 9y0, and T are free,
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Case Four: If 9y0 is fixed such that δ 9y0 � 0, then x0, z0, and T are free,
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2.4 Transitioning from CR3BP to an N-body Ephemeris Model

The NASA General Mission Analysis Tool (GMAT) was used to model the higher-fidelity planetary ephemeris and
verify these CR3BP orbits maintained their quasi-periodic properties [9]. The Planetary and Lunar Ephemeris DE 421
model was invoked through GMAT to precisely determine the position and velocity of the moon [10]. The ephemeris
transition process from the CR3B model to the high fidelity GMAT force model, consisted of 66 or more patch points
per orbital period and then correcting them via multi-level shooting technique. The multi-level shooting technique
employs a two-level differential correction process [11]:

• Level One - differential correction process operates on the velocity components of each patch point. The result-
ing output is a continuous ballistic trajectory in the higher fidelity force model (no discontinuities in position
after a single pass). This process is embarrassingly parallel as the corrector can operate on each segment sepa-
rately. The velocity components at the start of each segment can be corrected simultaneously

• Level Two - differential correction process operates on the position and epoch of all patch points concurrently.
The resulting output is a smooth trajectory which has minimal discontinuities in velocities between segments.
This process operates on all segments at once using a minimum-norm solution of least-square system to drive
discontinuities in velocity (delta-v) down to zero.

A smooth continuous trajectory was obtained after several iterations of the multi-level shooting method. This smoothed
trajectory was propagated for several orbital periods using a numerical ordinary differential equation solver on the
higher-fidelity force model. The resulting properties of each trajectory were compared against those of the CR3B orbit
to verify their periodicity and stability was maintained.

3. CONSTRUCTION OF TULIP-SHAPED ORBITS

The focus of this research is on the Earth-Moon system, therefore averaged constants, obtained from the JPL three-
body periodic orbit database, are used for dimensionalization and displayed in Table 1.

Parameter Symbol Value Units
Mass Ratio µ 1.215058560962404�10�2

Length Unit (LU) l� 389703 km
Time Unit (TU) t� 382981 s

Table 1: Parameters obtained from the JPL three-body periodic orbit database.

A dimensionless state vector and corresponding period, found by constructing a third order analytic halo orbit about
the second Earth-Moon Lagrange Point, is provided in Table 2 [12]. The process of iterating equations 9-10, while
holding the x0 coordinate fixed, provided a solution for the remaining free variables (z0, 9y0, τ0). Several thousand
iterations consisting of fixed step size increments on the order of δx � 10�4 were run until NRHOs were generated
with perilune altitudes near zero.
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x y z 9x 9y 9z τ0
1.11808849729283 0.0 -0.0223152933461533 0.0 0.185335512941906 0.0 3.40271361070999

Table 2: Halo Orbit Constructed by a Third Order Analytic Solution (Az � 10 Mm) About L2

Figure 1 depicts the family of halo orbits generated from the initial state in Table 2. Notice as the orbits approach the
Moon, the y-axis amplitude gets smaller and they become NRHOs.

Fig. 1: Halo Orbit Family About L2 (Red = 1,830 km Perilune Altitude NRHO)

Initial states, orbital periods, stability indices, perilune and apolune altitudes associated with this family are provided
in Table 3. Note, as the initial states are co-linear with the Earth-Moon vector, the y, 9x, and 9z components are all zero.

x z 9y τ0 ν rmin [km] rmax [km]
1.013531 0.175476 -0.083989 1.397814 1.059799 336.389366 67,374.787632
1.023731 0.183250 -0.106950 1.533637 1.369020 1,829.784441 71,031.977339
1.042531 0.193367 -0.143803 1.787043 1.686317 5,406.145598 76,573.641934
1.062131 0.200020 -0.175270 2.069754 1.356538 10,092.511198 81,413.009476
1.081731 0.202351 -0.199740 2.365015 1.000000 15,557.344385 85,193.428640
1.101131 0.198617 -0.216510 2.650791 6.543638 21,527.179400 87,369.121704
1.120731 0.186215 -0.224868 2.906681 22.413172 27,839.528342 87,413.242899
1.140331 0.162882 -0.223312 3.111210 64.993762 34,187.749702 85,212.270523
1.159931 0.124889 -0.208757 3.268499 179.779216 40,677.690364 81,123.512274
1.179531 0.036552 -0.163145 3.404549 547.882115 48,997.107897 74,307.806621

Table 3: Dimensionless Halo Orbit States, Period, Stability, and Min/Max Altitudes

An interesting discovery occurred during this research where the initial state of an NRHO with a perilune altitude of
1,830 km (rp � 3,568 km) would fork into other periodic orbits after changing the orbital period of a new orbit and
fixing the x-axis (equation 12, case two). Entire families of periodic orbits were found with their unique properties
documented in section 3.1. The initial states for the tulip-shaped orbit family occurs along the x-axis at a location
near x0 � 1.023731. Table 4 depicts the forked dimensionless states, their corresponding period, stability index, and
perilune/apolune altitudes of tulip-shaped orbits with petal counts up to 15. Note that these states correspond to
the same x-axis location which may result in perilune altitudes that are below the lunar surface. The same iterative
procedure to generate the family of halo orbits, equations 9-10, can be applied to increment the x-axis and resolve for
the reaming free variables (z0, 9y0, and τ0).
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Np x z 9y τ0 ν rmin [km] rmax [km]
1 1.023731 0.183250 -0.106950 1.533637 1.369020 1,829.784441 71,031.977339
2 Ó 0.174305 -0.082095 2.756426 1.143759 252.101807 67,614.276846
3 0.159022 -0.049901 3.588824 1.000000 -752.494538 61,792.204570
4 0.138427 -0.016770 4.050042 1.006718 -985.883719 53,991.239415
5 0.122012 0.006413 4.380388 1.000000 -868.057171 47,824.858055
6 0.108984 0.026199 4.628880 1.000070 -652.016695 42,976.890137
7 0.098423 0.044549 4.827278 1.000000 -399.673136 39,087.918798
8 0.089585 0.062522 4.991642 1.000000 -125.782171 35,870.635633
9 0.081981 0.080721 5.131974 1.000000 167.602678 33,137.365975

10 0.075272 0.099631 5.254942 1.000000 485.029409 30,759.162050
11 0.069206 0.119765 5.365409 1.000000 836.201072 28,641.991429
12 0.063570 0.141824 5.467385 1.000000 1,238.547091 26,710.271479
13 0.058150 0.167010 5.564950 1.000000 1,724.825262 24,891.061674
14 0.052617 0.198057 5.664248 1.000000 2,376.009532 23,082.050586
15 0.045796 0.247118 5.787296 1.000000 3,566.416573 20,935.315380

Table 4: Dimensionless Earth-Moon Tulip-Shaped States, Period, Stability, and Min/Max Altitudes

Figure 2 displays a curve fit of the three free variables, z, 9y, and τ , needed to form the full six dimensional state vector
as well as its dimensionless orbital period as a function of the number of tulip petals. A visual depiction of each newly
discovered tulip family is provided in appendix A.

Fig. 2: Initial States of Tulip-shaped Orbits Corresponding to Number of Petals, Np, (dotted line = polynomial fit)

These initial states are reduced to just three polynomial equations via,

z0pNpq � 1.91�10�6N5
p �8.55�10�5N4

p �1.38�10�3N3
p �9.10�10�3N2

p �8.49�10�3Np�0.18 (13)

9y0pNpq � 1.59�10�4N3
p �3.758�10�3N2

p �4.72�10�2Np�0.16 (14)

τ0pNpq � 5.02�10�5N5
p �2.426�10�3N4

p �4.61�10�2N3
p �0.44N2

p �2.257Np�0.33, (15)

where Np � r1,2, ...,15s. The dimensionless initial state of a tulip-shaped orbit with Np petals can then be determined
as

X0pNpq � �
1.023731 0.00 z0pNpq 0.00 9y0pNpq 0.00

�
,

where z0pNpq, 9y0pNpq, and corresponding period, τ0pNpq are computed from equations 13-15 respectively.

The relationship between the three free variables, z0, 9y0, and τ0, is both smooth and continuous, as shown in Figure
2. It’s feasible that these polynomial curves can be extrapolated to approximate the initial state for higher petal
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count tulip-shaped orbits (e.g. Np ¡ 15). It would be highly informative check the consistency of this solution when
determining existence in different three-body systems (e.g. using a different mass ratio, µ), and if the relative slopes
are maintained.

3.1 Families of Tulip-Shaped Orbits

Previous literature, looking for a staging location to the lunar surface, has established that two-lobe butterfly orbits,
Np � 2, can be found from bifurcating a L2 NRHO with a perilune radius of rp � 1,830 km [13]. In this research, it
was discovered that this NRHO can be repeatedly forked into co-linear tulip-shaped orbits with up to Np � 15 petals
(or lobes). Figure 3 depicts all families of the newly discovered tulip-shaped orbits using a minimum perilune altitude
of 500 km. Note that while a common perilune altitude was selected for these orbits, all contain families contain
solutions which range from meters to mega-meters.

Fig. 3: Tulip-Shaped Orbits Consisting of Np Petals at 500 km Perilune Altitude (black dot = Moon)

Observations of these tulip-shaped quasi-periodic orbits are provided below:

• Np � 1, NRHO - a single lobe orbit found from a halo orbit about the Earth-Moon L2. Perilune altitudes range
from the lunar surface up to 50 Mm while apolune altitudes are between 60 -90 Mm. The stability index is
above 1 for many altitudes suggesting that stable and unstable manifolds exist. The Jacobi constant for these
orbits are the lowest of all forked orbits with dimsionless periods ranging anywhere from one fourth to one half
a lunar orbital period.

• Np � 2, Butterfly Orbit - a bifurcated NRHO with perilune altitudes ranging between the lunar surface upto
15 Mm. Apolune altitudes range between 60-70Mm. The stability index is higher than that of the NRHO and
above unity suggesting there are more stable and unstable transfer manifolds into this orbit. The Jacobi constant
is slightly higher than that of an NRHO allowing for direct transfers between the two families. The orbital period
is about 1.8 times that of an NRHO. This orbit was previously discovered and published by Whitley et al [13]
in his analysis of orbits for lunar surface exploration.
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• Np � 3, Three-Petal Tulip-shaped Orbit - a trifurcated NRHO with a stability index near unity until perilune
altitudes exceed 3.5 Mm.

• Np � 4, Four-Petal Tulip-shaped Orbit - a quadfurcation NRHO with a stability index above unity for all
perilune altitudes. This is the last orbit in the family to have a stability index above unity.

• Np � 5�15, Multi-Petal Tulip-shaped Orbits - a forked NRHO orbit into multiple petals, all with stability
indicies near unity. These orbits may be good candidates for SDA survellance applications as they have low
stationkeeping requirements. The apolune altitude decreases with each additional petal, from 48 Mm to 20
Mm. Note that the Np � 6 tulip-shaped orbit has been published in previous studies as it was independently
discovered through the use of 2D Poincaré maps [5].

Figure 4 shows that higher petal count tulip-shaped orbits have lunar inclinations that converge near 63 degrees as Np
is increased. After the three-petal tulip-orbit, contains inclinations between 65 and 80 degrees at perilune and apolune
respectively, the spread decreases to less than two degrees by fifteen petals. It appears that these higher petal count
orbits may converge into a specific Lunar Frozen Orbit (LFO) configuration [14]. LFOs have a similar inclination
spread relative to the Earth-Moon orbit plane frame of reference while their eccentricity and semi-major axis remain
relatively fixed. The range of inclinations for each tulip-shaped orbit also exists within the bounds of critical inclination
for the Earth-Moon system, i P r39.2�,140.77�s.

Fig. 4: Lunar Inclination vs Np Petals at 500 km Perilune Altitude

Figure 5 shows that the apolune altitudes for each tulip-shaped orbit family decreases with an increase in petal count
(for a fixed perilune altitude of 500 km). Comparatively, an LFO with a 500 km perilune altitude at an inclination
of 63.58� and eccentricity of

?
0.17�0.83cos2i � 0.82 has an apolune altitude near 20,690 km. For reference, the

lowest apolune altitude of the tulip-shaped orbit families occurs at Np � 15 and is nearly 2,700 km higher.

Fig. 5: Lunar Altitude vs Np Petals at 500 km Perilune Altitude

Borrowing the concept used for bifurcation analysis, a family of periodic solutions is a set of solutions sharing a
common hodograph [15]. In the context of three-body dynamics, a hodograph is a continuous curve in phase space that

Copyright © 2023 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) – www.amostech.com 



consists of points belonging to different periodic solutions [16]. Specifically, this phase space contains six dimensions,
however symmetric periodic solutions contain at least two mirror configurations, furthermore, initial conditions dictate
states of three non-zero parameters. It’s possible to move along the hodograph by varying a system parameter such as
Jacobi’s constant such that periodic solutions continuously evolve. A point along the hodograph at which the stability
changes is referred to as a bifurcation point. Figures 6 and 7 respectively depict a hodographs of the Jacobi constant
and stability index as a function of perilune altitude.

Note that a hodograph bifurcation point occurs between the NRHO and Butterfly orbit near 100 km in perilune altitude
(rp � 1,830 km). The Np � 3 to Np � 13 petal count tulip-shaped orbits do not bifurcate at perilune altitudes below 5
Mm until higher petal counts of Np � 14 are reached. There is another bifrucation identified between 14 and 15 petal
tulip orbits near a perilune altitude of 2,600 km (rp � 4,338 km) The stability index hodograph indicates possible low-
energy transfer manifolds for all tulip orbits with a petal count below Np � 5. Looking at the Jacobi constant, there
are clearly defined separations, ∆J, for each additional petal which are maintained throughout all perliune altitudes.

Fig. 6: Jacobi Constant vs Perilune Alt Hodograph of Tulip-Shaped Orbits With Petals Np P r1,15s.

Fig. 7: Stability Index vs Perilune Alt Hodograph of Tulip-Shaped Orbits With Petals Np P r1,15s.

A spacecraft that has a Jacobi constant value under 2.988 can theoretically reach any point within the Earth-Moon
system. Higher Jacobi constants signify that access to available regions of space are more restricted which, like
stability indices near unity, are better for lunar quarantine and SDA type applications. The minimum number of
instantaneous ∆V impulses can be determined from the Jacobi constant and the orbit stability, transfers between two
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stable orbits require a minimum of two ∆V impulses while transfers between unstable and stable orbits as well as two
unstable orbits can be performed with a single ∆V impulse [8].

3.2 Higher Fidelity Ephemeris Model

Using the procedure described in 2.4, the tulip-shaped CR3BP orbits were transitioned to an N-body model using the
DE 421 lunar and planetary ephemeris. The results for several tulip-shaped orbit families are displayed in figure 8.
Note that the moon was included in each subplot and its diameter is properly scaled for reference.

Fig. 8: Tulip-Shaped Orbits After Transitioning from the CR3BP to the DE 421 Lunar Ephemeris

Each example consisted of between 3-15 periods (62 to 275 days). Depending on the number of petals in the periodic
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orbit, between 55 and 100 patch points were used in the multi-level shooting method. After Np � 4, it became
significantly easier to find the correct combination of patch points and perilune altitude that quickly converged, this
appears related to the stability properties of the orbit and the location of each patch point. From a preliminary literature
review, it appears that these findings translate to other three-body systems as well. As noted in section 3.1, the Np � 6
tulip-shaped orbit was discovered and published in a previous study using a 2D Poincaré map on Titan, Saturn’s largest
moon [5].

4. ASSUMPTIONS

4.1 Target Catalog and Coverage Metrics

Fifteen cislunar trajectories, consisting of eight orbit families, were selected about the Earth-Moon system. Their
corresponding state vectors are provided in a previous study evaluating the orbit determination benefits of moon-based
sensors [17]. The final NASA catalog of manmade material on the Moon, with several slight corrections, was used
to establish the Selenographic coordinates of 64 individual target locations [18]. Figure 9 depects all cislunar target
trajectories as well as the surface targets used for this study.

A subset of coverage metrics described in a previous study on hosted payload architectures for improved GEO SSA
[19] were modified for use in cislunar architectures and briefly described below

• Total Number of Tracks - Total number of tracking intervals over the analysis period. Indicates the number of
times favorable viewing conditions exist.

• Total Track Duration - Sum of each track duration. This indicates an orbit’s near-continuous coverage perfor-
mance.

• Average max tracking gap - Time from the end of one track to the beginning of the next track for each catalog
object, the maximum gap over the analysis period is computed, then averaged across the population. This
indicates worst-case revisit times for a given orbit.

• Average min tracking gap Similar to the average max tracking gap, but minimum is computed instead. This
indicates the best-case revisit times for a given orbit.

Fig. 9: 15 Target Trajectories (lines) and 64 Surface Targets from NASA’s Man-made Material on the Moon (squares).
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5. RESULTS AND DISCUSSION

A thousand trial Monte Carlo simulation was performed over a full Earth year with 15 minute time steps and randomly
varied starting locations of all three-body trajectories. Coverage metrics were computed for each target and averaged
across all trials. As this study was intended to be agnostic to sensor phenomenology, solar exclusions and minimum
elevation angles were not considered. A track was counted when the line of sight between the sensor and the target
was unobstructed by the moon. All orbit configurations, except for the NRHO, provided full coverage of all targets
within the catalog. The gap time and track duration performance for each tulip-shaped orbit is presented in Figure 10.

Fig. 10: Total Track Duration/ Number of Tracks (left) and Average Min/Max Gap Times (right)

Notice that as higher petal count orbits are considered, the average maximum and minimum gap times of tracking both
lunar-based and space-based targets decrease. Higher petal count tulip-shaped orbits offer better gap time performance
while tulip-shaped orbits closer to 3 petals offer longer overall duration tracks for persistent monitoring. NRHO
orbits cannot maintain coverage of all cataloged objects as they do not offer 360 degree LOS viewing of the lunar
surface. While it is clear that higher petal counts reduce both the maximum and minimum average gap times across
all cataloged objects, there is an exponential decrease in gap times for the minimum case and gradual linear decrease
for the maximum case. These results only depict the performance of a single satellite in each orbit configuration, gap
times will decrease proportional to their number and spacing.

6. CONCLUSIONS AND FUTURE WORK

Entirely new families of three-body quasi periodic trajectories, termed “tulip-shaped orbits” were discovered and pre-
sented for the first time in scientific literature. A subset of these families have a stability index above unity suggesting
the existence of low-energy transfers between other orbits. All tulip-shaped orbits were successfully transitioned to
a high precision lunar ephemeris model using a well established multi-level shooting technique. Three polynomial
equations were developed, as a function of petal count, to obtain the initial states of each tulip-shaped orbit family. A
differential corrector can then be used to converge upon the desired periodic orbit and its desired period along with
perilune and apolune altitudes can be adjusted via iterative process. All new families of orbits were evaluated for their
gap time and track duration coverage against the NASA man-made catalog of material on the lunar surface and fif-
teen previously published cislunar trajectories. Findings demonstrate that average minimum and maximum gap times
decrease with an increase in petals.

Additional areas of research that warrant further investigation as a result of the above findings include:

• Station Keeping and Orbital Maintenance - after existence has been established in a high precision lunar
ephemeris model, an orbital maintenance technique can be developed to maintain the trajectory for an ex-
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tended time period. Assessing how to maintain spacing between several space vehicles would be beneficial for
constellation formation and maintenance.

• Low-Energy Transfers - inserting a spacecraft via manifold may be possible for those with stability indicies
above unity. Further identifying techniques to assist mission designers in performing impulsive and low-thrust
orbit transfer between orbit families would add utility.

• Communications and Navigation - families of these orbits have several desirable properties for lunar surface
navigation and communication systems as their apolune altitudes decrease down to 20 Mm with an increase in
petal count. Orbits are stationary with respect to the Earth-Moon rotating frame placing perilune and apolune
over the same selenographic coordinates (e.g. repeating ground tracks). Many families are neutrally stable
suggesting low station-keeping and end-of-life ∆V requirements.

• Additional Periodic Families - while the tulip-shaped orbits discussed are three-dimensional, similar planar
periodic trajectories were also observed in the CR3BP. There may be additional orbits with a higher petal counts
offering lower apolune altitudes and greater geometric variety. There may be a similar family or orbits that can
be forked from an L1 NRHO.

• Checking Additional Three-Body Systems - this research was focused on the Earth-Moon system, as pointed
out during the discover that the initial states are both smooth and continuous with respect to the petal count,
does this change when a different mass ratio is used?

• Constellation Design - tulip-shaped orbits may offer better overall SDA performance benefits when combined
with more traditional two-body or other halo type orbits. This may need to be assessed by looking at various
metrics in a complete sensor architecture.

In addition to the above areas of research, further extending bifurcation theory to analytically reproduce these new
orbit families in other three-body systems (e.g. Sun-Earth, Saturn-Titan) would benefit many deep space missions and
advance our understanding of circular restricted three-body dynamics.
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[3] M. Vaquero and J. Senent, “Poincaré: A multi-body, multi-system trajectory design tool,” 2018.
[4] D. C. Davis, R. J. Power, K. C. Howell, and J. P. Gutkowski, “Lunar impact probability for spacecraft in near

rectilinear halo orbits,” in AAS/AIAA Space Flight Mechanics Meeting, Virtual, 2021.
[5] D. C. Davis, S. M. Phillips, and B. P. McCarthy, “Trajectory design for saturnian ocean worlds orbiters using
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A. TULIP-SHAPED ORBIT FAMILIES STEMMING FROM AN L2 NRHO

Fig. 11: Np � 1 Halo Orbit Family About L2 (Red = Bifurcated Solution from 1,800 km NRHO)

Fig. 12: Np � 2 Butterfly Orbit Family About L2 (Red = Bifurcated Solution from 1,800 km NRHO)

Fig. 13: Np � 3 Tulip-shaped Orbit Family About L2 (Red = Trifurcated Solution from 1,800 km NRHO)
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Fig. 14: Np � 4 Tulip-shaped Orbit Family About L2 (Red = Forked Solution from 1,800 km NRHO)

Fig. 15: Np � 5 Tulip-shaped Orbit Family About L2 (Red = Forked Solution from 1,800 km NRHO)

Fig. 16: Np � 6 Tulip-shaped Orbit Family About L2 (Red = Forked Solution from 1,800 km NRHO)
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Fig. 17: Np � 7 Tulip-shaped Orbit Family About L2 (Red = Forked Solution from 1,800 km NRHO)

Fig. 18: Np � 8 Tulip-shaped Orbit Family About L2 (Red = Forked Solution from 1,800 km NRHO)

Fig. 19: Np � 9 Tulip-shaped Orbit Family About L2 (Red = Forked Solution from 1,800 km NRHO)
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Fig. 20: Np � 10 Tulip-shaped Orbit Family About L2 (Red = Forked Solution from 1,800 km NRHO)

Fig. 21: Np � 11 Tulip-shaped Orbit Family About L2 (Red = Forked Solution from 1,800 km NRHO)

Fig. 22: Np � 12 Tulip-shaped Orbit Family About L2 (Red = Forked Solution from 1,800 km NRHO)
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Fig. 23: Np � 13 Tulip-shaped Orbit Family About L2 (Red = Forked Solution from 1,800 km NRHO)

Fig. 24: Np � 14 Tulip-shaped Orbit Family About L2 (Red = Forked Solution from 1,800 km NRHO)

Fig. 25: Np � 15 Tulip-shaped Orbit Family About L2 (Red = Forked Solution from 1,800 km NRHO)
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